xref: /titanic_41/usr/src/uts/common/fs/zfs/zfs_ctldir.c (revision 21d23cc145f4b4679726016486c401c0abf3c34a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * ZFS control directory (a.k.a. ".zfs")
30  *
31  * This directory provides a common location for all ZFS meta-objects.
32  * Currently, this is only the 'snapshot' directory, but this may expand in the
33  * future.  The elements are built using the GFS primitives, as the hierarchy
34  * does not actually exist on disk.
35  *
36  * For 'snapshot', we don't want to have all snapshots always mounted, because
37  * this would take up a huge amount of space in /etc/mnttab.  We have three
38  * types of objects:
39  *
40  * 	ctldir ------> snapshotdir -------> snapshot
41  *                                             |
42  *                                             |
43  *                                             V
44  *                                         mounted fs
45  *
46  * The 'snapshot' node contains just enough information to lookup '..' and act
47  * as a mountpoint for the snapshot.  Whenever we lookup a specific snapshot, we
48  * perform an automount of the underlying filesystem and return the
49  * corresponding vnode.
50  *
51  * All mounts are handled automatically by the kernel, but unmounts are
52  * (currently) handled from user land.  The main reason is that there is no
53  * reliable way to auto-unmount the filesystem when it's "no longer in use".
54  * When the user unmounts a filesystem, we call zfsctl_unmount(), which
55  * unmounts any snapshots within the snapshot directory.
56  *
57  * The '.zfs', '.zfs/snapshot', and all directories created under
58  * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') are all GFS nodes and
59  * share the same vfs_t as the head filesystem (what '.zfs' lives under).
60  *
61  * File systems mounted ontop of the GFS nodes '.zfs/snapshot/<snapname>'
62  * (ie: snapshots) are ZFS nodes and have their own unique vfs_t.
63  * However, vnodes within these mounted on file systems have their v_vfsp
64  * fields set to the head filesystem to make NFS happy (see
65  * zfsctl_snapdir_lookup()). We VFS_HOLD the head filesystem's vfs_t
66  * so that it cannot be freed until all snapshots have been unmounted.
67  */
68 
69 #include <fs/fs_subr.h>
70 #include <sys/zfs_ctldir.h>
71 #include <sys/zfs_ioctl.h>
72 #include <sys/zfs_vfsops.h>
73 #include <sys/vfs_opreg.h>
74 #include <sys/gfs.h>
75 #include <sys/stat.h>
76 #include <sys/dmu.h>
77 #include <sys/dsl_deleg.h>
78 #include <sys/mount.h>
79 #include <sys/sunddi.h>
80 
81 #include "zfs_namecheck.h"
82 
83 typedef struct zfsctl_node {
84 	gfs_dir_t	zc_gfs_private;
85 	uint64_t	zc_id;
86 	timestruc_t	zc_cmtime;	/* ctime and mtime, always the same */
87 } zfsctl_node_t;
88 
89 typedef struct zfsctl_snapdir {
90 	zfsctl_node_t	sd_node;
91 	kmutex_t	sd_lock;
92 	avl_tree_t	sd_snaps;
93 } zfsctl_snapdir_t;
94 
95 typedef struct {
96 	char		*se_name;
97 	vnode_t		*se_root;
98 	avl_node_t	se_node;
99 } zfs_snapentry_t;
100 
101 static int
102 snapentry_compare(const void *a, const void *b)
103 {
104 	const zfs_snapentry_t *sa = a;
105 	const zfs_snapentry_t *sb = b;
106 	int ret = strcmp(sa->se_name, sb->se_name);
107 
108 	if (ret < 0)
109 		return (-1);
110 	else if (ret > 0)
111 		return (1);
112 	else
113 		return (0);
114 }
115 
116 vnodeops_t *zfsctl_ops_root;
117 vnodeops_t *zfsctl_ops_snapdir;
118 vnodeops_t *zfsctl_ops_snapshot;
119 
120 static const fs_operation_def_t zfsctl_tops_root[];
121 static const fs_operation_def_t zfsctl_tops_snapdir[];
122 static const fs_operation_def_t zfsctl_tops_snapshot[];
123 
124 static vnode_t *zfsctl_mknode_snapdir(vnode_t *);
125 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset);
126 static int zfsctl_unmount_snap(zfs_snapentry_t *, int, cred_t *);
127 
128 static gfs_opsvec_t zfsctl_opsvec[] = {
129 	{ ".zfs", zfsctl_tops_root, &zfsctl_ops_root },
130 	{ ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir },
131 	{ ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot },
132 	{ NULL }
133 };
134 
135 /*
136  * Root directory elements.  We have only a single static entry, 'snapshot'.
137  */
138 static gfs_dirent_t zfsctl_root_entries[] = {
139 	{ "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE },
140 	{ NULL }
141 };
142 
143 /* include . and .. in the calculation */
144 #define	NROOT_ENTRIES	((sizeof (zfsctl_root_entries) / \
145     sizeof (gfs_dirent_t)) + 1)
146 
147 
148 /*
149  * Initialize the various GFS pieces we'll need to create and manipulate .zfs
150  * directories.  This is called from the ZFS init routine, and initializes the
151  * vnode ops vectors that we'll be using.
