1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * ZFS control directory (a.k.a. ".zfs") 28 * 29 * This directory provides a common location for all ZFS meta-objects. 30 * Currently, this is only the 'snapshot' directory, but this may expand in the 31 * future. The elements are built using the GFS primitives, as the hierarchy 32 * does not actually exist on disk. 33 * 34 * For 'snapshot', we don't want to have all snapshots always mounted, because 35 * this would take up a huge amount of space in /etc/mnttab. We have three 36 * types of objects: 37 * 38 * ctldir ------> snapshotdir -------> snapshot 39 * | 40 * | 41 * V 42 * mounted fs 43 * 44 * The 'snapshot' node contains just enough information to lookup '..' and act 45 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 46 * perform an automount of the underlying filesystem and return the 47 * corresponding vnode. 48 * 49 * All mounts are handled automatically by the kernel, but unmounts are 50 * (currently) handled from user land. The main reason is that there is no 51 * reliable way to auto-unmount the filesystem when it's "no longer in use". 52 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 53 * unmounts any snapshots within the snapshot directory. 54 * 55 * The '.zfs', '.zfs/snapshot', and all directories created under 56 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and 57 * share the same vfs_t as the head filesystem (what '.zfs' lives under). 58 * 59 * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>' 60 * (ie: snapshots) are ZFS nodes and have their own unique vfs_t. 61 * However, vnodes within these mounted on file systems have their v_vfsp 62 * fields set to the head filesystem to make NFS happy (see 63 * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t 64 * so that it cannot be freed until all snapshots have been unmounted. 65 */ 66 67 #include <fs/fs_subr.h> 68 #include <sys/zfs_ctldir.h> 69 #include <sys/zfs_ioctl.h> 70 #include <sys/zfs_vfsops.h> 71 #include <sys/vfs_opreg.h> 72 #include <sys/gfs.h> 73 #include <sys/stat.h> 74 #include <sys/dmu.h> 75 #include <sys/dsl_deleg.h> 76 #include <sys/mount.h> 77 #include <sys/sunddi.h> 78 79 #include "zfs_namecheck.h" 80 81 typedef struct zfsctl_node { 82 gfs_dir_t zc_gfs_private; 83 uint64_t zc_id; 84 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 85 } zfsctl_node_t; 86 87 typedef struct zfsctl_snapdir { 88 zfsctl_node_t sd_node; 89 kmutex_t sd_lock; 90 avl_tree_t sd_snaps; 91 } zfsctl_snapdir_t; 92 93 typedef struct { 94 char *se_name; 95 vnode_t *se_root; 96 avl_node_t se_node; 97 } zfs_snapentry_t; 98 99 static int 100 snapentry_compare(const void *a, const void *b) 101 { 102 const zfs_snapentry_t *sa = a; 103 const zfs_snapentry_t *sb = b; 104 int ret = strcmp(sa->se_name, sb->se_name); 105 106 if (ret < 0) 107 return (-1); 108 else if (ret > 0) 109 return (1); 110 else 111 return (0); 112 } 113 114 vnodeops_t *zfsctl_ops_root; 115 vnodeops_t *zfsctl_ops_snapdir; 116 vnodeops_t *zfsctl_ops_snapshot; 117 vnodeops_t *zfsctl_ops_shares; 118 vnodeops_t *zfsctl_ops_shares_dir; 119 120 static const fs_operation_def_t zfsctl_tops_root[]; 121 static const fs_operation_def_t zfsctl_tops_snapdir[]; 122 static const fs_operation_def_t zfsctl_tops_snapshot[]; 123 static const fs_operation_def_t zfsctl_tops_shares[]; 124 125 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 126 static vnode_t *zfsctl_mknode_shares(vnode_t *); 127 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 128 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *); 129 130 static gfs_opsvec_t zfsctl_opsvec[] = { 131 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 132 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 133 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 134 { ".zfs/shares", zfsctl_tops_shares, &zfsctl_ops_shares_dir }, 135 { ".zfs/shares/vnode", zfsctl_tops_shares, &zfsctl_ops_shares }, 136 { NULL } 137 }; 138 139 /* 140 * Root directory elements. We only have two entries 141 * snapshot and shares. 142 */ 143 static gfs_dirent_t zfsctl_root_entries[] = { 144 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 145 { "shares", zfsctl_mknode_shares, GFS_CACHE_VNODE }, 146 { NULL } 147 }; 148 149 /* include . and .. in the calculation */ 150 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 151 sizeof (gfs_dirent_t)) + 1) 152 153 154 /* 155 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 156 * directories. This is called from the ZFS init routine, and initializes the 157 * vnode ops vectors that we'll be using. 