1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zio.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zfs_context.h> 30 #include <sys/zap.h> 31 #include <sys/refcount.h> 32 #include <sys/zap_impl.h> 33 #include <sys/zap_leaf.h> 34 #include <sys/avl.h> 35 36 #ifdef _KERNEL 37 #include <sys/sunddi.h> 38 #endif 39 40 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags); 41 42 uint64_t 43 zap_getflags(zap_t *zap) 44 { 45 if (zap->zap_ismicro) 46 return (0); 47 return (zap->zap_u.zap_fat.zap_phys->zap_flags); 48 } 49 50 int 51 zap_hashbits(zap_t *zap) 52 { 53 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 54 return (48); 55 else 56 return (28); 57 } 58 59 uint32_t 60 zap_maxcd(zap_t *zap) 61 { 62 if (zap_getflags(zap) & ZAP_FLAG_HASH64) 63 return ((1<<16)-1); 64 else 65 return (-1U); 66 } 67 68 static uint64_t 69 zap_hash(zap_name_t *zn) 70 { 71 zap_t *zap = zn->zn_zap; 72 uint64_t h = 0; 73 74 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) { 75 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY); 76 h = *(uint64_t *)zn->zn_key_orig; 77 } else { 78 h = zap->zap_salt; 79 ASSERT(h != 0); 80 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 81 82 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 83 int i; 84 const uint64_t *wp = zn->zn_key_norm; 85 86 ASSERT(zn->zn_key_intlen == 8); 87 for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) { 88 int j; 89 uint64_t word = *wp; 90 91 for (j = 0; j < zn->zn_key_intlen; j++) { 92 h = (h >> 8) ^ 93 zfs_crc64_table[(h ^ word) & 0xFF]; 94 word >>= NBBY; 95 } 96 } 97 } else { 98 int i, len; 99 const uint8_t *cp = zn->zn_key_norm; 100 101 /* 102 * We previously stored the terminating null on 103 * disk, but didn't hash it, so we need to 104 * continue to not hash it. (The 105 * zn_key_*_numints includes the terminating 106 * null for non-binary keys.) 107 */ 108 len = zn->zn_key_norm_numints - 1; 109 110 ASSERT(zn->zn_key_intlen == 1); 111 for (i = 0; i < len; cp++, i++) { 112 h = (h >> 8) ^ 113 zfs_crc64_table[(h ^ *cp) & 0xFF]; 114 } 115 } 116 } 117 /* 118 * Don't use all 64 bits, since we need some in the cookie for 119 * the collision differentiator. We MUST use the high bits, 120 * since those are the ones that we first pay attention to when 121 * chosing the bucket. 122 */ 123 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1); 124 125 return (h); 126 } 127 128 static int 129 zap_normalize(zap_t *zap, const char *name, char *namenorm) 130 { 131 size_t inlen, outlen; 132 int err; 133 134 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY)); 135 136 inlen = strlen(name) + 1; 137 outlen = ZAP_MAXNAMELEN; 138 139 err = 0; 140 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 141 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL | 142 U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err); 143 144 return (err); 145 } 146 147 boolean_t 148 zap_match(zap_name_t *zn, const char *matchname) 149 { 150 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY)); 151 152 if (zn->zn_matchtype == MT_FIRST) { 153 char norm[ZAP_MAXNAMELEN]; 154 155 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 156 return (B_FALSE); 157 158 return (strcmp(zn->zn_key_norm, norm) == 0); 159 } else { 160 /* MT_BEST or MT_EXACT */ 161 return (strcmp(zn->zn_key_orig, matchname) == 0); 162 } 163 } 164 165 void 166 zap_name_free(zap_name_t *zn) 167 { 168 kmem_free(zn, sizeof (zap_name_t)); 169 } 170 171 zap_name_t * 172 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt) 173 { 174 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 175 176 zn->zn_zap = zap; 177 zn->zn_key_intlen = sizeof (*key); 178 zn->zn_key_orig = key; 179 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1; 180 zn->zn_matchtype = mt; 181 if (zap->zap_normflags) { 182 if (zap_normalize(zap, key, zn->zn_normbuf) != 0) { 183 zap_name_free(zn); 184 return (NULL); 185 } 186 zn->zn_key_norm = zn->zn_normbuf; 187 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1; 188 } else { 189 if (mt != MT_EXACT) { 