152  */
153 void
154 zfsctl_init(void)
155 {
156 	VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0);
157 }
158 
159 void
160 zfsctl_fini(void)
161 {
162 	/*
163 	 * Remove vfsctl vnode ops
164 	 */
165 	if (zfsctl_ops_root)
166 		vn_freevnodeops(zfsctl_ops_root);
167 	if (zfsctl_ops_snapdir)
168 		vn_freevnodeops(zfsctl_ops_snapdir);
169 	if (zfsctl_ops_snapshot)
170 		vn_freevnodeops(zfsctl_ops_snapshot);
171 
172 	zfsctl_ops_root = NULL;
173 	zfsctl_ops_snapdir = NULL;
174 	zfsctl_ops_snapshot = NULL;
175 }
176 
177 /*
178  * Return the inode number associated with the 'snapshot' directory.
179  */
180 /* ARGSUSED */
181 static ino64_t
182 zfsctl_root_inode_cb(vnode_t *vp, int index)
183 {
184 	ASSERT(index == 0);
185 	return (ZFSCTL_INO_SNAPDIR);
186 }
187 
188 /*
189  * Create the '.zfs' directory.  This directory is cached as part of the VFS
190  * structure.  This results in a hold on the vfs_t.  The code in zfs_umount()
191  * therefore checks against a vfs_count of 2 instead of 1.  This reference
192  * is removed when the ctldir is destroyed in the unmount.
193  */
194 void
195 zfsctl_create(zfsvfs_t *zfsvfs)
196 {
197 	vnode_t *vp, *rvp;
198 	zfsctl_node_t *zcp;
199 
200 	ASSERT(zfsvfs->z_ctldir == NULL);
201 
202 	vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs,
203 	    zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries,
204 	    zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL);
205 	zcp = vp->v_data;
206 	zcp->zc_id = ZFSCTL_INO_ROOT;
207 
208 	VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0);
209 	ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime);
210 	VN_RELE(rvp);
211 
212 	/*
213 	 * We're only faking the fact that we have a root of a filesystem for
214 	 * the sake of the GFS interfaces.  Undo the flag manipulation it did
215 	 * for us.
216 	 */
217 	vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT);
218 
219 	zfsvfs->z_ctldir = vp;
220 }
221 
222 /*
223  * Destroy the '.zfs' directory.  Only called when the filesystem is unmounted.
224  * There might still be more references if we were force unmounted, but only
225  * new zfs_inactive() calls can occur and they don't reference .zfs
226  */
227 void
228 zfsctl_destroy(zfsvfs_t *zfsvfs)
229 {
230 	VN_RELE(zfsvfs->z_ctldir);
231 	zfsvfs->z_ctldir = NULL;
232 }
233 
234 /*
235  * Given a root znode, retrieve the associated .zfs directory.
236  * Add a hold to the vnode and return it.
237  */
238 vnode_t *
239 zfsctl_root(znode_t *zp)
240 {
241 	ASSERT(zfs_has_ctldir(zp));
242 	VN_HOLD(zp->z_zfsvfs->z_ctldir);
243 	return (zp->z_zfsvfs->z_ctldir);
244 }
245 
246 /*
247  * Common open routine.  Disallow any write access.
248  */
249 /* ARGSUSED */
250 static int
251 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr, caller_context_t *ct)
252 {
253 	if (flags & FWRITE)
254 		return (EACCES);
255 
256 	return (0);
257 }
258 
259 /*
260  * Common close routine.  Nothing to do here.
261  */
262 /* ARGSUSED */
263 static int
264 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off,
265     cred_t *cr, caller_context_t *ct)
266 {
267 	return (0);
268 }
269 
270 /*
271  * Common access routine.  Disallow writes.
272  */
273 /* ARGSUSED */
274 static int
275 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr,
276     caller_context_t *ct)
277 {
278 	if (mode & VWRITE)
279 		return (EACCES);
280 
281 	return (0);
282 }
283 
284 /*
285  * Common getattr function.  Fill in basic information.
286  */
287 static void
288 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap)
289 {
290 	zfsctl_node_t	*zcp = vp->v_data;
291 	timestruc_t	now;
292 
293 	vap->va_uid = 0;
294 	vap->va_gid = 0;
295 	vap->va_rdev = 0;
296 	/*
297 	 * We are a purly virtual object, so we have no
298 	 * blocksize or allocated blocks.
299 	 */
300 	vap->va_blksize = 0;
301 	vap->va_nblocks = 0;
302 	vap->va_seq = 0;
303 	vap->va_fsid = vp->v_vfsp->vfs_dev;
304 	vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP |
305 	    S_IROTH | S_IXOTH;
306 	vap->va_type = VDIR;
307 	/*
308 	 * We live in the now (for atime).