158 */ 159 void 160 zfsctl_init(void) 161 { 162 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 163 } 164 165 void 166 zfsctl_fini(void) 167 { 168 /* 169 * Remove vfsctl vnode ops 170 */ 171 if (zfsctl_ops_root) 172 vn_freevnodeops(zfsctl_ops_root); 173 if (zfsctl_ops_snapdir) 174 vn_freevnodeops(zfsctl_ops_snapdir); 175 if (zfsctl_ops_snapshot) 176 vn_freevnodeops(zfsctl_ops_snapshot); 177 if (zfsctl_ops_shares) 178 vn_freevnodeops(zfsctl_ops_shares); 179 if (zfsctl_ops_shares_dir) 180 vn_freevnodeops(zfsctl_ops_shares_dir); 181 182 zfsctl_ops_root = NULL; 183 zfsctl_ops_snapdir = NULL; 184 zfsctl_ops_snapshot = NULL; 185 zfsctl_ops_shares = NULL; 186 zfsctl_ops_shares_dir = NULL; 187 } 188 189 /* 190 * Return the inode number associated with the 'snapshot' or 191 * 'shares' directory. 192 */ 193 /* ARGSUSED */ 194 static ino64_t 195 zfsctl_root_inode_cb(vnode_t *vp, int index) 196 { 197 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 198 199 ASSERT(index <= 2); 200 201 if (index == 0) 202 return (ZFSCTL_INO_SNAPDIR); 203 204 return (zfsvfs->z_shares_dir); 205 } 206 207 /* 208 * Create the '.zfs' directory. This directory is cached as part of the VFS 209 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 210 * therefore checks against a vfs_count of 2 instead of 1. This reference 211 * is removed when the ctldir is destroyed in the unmount. 212 */ 213 void 214 zfsctl_create(zfsvfs_t *zfsvfs) 215 { 216 vnode_t *vp, *rvp; 217 zfsctl_node_t *zcp; 218 219 ASSERT(zfsvfs->z_ctldir == NULL); 220 221 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 222 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 223 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 224 zcp = vp->v_data; 225 zcp->zc_id = ZFSCTL_INO_ROOT; 226 227 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 228 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 229 VN_RELE(rvp); 230 231 /* 232 * We're only faking the fact that we have a root of a filesystem for 233 * the sake of the GFS interfaces. Undo the flag manipulation it did 234 * for us. 235 */ 236 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 237 238 zfsvfs->z_ctldir = vp; 239 } 240 241 /* 242 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 243 * There might still be more references if we were force unmounted, but only 244 * new zfs_inactive() calls can occur and they don't reference .zfs 245 */ 246 void 247 zfsctl_destroy(zfsvfs_t *zfsvfs) 248 { 249 VN_RELE(zfsvfs->z_ctldir); 250 zfsvfs->z_ctldir = NULL; 251 } 252 253 /* 254 * Given a root znode, retrieve the associated .zfs directory. 255 * Add a hold to the vnode and return it. 256 */ 257 vnode_t * 258 zfsctl_root(znode_t *zp) 259 { 260 ASSERT(zfs_has_ctldir(zp)); 261 VN_HOLD(zp->z_zfsvfs->z_ctldir); 262 return (zp->z_zfsvfs->z_ctldir); 263 } 264 265 /* 266 * Common open routine. Disallow any write access. 267 */ 268 /* ARGSUSED */ 269 static int 270 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct) 271 { 272 if (flags & FWRITE) 273 return (EACCES); 274 275 return (0); 276 } 277 278 /* 279 * Common close routine. Nothing to do here. 280 */ 281 /* ARGSUSED */ 282 static int 283 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 284 cred_t *cr, caller_context_t *ct) 285 { 286 return (0); 287 } 288 289 /* 290 * Common access routine. Disallow writes. 291 */ 292 /* ARGSUSED */ 293 static int 294 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr, 295 caller_context_t *ct) 296 { 297 if (flags & V_ACE_MASK) { 298 if (mode & ACE_ALL_WRITE_PERMS) 299 return (EACCES); 300 } else { 301 if (mode & VWRITE) 302 return (EACCES); 303 } 304 305 return (0); 306 } 307 308 /* 309 * Common getattr function. Fill in basic information. 310 */ 311 static void 312 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 313 { 314 zfsctl_node_t *zcp = vp->v_data; 315 timestruc_t now; 316 317 vap->va_uid = 0; 318 vap->va_gid = 0; 319 vap->va_rdev = 0; 320 /* 321 * We are a purly virtual object, so we have no 322 * blocksize or allocated blocks. 323 */ 324 vap->va_blksize = 0; 325 vap->va_nblocks = 0; 326 vap->va_seq = 0; 327 vap->va_fsid = vp->v_vfsp->vfs_dev; 328 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 329 S_IROTH | S_IXOTH; 330 vap->va_type = VDIR; 331 /* 332 * We live in the now (for atime). 333 */ 334 gethrestime(&now); 335 vap->va_atime = now; 336 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 337 } 338 339 /*ARGSUSED*/ 340 static int 341 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 342 { 343 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 344 zfsctl_node_t *zcp = vp->v_data; 345 uint64_t object = zcp->zc_id; 346 zfid_short_t *zfid; 347 int i; 348 349 ZFS_ENTER(zfsvfs); 350 351 if (fidp->fid_len < SHORT_FID_LEN) { 352 fidp->fid_len = SHORT_FID_LEN; 353 ZFS_EXIT(zfsvfs); 354 return (ENOSPC); 355 } 356 357 zfid = (zfid_short_t *)fidp; 358 359 zfid->zf_len = SHORT_FID_LEN; 360 361 for (i = 0; i < sizeof (zfid->zf_object); i++) 362 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 363 364 /* .zfs znodes always have a generation number of 0 */ 365 for (i = 0; i < sizeof (zfid->zf_gen); i++) 366 zfid->zf_gen[i] = 0; 367 368 ZFS_EXIT(zfsvfs); 369 return (0); 370 } 371 372 373 /*ARGSUSED*/ 374 static int 375 zfsctl_shares_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 376 { 377 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 378 znode_t *dzp; 379 int error; 380 381 ZFS_ENTER(zfsvfs); 382 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 383 error = VOP_FID(ZTOV(dzp), fidp, ct); 384 VN_RELE(ZTOV(dzp)); 385 } 386 387 ZFS_EXIT(zfsvfs); 388 return (error); 389 } 390 /* 391 * .zfs inode namespace 392 * 393 * We need to generate unique inode numbers for all files and directories 394 * within the .zfs pseudo-filesystem. We use the following scheme: 395 * 396 * ENTRY ZFSCTL_INODE 397 * .zfs 1 398 * .zfs/snapshot 2 399 * .zfs/snapshot/<snap> objectid(snap) 400 */ 401 402 #define ZFSCTL_INO_SNAP(id) (id) 403 404 /* 405 * Get root directory attributes. 406 */ 407 /* ARGSUSED */ 408 static int 409 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 410 caller_context_t *ct) 411 { 412 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 413 414 ZFS_ENTER(zfsvfs); 415 vap->va_nodeid = ZFSCTL_INO_ROOT; 416 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 417 418 zfsctl_common_getattr(vp, vap); 419 ZFS_EXIT(zfsvfs); 420 421 return (0); 422 } 423 424 /* 425 * Special case the handling of "..". 426 */ 427 /* ARGSUSED */ 428 int 429 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 430 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 431 int *direntflags, pathname_t *realpnp) 432 { 433 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 434 int err; 435 436 /* 437 * No extended attributes allowed under .zfs 438 */ 439 if (flags & LOOKUP_XATTR) 440 return (EINVAL); 441 442 ZFS_ENTER(zfsvfs); 443 444 if (strcmp(nm, "..") == 0) { 445 err = VFS_ROOT(dvp->v_vfsp, vpp); 446 } else { 447 err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir, 448 cr, ct, direntflags, realpnp); 449 } 450 451 ZFS_EXIT(zfsvfs); 452 453 return (err); 454 } 455 456 static int 457 zfsctl_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 458 caller_context_t *ct) 459 { 460 /* 461 * We only care about ACL_ENABLED so that libsec can 462 * display ACL correctly and not default to POSIX draft. 463 */ 464 if (cmd == _PC_ACL_ENABLED) { 465 *valp = _ACL_ACE_ENABLED; 466 return (0); 467 } 468 469 return (fs_pathconf(vp, cmd, valp, cr, ct)); 470 } 471 472 static const fs_operation_def_t zfsctl_tops_root[] = { 473 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 474 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 475 { VOPNAME_IOCTL, { .error = fs_inval } }, 476 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 477 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 478 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 479 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 480 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 481 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 482 { VOPNAME_PATHCONF, { .vop_pathconf = zfsctl_pathconf } }, 483 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 484 { NULL } 485 }; 486 487 static int 488 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 489 { 490 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 491 492 if (snapshot_namecheck(name, NULL, NULL) != 0) 493 return (EILSEQ); 494 dmu_objset_name(os, zname); 495 if (strlen(zname) + 1 + strlen(name) >= len) 496 return (ENAMETOOLONG); 497 (void) strcat(zname, "@"); 498 (void) strcat(zname, name); 499 return (0); 500 } 501 502 static int 503 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr) 504 { 505 vnode_t *svp = sep->se_root; 506 int error; 507 508 ASSERT(vn_ismntpt(svp)); 509 510 /* this will be dropped by dounmount() */ 511 if ((error = vn_vfswlock(svp)) != 0) 512 return (error); 513 514 VN_HOLD(svp); 515 error = dounmount(vn_mountedvfs(svp), fflags, cr); 516 if (error) { 517 VN_RELE(svp); 518 return (error); 519 } 520 VFS_RELE(svp->v_vfsp); 521 /* 522 * We can't use VN_RELE(), as that will try to invoke 523 * zfsctl_snapdir_inactive(), which would cause us to destroy 524 * the sd_lock mutex held by our caller. 