309 	 */
310 	gethrestime(&now);
311 	vap->va_atime = now;
312 	vap->va_mtime = vap->va_ctime = zcp->zc_cmtime;
313 }
314 
315 /*ARGSUSED*/
316 static int
317 zfsctl_common_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
318 {
319 	zfsvfs_t	*zfsvfs = vp->v_vfsp->vfs_data;
320 	zfsctl_node_t	*zcp = vp->v_data;
321 	uint64_t	object = zcp->zc_id;
322 	zfid_short_t	*zfid;
323 	int		i;
324 
325 	ZFS_ENTER(zfsvfs);
326 
327 	if (fidp->fid_len < SHORT_FID_LEN) {
328 		fidp->fid_len = SHORT_FID_LEN;
329 		ZFS_EXIT(zfsvfs);
330 		return (ENOSPC);
331 	}
332 
333 	zfid = (zfid_short_t *)fidp;
334 
335 	zfid->zf_len = SHORT_FID_LEN;
336 
337 	for (i = 0; i < sizeof (zfid->zf_object); i++)
338 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
339 
340 	/* .zfs znodes always have a generation number of 0 */
341 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
342 		zfid->zf_gen[i] = 0;
343 
344 	ZFS_EXIT(zfsvfs);
345 	return (0);
346 }
347 
348 /*
349  * .zfs inode namespace
350  *
351  * We need to generate unique inode numbers for all files and directories
352  * within the .zfs pseudo-filesystem.  We use the following scheme:
353  *
354  * 	ENTRY			ZFSCTL_INODE
355  * 	.zfs			1
356  * 	.zfs/snapshot		2
357  * 	.zfs/snapshot/<snap>	objectid(snap)
358  */
359 
360 #define	ZFSCTL_INO_SNAP(id)	(id)
361 
362 /*
363  * Get root directory attributes.
364  */
365 /* ARGSUSED */
366 static int
367 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
368     caller_context_t *ct)
369 {
370 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
371 
372 	ZFS_ENTER(zfsvfs);
373 	vap->va_nodeid = ZFSCTL_INO_ROOT;
374 	vap->va_nlink = vap->va_size = NROOT_ENTRIES;
375 
376 	zfsctl_common_getattr(vp, vap);
377 	ZFS_EXIT(zfsvfs);
378 
379 	return (0);
380 }
381 
382 /*
383  * Special case the handling of "..".
384  */
385 /* ARGSUSED */
386 int
387 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
388     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
389     int *direntflags, pathname_t *realpnp)
390 {
391 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
392 	int err;
393 
394 	/*
395 	 * No extended attributes allowed under .zfs
396 	 */
397 	if (flags & LOOKUP_XATTR)
398 		return (EINVAL);
399 
400 	ZFS_ENTER(zfsvfs);
401 
402 	if (strcmp(nm, "..") == 0) {
403 		err = VFS_ROOT(dvp->v_vfsp, vpp);
404 	} else {
405 		err = gfs_vop_lookup(dvp, nm, vpp, pnp, flags, rdir,
406 		    cr, ct, direntflags, realpnp);
407 	}
408 
409 	ZFS_EXIT(zfsvfs);
410 
411 	return (err);
412 }
413 
414 static const fs_operation_def_t zfsctl_tops_root[] = {
415 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
416 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
417 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
418 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_root_getattr }	},
419 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
420 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir } 	},
421 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_root_lookup }	},
422 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
423 	{ VOPNAME_INACTIVE,	{ .vop_inactive = gfs_vop_inactive }	},
424 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid	}	},
425 	{ NULL }
426 };
427 
428 static int
429 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname)
430 {
431 	objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os;
432 
433 	if (snapshot_namecheck(name, NULL, NULL) != 0)
434 		return (EILSEQ);
435 	dmu_objset_name(os, zname);
436 	if (strlen(zname) + 1 + strlen(name) >= len)
437 		return (ENAMETOOLONG);
438 	(void) strcat(zname, "@");
439 	(void) strcat(zname, name);
440 	return (0);
441 }
442 
443 static int
444 zfsctl_unmount_snap(zfs_snapentry_t *sep, int fflags, cred_t *cr)
445 {
446 	vnode_t *svp = sep->se_root;
447 	int error;
448 
449 	ASSERT(vn_ismntpt(svp));
450 
451 	/* this will be dropped by dounmount() */
452 	if ((error = vn_vfswlock(svp)) != 0)
453 		return (error);
454 
455 	VN_HOLD(svp);
456 	error = dounmount(vn_mountedvfs(svp), fflags, cr);
457 	if (error) {
458 		VN_RELE(svp);
459 		return (error);
460 	}
461 	VFS_RELE(svp->v_vfsp);
462 	/*
463 	 * We can't use VN_RELE(), as that will try to invoke
464 	 * zfsctl_snapdir_inactive(), which would cause us to destroy
465 	 * the sd_lock mutex held by our caller.
466 	 */
467 	ASSERT(svp->v_count == 1);
468 	gfs_vop_inactive(svp, cr, NULL);
469 
470 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
471 	kmem_free(sep, sizeof (zfs_snapentry_t));
472 
473 	return (0);
474 }
475 
476 static void
477 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm)
478 {
479 	avl_index_t where;
480 	vfs_t *vfsp;
481 	refstr_t *pathref;
482 	char newpath[MAXNAMELEN];
483 	char *tail;
484 
485 	ASSERT(MUTEX_HELD(&sdp->sd_lock));
486 	ASSERT(sep != NULL);
487 
488 	vfsp = vn_mountedvfs(sep->se_root);
489 	ASSERT(vfsp != NULL);
490 
491 	vfs_lock_wait(vfsp);
492 
493 	/*
494 	 * Change the name in the AVL tree.
495 	 */
496 	avl_remove(&sdp->sd_snaps, sep);
497 	kmem_free(sep->se_name, strlen(sep->se_name) + 1);
498 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
499 	(void) strcpy(sep->se_name, nm);
500 	VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL);
501 	avl_insert(&sdp->sd_snaps, sep, where);
502 
503 	/*
504 	 * Change the current mountpoint info:
505 	 * 	- update the tail of the mntpoint path
506 	 *	- update the tail of the resource path
507 	 */
508 	pathref = vfs_getmntpoint(vfsp);
509 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
510 	VERIFY((tail = strrchr(newpath, '/')) != NULL);
511 	*(tail+1) = '\0';
512 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
513 	(void) strcat(newpath, nm);
514 	refstr_rele(pathref);
515 	vfs_setmntpoint(vfsp, newpath);
516 
517 	pathref = vfs_getresource(vfsp);
518 	(void) strncpy(newpath, refstr_value(pathref), sizeof (newpath));
519 	VERIFY((tail = strrchr(newpath, '@')) != NULL);
520 	*(tail+1) = '\0';
521 	ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath));
522 	(void) strcat(newpath, nm);
523 	refstr_rele(pathref);
524 	vfs_setresource(vfsp, newpath);
525 
526 	vfs_unlock(vfsp);
527 }
528 
529 /*ARGSUSED*/
530 static int
531 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm,
532     cred_t *cr, caller_context_t *ct, int flags)
533 {
534 	zfsctl_snapdir_t *sdp = sdvp->v_data;
535 	zfs_snapentry_t search, *sep;
536 	zfsvfs_t *zfsvfs;
537 	avl_index_t where;
538 	char from[MAXNAMELEN], to[MAXNAMELEN];
539 	char real[MAXNAMELEN];
540 	int err;
541 
542 	zfsvfs = sdvp->v_vfsp->vfs_data;
543 	ZFS_ENTER(zfsvfs);
544 
545 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
546 		err = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
547 		    MAXNAMELEN, NULL);
548 		if (err == 0) {
549 			snm = real;
550 		} else if (err != ENOTSUP) {
551 			ZFS_EXIT(zfsvfs);
552 			return (err);
553 		}
554 	}
555 
556 	ZFS_EXIT(zfsvfs);
557 
558 	err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from);
559 	if (!err)
560 		err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to);
561 	if (!err)
562 		err = zfs_secpolicy_rename_perms(from, to, cr);
563 	if (err)
564 		return (err);
565 
566 	/*
567 	 * Cannot move snapshots out of the snapdir.
568 	 */
569 	if (sdvp != tdvp)
570 		return (EINVAL);
571 
572 	if (strcmp(snm, tnm) == 0)
573 		return (0);
574 
575 	mutex_enter(&sdp->sd_lock);
576 
577 	search.se_name = (char *)snm;
578 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) {
579 		mutex_exit(&sdp->sd_lock);
580 		return (ENOENT);
581 	}
582 
583 	err = dmu_objset_rename(from, to, B_FALSE);
584 	if (err == 0)
585 		zfsctl_rename_snap(sdp, sep, tnm);
586 
587 	mutex_exit(&sdp->sd_lock);
588 
589 	return (err);
590 }
591 
592 /* ARGSUSED */
593 static int
594 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
595     caller_context_t *ct, int flags)
596 {
597 	zfsctl_snapdir_t *sdp = dvp->v_data;
598 	zfs_snapentry_t *sep;
599 	zfs_snapentry_t search;
600 	zfsvfs_t *zfsvfs;
601 	char snapname[MAXNAMELEN];
602 	char real[MAXNAMELEN];
603 	int err;
604 
605 	zfsvfs = dvp->v_vfsp->vfs_data;
606 	ZFS_ENTER(zfsvfs);
607 
608 	if ((flags & FIGNORECASE) || zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
609 
610 		err = dmu_snapshot_realname(zfsvfs->z_os, name, real,
611 		    MAXNAMELEN, NULL);
612 		if (err == 0) {
613 			name = real;
614 		} else if (err != ENOTSUP) {
615 			ZFS_EXIT(zfsvfs);
616 			return (err);
617 		}
618 	}
619 
620 	ZFS_EXIT(zfsvfs);
621 
622 	err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname);
623 	if (!err)
624 		err = zfs_secpolicy_destroy_perms(snapname, cr);
625 	if (err)
626 		return (err);
627 
628 	mutex_enter(&sdp->sd_lock);
629 
630 	search.se_name = name;
631 	sep = avl_find(&sdp->sd_snaps, &search, NULL);
632 	if (sep) {
633 		avl_remove(&sdp->sd_snaps, sep);
634 		err = zfsctl_unmount_snap(sep, MS_FORCE, cr);
635 		if (err)
636 			avl_add(&sdp->sd_snaps, sep);
637 		else
638 			err = dmu_objset_destroy(snapname);
639 	} else {
640 		err = ENOENT;
641 	}
642 
643 	mutex_exit(&sdp->sd_lock);
644 
645 	return (err);
646 }
647 
648 /*
649  * This creates a snapshot under '.zfs/snapshot'.