525 */ 526 ASSERT(svp->v_count == 1); 527 gfs_vop_inactive(svp, cr, NULL); 528 529 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 530 kmem_free(sep, sizeof (zfs_snapentry_t)); 531 532 return (0); 533 } 534 535 static void 536 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 537 { 538 avl_index_t where; 539 vfs_t *vfsp; 540 refstr_t *pathref; 541 char newpath[MAXNAMELEN]; 542 char *tail; 543 544 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 545 ASSERT(sep != NULL); 546 547 vfsp = vn_mountedvfs(sep->se_root); 548 ASSERT(vfsp != NULL); 549 550 vfs_lock_wait(vfsp); 551 552 /* 553 * Change the name in the AVL tree. 554 */ 555 avl_remove(&sdp->sd_snaps, sep); 556 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 557 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 558 (void) strcpy(sep->se_name, nm); 559 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 560 avl_insert(&sdp->sd_snaps, sep, where); 561 562 /* 563 * Change the current mountpoint info: 564 * - update the tail of the mntpoint path 565 * - update the tail of the resource path 566 */ 567 pathref = vfs_getmntpoint(vfsp); 568 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 569 VERIFY((tail = strrchr(newpath, '/')) != NULL); 570 *(tail+1) = '\0'; 571 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 572 (void) strcat(newpath, nm); 573 refstr_rele(pathref); 574 vfs_setmntpoint(vfsp, newpath); 575 576 pathref = vfs_getresource(vfsp); 577 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 578 VERIFY((tail = strrchr(newpath, '@')) != NULL); 579 *(tail+1) = '\0'; 580 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 581 (void) strcat(newpath, nm); 582 refstr_rele(pathref); 583 vfs_setresource(vfsp, newpath); 584 585 vfs_unlock(vfsp); 586 } 587 588 /*ARGSUSED*/ 589 static int 590 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 591 cred_t *cr, caller_context_t *ct, int flags) 592 { 593 zfsctl_snapdir_t *sdp = sdvp->v_data; 594 zfs_snapentry_t search, *sep; 595 zfsvfs_t *zfsvfs; 596 avl_index_t where; 597 char from[MAXNAMELEN], to[MAXNAMELEN]; 598 char real[MAXNAMELEN]; 599 int err; 600 601 zfsvfs = sdvp->v_vfsp->vfs_data; 602 ZFS_ENTER(zfsvfs); 603 604 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 605 err = dmu_snapshot_realname(zfsvfs->z_os, snm, real, 606 MAXNAMELEN, NULL); 607 if (err == 0) { 608 snm = real; 609 } else if (err != ENOTSUP) { 610 ZFS_EXIT(zfsvfs); 611 return (err); 612 } 613 } 614 615 ZFS_EXIT(zfsvfs); 616 617 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 618 if (!err) 619 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 620 if (!err) 621 err = zfs_secpolicy_rename_perms(from, to, cr); 622 if (err) 623 return (err); 624 625 /* 626 * Cannot move snapshots out of the snapdir. 627 */ 628 if (sdvp != tdvp) 629 return (EINVAL); 630 631 if (strcmp(snm, tnm) == 0) 632 return (0); 633 634 mutex_enter(&sdp->sd_lock); 635 636 search.se_name = (char *)snm; 637 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 638 mutex_exit(&sdp->sd_lock); 639 return (ENOENT); 640 } 641 642 err = dmu_objset_rename(from, to, B_FALSE); 643 if (err == 0) 644 zfsctl_rename_snap(sdp, sep, tnm); 645 646 mutex_exit(&sdp->sd_lock); 647 648 return (err); 649 } 650 651 /* ARGSUSED */ 652 static int 653 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 654 caller_context_t *ct, int flags) 655 { 656 zfsctl_snapdir_t *sdp = dvp->v_data; 657 zfs_snapentry_t *sep; 658 zfs_snapentry_t search; 659 zfsvfs_t *zfsvfs; 660 char snapname[MAXNAMELEN]; 661 char real[MAXNAMELEN]; 662 int err; 663 664 zfsvfs = dvp->v_vfsp->vfs_data; 665 ZFS_ENTER(zfsvfs); 666 667 if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 668 669 err = dmu_snapshot_realname(zfsvfs->z_os, name, real, 670 MAXNAMELEN, NULL); 671 if (err == 0) { 672 name = real; 673 } else if (err != ENOTSUP) { 674 ZFS_EXIT(zfsvfs); 675 