650  */
651 /* ARGSUSED */
652 static int
653 zfsctl_snapdir_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t  **vpp,
654     cred_t *cr, caller_context_t *cc, int flags, vsecattr_t *vsecp)
655 {
656 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
657 	char name[MAXNAMELEN];
658 	int err;
659 	static enum symfollow follow = NO_FOLLOW;
660 	static enum uio_seg seg = UIO_SYSSPACE;
661 
662 	if (snapshot_namecheck(dirname, NULL, NULL) != 0)
663 		return (EILSEQ);
664 
665 	dmu_objset_name(zfsvfs->z_os, name);
666 
667 	*vpp = NULL;
668 
669 	err = zfs_secpolicy_snapshot_perms(name, cr);
670 	if (err)
671 		return (err);
672 
673 	if (err == 0) {
674 		err = dmu_objset_snapshot(name, dirname, B_FALSE);
675 		if (err)
676 			return (err);
677 		err = lookupnameat(dirname, seg, follow, NULL, vpp, dvp);
678 	}
679 
680 	return (err);
681 }
682 
683 /*
684  * Lookup entry point for the 'snapshot' directory.  Try to open the
685  * snapshot if it exist, creating the pseudo filesystem vnode as necessary.
686  * Perform a mount of the associated dataset on top of the vnode.
687  */
688 /* ARGSUSED */
689 static int
690 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp,
691     int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
692     int *direntflags, pathname_t *realpnp)
693 {
694 	zfsctl_snapdir_t *sdp = dvp->v_data;
695 	objset_t *snap;
696 	char snapname[MAXNAMELEN];
697 	char real[MAXNAMELEN];
698 	char *mountpoint;
699 	zfs_snapentry_t *sep, search;
700 	struct mounta margs;
701 	vfs_t *vfsp;
702 	size_t mountpoint_len;
703 	avl_index_t where;
704 	zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data;
705 	int err;
706 
707 	/*
708 	 * No extended attributes allowed under .zfs
709 	 */
710 	if (flags & LOOKUP_XATTR)
711 		return (EINVAL);
712 
713 	ASSERT(dvp->v_type == VDIR);
714 
715 	if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0)
716 		return (0);
717 
718 	/*
719 	 * If we get a recursive call, that means we got called
720 	 * from the domount() code while it was trying to look up the
721 	 * spec (which looks like a local path for zfs).  We need to
722 	 * add some flag to domount() to tell it not to do this lookup.
723 	 */
724 	if (MUTEX_HELD(&sdp->sd_lock))
725 		return (ENOENT);
726 
727 	ZFS_ENTER(zfsvfs);
728 
729 	if (flags & FIGNORECASE) {
730 		boolean_t conflict = B_FALSE;
731 
732 		err = dmu_snapshot_realname(zfsvfs->z_os, nm, real,
733 		    MAXNAMELEN, &conflict);
734 		if (err == 0) {
735 			nm = real;
736 		} else if (err != ENOTSUP) {
737 			ZFS_EXIT(zfsvfs);
738 			return (err);
739 		}
740 		if (realpnp)
741 			(void) strlcpy(realpnp->pn_buf, nm,
742 			    realpnp->pn_bufsize);
743 		if (conflict && direntflags)
744 			*direntflags = ED_CASE_CONFLICT;
745 	}
746 
747 	mutex_enter(&sdp->sd_lock);
748 	search.se_name = (char *)nm;
749 	if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) {
750 		*vpp = sep->se_root;
751 		VN_HOLD(*vpp);
752 		err = traverse(vpp);
753 		if (err) {
754 			VN_RELE(*vpp);
755 			*vpp = NULL;
756 		} else if (*vpp == sep->se_root) {
757 			/*
758 			 * The snapshot was unmounted behind our backs,
759 			 * try to remount it.
760 			 */
761 			goto domount;
762 		} else {
763 			/*
764 			 * VROOT was set during the traverse call.  We need
765 			 * to clear it since we're pretending to be part
766 			 * of our parent's vfs.
767 			 */
768 			(*vpp)->v_flag &= ~VROOT;
769 		}
770 		mutex_exit(&sdp->sd_lock);
771 		ZFS_EXIT(zfsvfs);
772 		return (err);
773 	}
774 
775 	/*
776 	 * The requested snapshot is not currently mounted, look it up.
777 	 */
778 	err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname);
779 	if (err) {
780 		mutex_exit(&sdp->sd_lock);
781 		ZFS_EXIT(zfsvfs);
782 		/*
783 		 * handle "ls *" or "?" in a graceful manner,
784 		 * forcing EILSEQ to ENOENT.
785 		 * Since shell ultimately passes "*" or "?" as name to lookup
786 		 */
787 		return (err == EILSEQ ? ENOENT : err);
788 	}
789 	if (dmu_objset_open(snapname, DMU_OST_ZFS,
790 	    DS_MODE_USER | DS_MODE_READONLY, &snap) != 0) {
791 		mutex_exit(&sdp->sd_lock);
792 		ZFS_EXIT(zfsvfs);
793 		return (ENOENT);
794 	}
795 
796 	sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP);
797 	sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP);
798 	(void) strcpy(sep->se_name, nm);
799 	*vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap));
800 	avl_insert(&sdp->sd_snaps, sep, where);
801 
802 	dmu_objset_close(snap);
803 domount:
804 	mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) +
805 	    strlen("/.zfs/snapshot/") + strlen(nm) + 1;
806 	mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP);
807 	(void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s",
808 	    refstr_value(dvp->v_vfsp->vfs_mntpt), nm);
809 
810 	margs.spec = snapname;
811 	margs.dir = mountpoint;
812 	margs.flags = MS_SYSSPACE | MS_NOMNTTAB;
813 	margs.fstype = "zfs";
814 	margs.dataptr = NULL;
815 	margs.datalen = 0;
816 	margs.optptr = NULL;
817 	margs.optlen = 0;
818 
819 	err = domount("zfs", &margs, *vpp, kcred, &vfsp);
820 	kmem_free(mountpoint, mountpoint_len);
821 
822 	if (err == 0) {
823 		/*
824 		 * Return the mounted root rather than the covered mount point.
825 		 * Takes the GFS vnode at .zfs/snapshot/<snapname> and returns
826 		 * the ZFS vnode mounted on top of the GFS node.  This ZFS
827 		 * vnode is the root the newly created vfsp.
828 		 */
829 		VFS_RELE(vfsp);
830 		err = traverse(vpp);
831 	}
832 
833 	if (err == 0) {
834 		/*
835 		 * Fix up the root vnode mounted on .zfs/snapshot/<snapname>.
836 		 *
837 		 * This is where we lie about our v_vfsp in order to
838 		 * make .zfs/snapshot/<snapname> accessible over NFS
839 		 * without requiring manual mounts of <snapname>.
840 		 */
841 		ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs);
842 		VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs;
843 		(*vpp)->v_vfsp = zfsvfs->z_vfs;
844 		(*vpp)->v_flag &= ~VROOT;
845 	}
846 	mutex_exit(&sdp->sd_lock);
847 	ZFS_EXIT(zfsvfs);
848 
849 	/*
850 	 * If we had an error, drop our hold on the vnode and
851 	 * zfsctl_snapshot_inactive() will clean up.
852 	 */
853 	if (err) {
854 		VN_RELE(*vpp);
855 		*vpp = NULL;
856 	}
857 	return (err);
858 }
859 
860 /* ARGSUSED */
861 static int
862 zfsctl_snapdir_readdir_cb(vnode_t *vp, void *dp, int *eofp,
863     offset_t *offp, offset_t *nextp, void *data, int flags)
864 {
865 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
866 	char snapname[MAXNAMELEN];
867 	uint64_t id, cookie;
868 	boolean_t case_conflict;
869 	int error;
870 
871 	ZFS_ENTER(zfsvfs);
872 
873 	cookie = *offp;
874 	error = dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id,
875 	    &cookie, &case_conflict);
876 	if (error) {
877 		ZFS_EXIT(zfsvfs);
878 		if (error == ENOENT) {
879 			*eofp = 1;
880 			return (0);
881 		}
882 		return (error);
883 	}
884 
885 	if (flags & V_RDDIR_ENTFLAGS) {
886 		edirent_t *eodp = dp;
887 
888 		(void) strcpy(eodp->ed_name, snapname);
889 		eodp->ed_ino = ZFSCTL_INO_SNAP(id);
890 		eodp->ed_eflags = case_conflict ? ED_CASE_CONFLICT : 0;
891 	} else {
892 		struct dirent64 *odp = dp;
893 
894 		(void) strcpy(odp->d_name, snapname);
895 		odp->d_ino = ZFSCTL_INO_SNAP(id);
896 	}
897 	*nextp = cookie;
898 
899 	ZFS_EXIT(zfsvfs);
900 
901 	return (0);
902 }
903 
904 /*
905  * pvp is the '.zfs' directory (zfsctl_node_t).