return (err); 676 } 677 } 678 679 ZFS_EXIT(zfsvfs); 680 681 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 682 if (!err) 683 err = zfs_secpolicy_destroy_perms(snapname, cr); 684 if (err) 685 return (err); 686 687 mutex_enter(&sdp->sd_lock); 688 689 search.se_name = name; 690 sep = avl_find(&sdp->sd_snaps, &search, NULL); 691 if (sep) { 692 avl_remove(&sdp->sd_snaps, sep); 693 err = zfsctl_unmount_snap(sep, MS_FORCE, cr); 694 if (err) 695 avl_add(&sdp->sd_snaps, sep); 696 else 697 err = dmu_objset_destroy(snapname); 698 } else { 699 err = ENOENT; 700 } 701 702 mutex_exit(&sdp->sd_lock); 703 704 return (err); 705 } 706 707 /* 708 * This creates a snapshot under '.zfs/snapshot'. 709 */ 710 /* ARGSUSED */ 711 static int 712 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, 713 cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp) 714 { 715 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 716 char name[MAXNAMELEN]; 717 int err; 718 static enum symfollow follow = NO_FOLLOW; 719 static enum uio_seg seg = UIO_SYSSPACE; 720 721 if (snapshot_namecheck(dirname, NULL, NULL) != 0) 722 return (EILSEQ); 723 724 dmu_objset_name(zfsvfs->z_os, name); 725 726 *vpp = NULL; 727 728 err = zfs_secpolicy_snapshot_perms(name, cr); 729 if (err) 730 return (err); 731 732 if (err == 0) { 733 err = dmu_objset_snapshot(name, dirname, B_FALSE); 734 if (err) 735 return (err); 736 err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp); 737 } 738 739 return (err); 740 } 741 742 /* 743 * Lookup entry point for the 'snapshot' directory. Try to open the 744 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 745 * Perform a mount of the associated dataset on top of the vnode. 746 */ 747 /* ARGSUSED */ 748 static int 749 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 750 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 751 int *direntflags, pathname_t *realpnp) 752 { 753 zfsctl_snapdir_t *sdp = dvp->v_data; 754 objset_t *snap; 755 char snapname[MAXNAMELEN]; 756 char real[MAXNAMELEN]; 757 char *mountpoint; 758 zfs_snapentry_t *sep, search; 759 struct mounta margs; 760 vfs_t *vfsp; 761 size_t mountpoint_len; 762 avl_index_t where; 763 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 764 int err; 765 766 /* 767 * No extended attributes allowed under .zfs 768 */ 769 if (flags & LOOKUP_XATTR) 770 return (EINVAL); 771 772 ASSERT(dvp->v_type == VDIR); 773 774 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 775 return (0); 776 777 /* 778 * If we get a recursive call, that means we got called 779 * from the domount() code while it was trying to look up the 780 * spec (which looks like a local path for zfs). We need to 781 * add some flag to domount() to tell it not to do this lookup. 782 */ 783 if (MUTEX_HELD(&sdp->sd_lock)) 784 return (ENOENT); 785 786 ZFS_ENTER(zfsvfs); 787 788 if (flags & FIGNORECASE) { 789 boolean_t conflict = B_FALSE; 790 791 err = dmu_snapshot_realname(zfsvfs->z_os, nm, real, 792 MAXNAMELEN, &conflict); 793 if (err == 0) { 794 nm = real; 795 } else if (err != ENOTSUP) { 796 ZFS_EXIT(zfsvfs); 797 return (err); 798 } 799 if (realpnp) 800 (void) strlcpy(realpnp->pn_buf, nm, 801 realpnp->pn_bufsize); 802 if (conflict && direntflags) 803 *direntflags = ED_CASE_CONFLICT; 804 } 805 806 mutex_enter(&sdp->sd_lock); 807 search.se_name = (char *)nm; 808 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 809 *vpp = sep->se_root; 810 VN_HOLD(*vpp); 811 err = traverse(vpp); 812 if (err) { 813 VN_RELE(*vpp); 814 *vpp = NULL; 815 } else if (*vpp == sep->se_root) { 816 /* 817 * The snapshot was unmounted behind our backs, 818 * try to remount it. 819 */ 820 goto domount; 821 } else { 822 /* 823 * VROOT was set during the traverse call. We need 824 * to clear it since we're pretending to be part 825 * of our parent's vfs. 826 */ 827 (*vpp)->v_flag &= ~VROOT; 828 } 829 mutex_exit(&sdp->sd_lock); 830 ZFS_EXIT(zfsvfs); 831 return (err); 832 } 833 834 /* 835 * The requested snapshot is not currently mounted, look it up. 836 */ 837 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 838 if (err) { 839 mutex_exit(&sdp->sd_lock); 840 ZFS_EXIT(zfsvfs); 841 /* 842 * handle "ls *" or "?" in a graceful manner, 843 * forcing EILSEQ to ENOENT. 