906  * Creates vp, which is '.zfs/snapshot' (zfsctl_snapdir_t).
907  *
908  * This function is the callback to create a GFS vnode for '.zfs/snapshot'
909  * when a lookup is performed on .zfs for "snapshot".
910  */
911 vnode_t *
912 zfsctl_mknode_snapdir(vnode_t *pvp)
913 {
914 	vnode_t *vp;
915 	zfsctl_snapdir_t *sdp;
916 
917 	vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp,
918 	    zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN,
919 	    zfsctl_snapdir_readdir_cb, NULL);
920 	sdp = vp->v_data;
921 	sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR;
922 	sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime;
923 	mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL);
924 	avl_create(&sdp->sd_snaps, snapentry_compare,
925 	    sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node));
926 	return (vp);
927 }
928 
929 /* ARGSUSED */
930 static int
931 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
932     caller_context_t *ct)
933 {
934 	zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data;
935 	zfsctl_snapdir_t *sdp = vp->v_data;
936 
937 	ZFS_ENTER(zfsvfs);
938 	zfsctl_common_getattr(vp, vap);
939 	vap->va_nodeid = gfs_file_inode(vp);
940 	vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2;
941 	ZFS_EXIT(zfsvfs);
942 
943 	return (0);
944 }
945 
946 /* ARGSUSED */
947 static void
948 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
949 {
950 	zfsctl_snapdir_t *sdp = vp->v_data;
951 	void *private;
952 
953 	private = gfs_dir_inactive(vp);
954 	if (private != NULL) {
955 		ASSERT(avl_numnodes(&sdp->sd_snaps) == 0);
956 		mutex_destroy(&sdp->sd_lock);
957 		avl_destroy(&sdp->sd_snaps);
958 		kmem_free(private, sizeof (zfsctl_snapdir_t));
959 	}
960 }
961 
962 static const fs_operation_def_t zfsctl_tops_snapdir[] = {
963 	{ VOPNAME_OPEN,		{ .vop_open = zfsctl_common_open }	},
964 	{ VOPNAME_CLOSE,	{ .vop_close = zfsctl_common_close }	},
965 	{ VOPNAME_IOCTL,	{ .error = fs_inval }			},
966 	{ VOPNAME_GETATTR,	{ .vop_getattr = zfsctl_snapdir_getattr } },
967 	{ VOPNAME_ACCESS,	{ .vop_access = zfsctl_common_access }	},
968 	{ VOPNAME_RENAME,	{ .vop_rename = zfsctl_snapdir_rename }	},
969 	{ VOPNAME_RMDIR,	{ .vop_rmdir = zfsctl_snapdir_remove }	},
970 	{ VOPNAME_MKDIR,	{ .vop_mkdir = zfsctl_snapdir_mkdir }	},
971 	{ VOPNAME_READDIR,	{ .vop_readdir = gfs_vop_readdir }	},
972 	{ VOPNAME_LOOKUP,	{ .vop_lookup = zfsctl_snapdir_lookup }	},
973 	{ VOPNAME_SEEK,		{ .vop_seek = fs_seek }			},
974 	{ VOPNAME_INACTIVE,	{ .vop_inactive = zfsctl_snapdir_inactive } },
975 	{ VOPNAME_FID,		{ .vop_fid = zfsctl_common_fid }	},
976 	{ NULL }
977 };
978 
979 /*
980  * pvp is the GFS vnode '.zfs/snapshot'.
981  *
982  * This creates a GFS node under '.zfs/snapshot' representing each
983  * snapshot.  This newly created GFS node is what we mount snapshot
984  * vfs_t's ontop of.
985  */
986 static vnode_t *
987 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset)
988 {
989 	vnode_t *vp;
990 	zfsctl_node_t *zcp;
991 
992 	vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp,
993 	    zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL);
994 	zcp = vp->v_data;
995 	zcp->zc_id = objset;
996 	VFS_HOLD(vp->v_vfsp);
997 
998 	return (vp);
999 }
1000 
1001 static void
1002 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
1003 {
1004 	zfsctl_snapdir_t *sdp;
1005 	zfs_snapentry_t *sep, *next;
1006 	vnode_t *dvp;
1007 
1008 	VERIFY(gfs_dir_lookup(vp, "..", &dvp, cr, 0, NULL, NULL) == 0);
1009 	sdp = dvp->v_data;
1010 
1011 	mutex_enter(&sdp->sd_lock);
1012 
1013 	if (vp->v_count > 1) {
1014 		mutex_exit(&sdp->sd_lock);
1015 		return;
1016 	}
1017 	ASSERT(!vn_ismntpt(vp));
1018 
1019 	sep = avl_first(&sdp->sd_snaps);
1020 	while (sep != NULL) {
1021 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1022 
1023 		if (sep->se_root == vp) {
1024 			avl_remove(&sdp->sd_snaps, sep);
1025 			kmem_free(sep->se_name, strlen(sep->se_name) + 1);
1026 			kmem_free(sep, sizeof (zfs_snapentry_t));
1027 			break;
1028 		}
1029 		sep = next;
1030 	}
1031 	ASSERT(sep != NULL);
1032 
1033 	mutex_exit(&sdp->sd_lock);
1034 	VN_RELE(dvp);
1035 	VFS_RELE(vp->v_vfsp);
1036 
1037 	/*
1038 	 * Dispose of the vnode for the snapshot mount point.