844 * Since shell ultimately passes "*" or "?" as name to lookup 845 */ 846 return (err == EILSEQ ? ENOENT : err); 847 } 848 if (dmu_objset_open(snapname, DMU_OST_ZFS, 849 DS_MODE_USER | DS_MODE_READONLY, &snap) != 0) { 850 mutex_exit(&sdp->sd_lock); 851 ZFS_EXIT(zfsvfs); 852 return (ENOENT); 853 } 854 855 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 856 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 857 (void) strcpy(sep->se_name, nm); 858 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 859 avl_insert(&sdp->sd_snaps, sep, where); 860 861 dmu_objset_close(snap); 862 domount: 863 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 864 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 865 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 866 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 867 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 868 869 margs.spec = snapname; 870 margs.dir = mountpoint; 871 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 872 margs.fstype = "zfs"; 873 margs.dataptr = NULL; 874 margs.datalen = 0; 875 margs.optptr = NULL; 876 margs.optlen = 0; 877 878 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 879 kmem_free(mountpoint, mountpoint_len); 880 881 if (err == 0) { 882 /* 883 * Return the mounted root rather than the covered mount point. 884 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns 885 * the ZFS vnode mounted on top of the GFS node. This ZFS 886 * vnode is the root the newly created vfsp. 887 */ 888 VFS_RELE(vfsp); 889 err = traverse(vpp); 890 } 891 892 if (err == 0) { 893 /* 894 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>. 895 * 896 * This is where we lie about our v_vfsp in order to 897 * make .zfs/snapshot/<snapname> accessible over NFS 898 * without requiring manual mounts of <snapname>. 899 */ 900 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 901 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 902 (*vpp)->v_vfsp = zfsvfs->z_vfs; 903 (*vpp)->v_flag &= ~VROOT; 904 } 905 mutex_exit(&sdp->sd_lock); 906 ZFS_EXIT(zfsvfs); 907 908 /* 909 * If we had an error, drop our hold on the vnode and 910 * zfsctl_snapshot_inactive() will clean up. 911 */ 912 if (err) { 913 VN_RELE(*vpp); 914 *vpp = NULL; 915 } 916 return (err); 917 } 918 919 /* ARGSUSED */ 920 static int 921 zfsctl_shares_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 922 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 923 int *direntflags, pathname_t *realpnp) 924 { 925 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 926 znode_t *dzp; 927 int error; 928 929 ZFS_ENTER(zfsvfs); 930 931 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) { 932 ZFS_EXIT(zfsvfs); 933 return (0); 934 } 935 936 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) 937 error = VOP_LOOKUP(ZTOV(dzp), nm, vpp, pnp, 938 flags, rdir, cr, ct, direntflags, realpnp); 939 940 VN_RELE(ZTOV(dzp)); 941 ZFS_EXIT(zfsvfs); 942 943 return (error); 944 } 945 946 /* ARGSUSED */ 947 static int 948 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp, 949 offset_t *offp, offset_t *nextp, void *data, int flags) 950 { 951 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 952 char snapname[MAXNAMELEN]; 953 uint64_t id, cookie; 954 boolean_t case_conflict; 955 int error; 956 957 ZFS_ENTER(zfsvfs); 958 959 cookie = *offp; 960 error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 961 &cookie, &case_conflict); 962 if (error) { 963 ZFS_EXIT(zfsvfs); 964 if (error == ENOENT) { 965 *eofp = 1; 966 return (0); 967 } 968 return (error); 969 } 970 971 if (flags & V_RDDIR_ENTFLAGS) { 972 edirent_t *eodp = dp; 973 974 (void) strcpy(eodp->ed_name, snapname); 975 eodp->ed_ino = ZFSCTL_INO_SNAP(id); 976 eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0; 977 } else { 978 struct dirent64 *odp = dp; 979 980 (void) strcpy(odp->d_name, snapname); 981 odp->d_ino = ZFSCTL_INO_SNAP(id); 982 } 983 *nextp = cookie; 984 985 ZFS_EXIT(zfsvfs); 986 987 return (0); 988 } 989 990 /* ARGSUSED */ 991 static int 992 zfsctl_shares_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp, 993 caller_context_t *ct, int flags) 994 { 995 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 996 znode_t *dzp; 997 int error; 998 999 ZFS_ENTER(zfsvfs); 1000 1001 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1002 error = VOP_READDIR(ZTOV(dzp), uiop, cr, eofp, ct, flags); 1003 VN_RELE(ZTOV(dzp)); 1004 } else { 1005 *eofp = 1; 1006 error = ENOENT; 1007 } 1008 1009 ZFS_EXIT(zfsvfs); 1010 return (error); 1011 } 1012 1013 /* 1014 * pvp is the '.zfs' directory (zfsctl_node_t). 1015 * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t). 1016 * 1017 * This function is the callback to create a GFS vnode for '.zfs/snapshot' 1018 * when a lookup is performed on .zfs for "snapshot". 1019 */ 1020 vnode_t * 1021 zfsctl_mknode_snapdir(vnode_t *pvp) 1022 { 1023 vnode_t *vp; 1024 zfsctl_snapdir_t *sdp; 1025 1026 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 1027 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 1028 zfsctl_snapdir_readdir_cb, NULL); 1029 sdp = vp->v_data; 1030 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 1031 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1032 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 1033 avl_create(&sdp->sd_snaps, snapentry_compare, 1034 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 1035 return (vp); 1036 } 1037 1038 vnode_t * 1039 zfsctl_mknode_shares(vnode_t *pvp) 1040 { 1041 vnode_t *vp; 1042 zfsctl_node_t *sdp; 1043 1044 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1045 zfsctl_ops_shares, NULL, NULL, MAXNAMELEN, 1046 NULL, NULL); 1047 sdp = vp->v_data; 1048 sdp->zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 1049 return (vp); 1050 1051 } 1052 1053 /* ARGSUSED */ 1054 static int 1055 zfsctl_shares_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1056 caller_context_t *ct) 1057 { 1058 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1059 znode_t *dzp; 1060 int error; 1061 1062 ZFS_ENTER(zfsvfs); 1063 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) { 1064 error = VOP_GETATTR(ZTOV(dzp), vap, flags, cr, ct); 1065 VN_RELE(ZTOV(dzp)); 1066 } 1067 ZFS_EXIT(zfsvfs); 1068 return (error); 1069 1070 1071 } 1072 1073 /* ARGSUSED */ 1074 static int 1075 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 1076 caller_context_t *ct) 1077 { 1078 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 1079 zfsctl_snapdir_t *sdp = vp->v_data; 1080 1081 ZFS_ENTER(zfsvfs); 1082 zfsctl_common_getattr(vp, vap); 1083 vap->va_nodeid = gfs_file_inode(vp); 1084 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 1085 ZFS_EXIT(zfsvfs); 1086 1087 return (0); 1088 } 1089 1090 /* ARGSUSED */ 1091 static void 1092 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1093 { 1094 zfsctl_snapdir_t *sdp = vp->v_data; 1095 void *private; 1096 1097 private = gfs_dir_inactive(vp); 1098 if (private != NULL) { 1099 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 1100 mutex_destroy(&sdp->sd_lock); 1101 avl_destroy(&sdp->sd_snaps); 1102 kmem_free(private, sizeof (zfsctl_snapdir_t)); 1103 } 1104 } 1105 1106 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 1107 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1108 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1109 { VOPNAME_IOCTL, { .error = fs_inval } }, 1110 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 1111 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1112 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 1113 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 1114 { VOPNAME_MKDIR, { .vop_mkdir = zfsctl_snapdir_mkdir } }, 1115 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 1116 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 1117 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1118 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 1119 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 1120 { NULL } 1121 }; 1122 1123 static const fs_operation_def_t zfsctl_tops_shares[] = { 1124 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 1125 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 1126 { VOPNAME_IOCTL, { .error = fs_inval } }, 1127 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_shares_getattr } }, 1128 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 1129 { VOPNAME_READDIR, { .vop_readdir = zfsctl_shares_readdir } }, 1130 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_shares_lookup } }, 1131 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 1132 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 1133 { VOPNAME_FID, { .vop_fid = zfsctl_shares_fid } }, 1134 { NULL } 1135 }; 1136 1137 /* 1138 * pvp is the GFS vnode '.zfs/snapshot'. 