1039 	 * This is safe to do because once this entry has been removed
1040 	 * from the AVL tree, it can't be found again, so cannot become
1041 	 * "active".  If we lookup the same name again we will end up
1042 	 * creating a new vnode.
1043 	 */
1044 	gfs_vop_inactive(vp, cr, ct);
1045 }
1046 
1047 
1048 /*
1049  * These VP's should never see the light of day.  They should always
1050  * be covered.
1051  */
1052 static const fs_operation_def_t zfsctl_tops_snapshot[] = {
1053 	VOPNAME_INACTIVE, { .vop_inactive =  zfsctl_snapshot_inactive },
1054 	NULL, NULL
1055 };
1056 
1057 int
1058 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp)
1059 {
1060 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1061 	vnode_t *dvp, *vp;
1062 	zfsctl_snapdir_t *sdp;
1063 	zfsctl_node_t *zcp;
1064 	zfs_snapentry_t *sep;
1065 	int error;
1066 
1067 	ASSERT(zfsvfs->z_ctldir != NULL);
1068 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1069 	    NULL, 0, NULL, kcred, NULL, NULL, NULL);
1070 	if (error != 0)
1071 		return (error);
1072 	sdp = dvp->v_data;
1073 
1074 	mutex_enter(&sdp->sd_lock);
1075 	sep = avl_first(&sdp->sd_snaps);
1076 	while (sep != NULL) {
1077 		vp = sep->se_root;
1078 		zcp = vp->v_data;
1079 		if (zcp->zc_id == objsetid)
1080 			break;
1081 
1082 		sep = AVL_NEXT(&sdp->sd_snaps, sep);
1083 	}
1084 
1085 	if (sep != NULL) {
1086 		VN_HOLD(vp);
1087 		/*
1088 		 * Return the mounted root rather than the covered mount point.
1089 		 * Takes the GFS vnode at .zfs/snapshot/<snapshot objsetid>
1090 		 * and returns the ZFS vnode mounted on top of the GFS node.
1091 		 * This ZFS vnode is the root of the vfs for objset 'objsetid'.
1092 		 */
1093 		error = traverse(&vp);
1094 		if (error == 0) {
1095 			if (vp == sep->se_root)
1096 				error = EINVAL;
1097 			else
1098 				*zfsvfsp = VTOZ(vp)->z_zfsvfs;
1099 		}
1100 		mutex_exit(&sdp->sd_lock);
1101 		VN_RELE(vp);
1102 	} else {
1103 		error = EINVAL;
1104 		mutex_exit(&sdp->sd_lock);
1105 	}
1106 
1107 	VN_RELE(dvp);
1108 
1109 	return (error);
1110 }
1111 
1112 /*
1113  * Unmount any snapshots for the given filesystem.  This is called from
1114  * zfs_umount() - if we have a ctldir, then go through and unmount all the
1115  * snapshots.
1116  */
1117 int
1118 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr)
1119 {
1120 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1121 	vnode_t *dvp;
1122 	zfsctl_snapdir_t *sdp;
1123 	zfs_snapentry_t *sep, *next;
1124 	int error;
1125 
1126 	ASSERT(zfsvfs->z_ctldir != NULL);
1127 	error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp,
1128 	    NULL, 0, NULL, cr, NULL, NULL, NULL);
1129 	if (error != 0)
1130 		return (error);
1131 	sdp = dvp->v_data;
1132 
1133 	mutex_enter(&sdp->sd_lock);
1134 
1135 	sep = avl_first(&sdp->sd_snaps);
1136 	while (sep != NULL) {
1137 		next = AVL_NEXT(&sdp->sd_snaps, sep);
1138 
1139 		/*
1140 		 * If this snapshot is not mounted, then it must
1141 		 * have just been unmounted by somebody else, and
1142 		 * will be cleaned up by zfsctl_snapdir_inactive().
1143 		 */
1144 		if (vn_ismntpt(sep->se_root)) {
1145 			avl_remove(&sdp->sd_snaps, sep);
1146 			error = zfsctl_unmount_snap(sep, fflags, cr);
1147 			if (error) {
1148 				avl_add(&sdp->sd_snaps, sep);
1149 				break;
1150 			}
1151 		}
1152 		sep = next;
1153 	}
1154 
1155 	mutex_exit(&sdp->sd_lock);
1156 	VN_RELE(dvp);
1157 
1158 	return (error);
1159 }
1160