1139 * 1140 * This creates a GFS node under '.zfs/snapshot' representing each 1141 * snapshot. This newly created GFS node is what we mount snapshot 1142 * vfs_t's ontop of. 1143 */ 1144 static vnode_t * 1145 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 1146 { 1147 vnode_t *vp; 1148 zfsctl_node_t *zcp; 1149 1150 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 1151 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 1152 zcp = vp->v_data; 1153 zcp->zc_id = objset; 1154 VFS_HOLD(vp->v_vfsp); 1155 1156 return (vp); 1157 } 1158 1159 static void 1160 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 1161 { 1162 zfsctl_snapdir_t *sdp; 1163 zfs_snapentry_t *sep, *next; 1164 vnode_t *dvp; 1165 1166 VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0); 1167 sdp = dvp->v_data; 1168 1169 mutex_enter(&sdp->sd_lock); 1170 1171 if (vp->v_count > 1) { 1172 mutex_exit(&sdp->sd_lock); 1173 return; 1174 } 1175 ASSERT(!vn_ismntpt(vp)); 1176 1177 sep = avl_first(&sdp->sd_snaps); 1178 while (sep != NULL) { 1179 next = AVL_NEXT(&sdp->sd_snaps, sep); 1180 1181 if (sep->se_root == vp) { 1182 avl_remove(&sdp->sd_snaps, sep); 1183 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 1184 kmem_free(sep, sizeof (zfs_snapentry_t)); 1185 break; 1186 } 1187 sep = next; 1188 } 1189 ASSERT(sep != NULL); 1190 1191 mutex_exit(&sdp->sd_lock); 1192 VN_RELE(dvp); 1193 VFS_RELE(vp->v_vfsp); 1194 1195 /* 1196 * Dispose of the vnode for the snapshot mount point. 1197 * This is safe to do because once this entry has been removed 1198 * from the AVL tree, it can't be found again, so cannot become 1199 * "active". If we lookup the same name again we will end up 1200 * creating a new vnode. 1201 */ 1202 gfs_vop_inactive(vp, cr, ct); 1203 } 1204 1205 1206 /* 1207 * These VP's should never see the light of day. They should always 1208 * be covered. 1209 */ 1210 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 1211 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 1212 NULL, NULL 1213 }; 1214 1215 int 1216 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 1217 { 1218 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1219 vnode_t *dvp, *vp; 1220 zfsctl_snapdir_t *sdp; 1221 zfsctl_node_t *zcp; 1222 zfs_snapentry_t *sep; 1223 int error; 1224 1225 ASSERT(zfsvfs->z_ctldir != NULL); 1226 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1227 NULL, 0, NULL, kcred, NULL, NULL, NULL); 1228 if (error != 0) 1229 return (error); 1230 sdp = dvp->v_data; 1231 1232 mutex_enter(&sdp->sd_lock); 1233 sep = avl_first(&sdp->sd_snaps); 1234 while (sep != NULL) { 1235 vp = sep->se_root; 1236 zcp = vp->v_data; 1237 if (zcp->zc_id == objsetid) 1238 break; 1239 1240 sep = AVL_NEXT(&sdp->sd_snaps, sep); 1241 } 1242 1243 if (sep != NULL) { 1244 VN_HOLD(vp); 1245 /* 1246 * Return the mounted root rather than the covered mount point. 1247 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid> 1248 * and returns the ZFS vnode mounted on top of the GFS node. 1249 * This ZFS vnode is the root of the vfs for objset 'objsetid'. 1250 */ 1251 error = traverse(&vp); 1252 if (error == 0) { 1253 if (vp == sep->se_root) 1254 error = EINVAL; 1255 else 1256 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 1257 } 1258 mutex_exit(&sdp->sd_lock); 1259 VN_RELE(vp); 1260 } else { 1261 error = EINVAL; 1262 mutex_exit(&sdp->sd_lock); 1263 } 1264 1265 VN_RELE(dvp); 1266 1267 return (error); 1268 } 1269 1270 /* 1271 * Unmount any snapshots for the given filesystem. This is called from 1272 * zfs_umount() - if we have a ctldir, then go through and unmount all the 1273 * snapshots. 1274 */ 1275 int 1276 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 1277 { 1278 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1279 vnode_t *dvp; 1280 zfsctl_snapdir_t *sdp; 1281 zfs_snapentry_t *sep, *next; 1282 int error; 1283 1284 ASSERT(zfsvfs->z_ctldir != NULL); 1285 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 1286 NULL, 0, NULL, cr, NULL, NULL, NULL); 1287 if (error != 0) 1288 return (error); 1289 sdp = dvp->v_data; 1290 1291 mutex_enter(&sdp->sd_lock); 1292 1293 sep = avl_first(&sdp->sd_snaps); 1294 while (sep != NULL) { 1295 next = AVL_NEXT(&sdp->sd_snaps, sep); 1296 1297 /* 1298 * If this snapshot is not mounted, then it must 1299 * have just been unmounted by somebody else, and 1300 * will be cleaned up by zfsctl_snapdir_inactive(). 1301 */ 1302 if (vn_ismntpt(sep->se_root)) { 1303 avl_remove(&sdp->sd_snaps, sep); 1304 error = zfsctl_unmount_snap(sep, fflags, cr); 1305 if (error) { 1306 avl_add(&sdp->sd_snaps, sep); 1307 break; 1308 } 1309 } 1310 sep = next; 1311 } 1312 1313 mutex_exit(&sdp->sd_lock); 1314 VN_RELE(dvp); 1315 1316 return (error); 1317 } 1318