190 zap_name_free(zn); 191 return (NULL); 192 } 193 zn->zn_key_norm = zn->zn_key_orig; 194 zn->zn_key_norm_numints = zn->zn_key_orig_numints; 195 } 196 197 zn->zn_hash = zap_hash(zn); 198 return (zn); 199 } 200 201 zap_name_t * 202 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints) 203 { 204 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 205 206 ASSERT(zap->zap_normflags == 0); 207 zn->zn_zap = zap; 208 zn->zn_key_intlen = sizeof (*key); 209 zn->zn_key_orig = zn->zn_key_norm = key; 210 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints; 211 zn->zn_matchtype = MT_EXACT; 212 213 zn->zn_hash = zap_hash(zn); 214 return (zn); 215 } 216 217 static void 218 mzap_byteswap(mzap_phys_t *buf, size_t size) 219 { 220 int i, max; 221 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 222 buf->mz_salt = BSWAP_64(buf->mz_salt); 223 buf->mz_normflags = BSWAP_64(buf->mz_normflags); 224 max = (size / MZAP_ENT_LEN) - 1; 225 for (i = 0; i < max; i++) { 226 buf->mz_chunk[i].mze_value = 227 BSWAP_64(buf->mz_chunk[i].mze_value); 228 buf->mz_chunk[i].mze_cd = 229 BSWAP_32(buf->mz_chunk[i].mze_cd); 230 } 231 } 232 233 void 234 zap_byteswap(void *buf, size_t size) 235 { 236 uint64_t block_type; 237 238 block_type = *(uint64_t *)buf; 239 240 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 241 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 242 mzap_byteswap(buf, size); 243 } else { 244 fzap_byteswap(buf, size); 245 } 246 } 247 248 static int 249 mze_compare(const void *arg1, const void *arg2) 250 { 251 const mzap_ent_t *mze1 = arg1; 252 const mzap_ent_t *mze2 = arg2; 253 254 if (mze1->mze_hash > mze2->mze_hash) 255 return (+1); 256 if (mze1->mze_hash < mze2->mze_hash) 257 return (-1); 258 if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) 259 return (+1); 260 if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) 261 return (-1); 262 return (0); 263 } 264 265 static void 266 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) 267 { 268 mzap_ent_t *mze; 269 270 ASSERT(zap->zap_ismicro); 271 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 272 ASSERT(mzep->mze_cd < zap_maxcd(zap)); 273 274 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 275 mze->mze_chunkid = chunkid; 276 mze->mze_hash = hash; 277 mze->mze_phys = *mzep; 278 avl_add(&zap->zap_m.zap_avl, mze); 279 } 280 281 static mzap_ent_t * 282 mze_find(zap_name_t *zn) 283 { 284 mzap_ent_t mze_tofind; 285 mzap_ent_t *mze; 286 avl_index_t idx; 287 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 288 289 ASSERT(zn->zn_zap->zap_ismicro); 290 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 291 292 mze_tofind.mze_hash = zn->zn_hash; 293 mze_tofind.mze_phys.mze_cd = 0; 294 295 again: 296 mze = avl_find(avl, &mze_tofind, &idx); 297 if (mze == NULL) 298 mze = avl_nearest(avl, idx, AVL_AFTER); 299 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 300 if (zap_match(zn, mze->mze_phys.mze_name)) 301 return (mze); 302 } 303 if (zn->zn_matchtype == MT_BEST) { 304 zn->zn_matchtype = MT_FIRST; 305 goto again; 306 } 307 return (NULL); 308 } 309 310 static uint32_t 311 mze_find_unused_cd(zap_t *zap, uint64_t hash) 312 { 313 mzap_ent_t mze_tofind; 314 mzap_ent_t *mze; 315 avl_index_t idx; 316 avl_tree_t *avl = &zap->zap_m.zap_avl; 317 uint32_t cd; 318 319 ASSERT(zap->zap_ismicro); 320 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 321 322 mze_tofind.mze_hash = hash; 323 mze_tofind.mze_phys.mze_cd = 0; 324 325 cd = 0; 326 for (mze = avl_find(avl, &mze_tofind, &idx); 327 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 328 if (mze->mze_phys.mze_cd != cd) 329 break; 330 cd++; 331 } 332 333 return (cd); 334 } 335 336 static void 337 mze_remove(zap_t *zap, mzap_ent_t *mze) 338 { 339 ASSERT(zap->zap_ismicro); 340 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 341 342 avl_remove(&zap->zap_m.zap_avl, mze); 343 kmem_free(mze, sizeof (mzap_ent_t)); 344 } 345 346 static void 347 mze_destroy(zap_t *zap) 348 { 349 mzap_ent_t *mze; 350 void *avlcookie = NULL; 351 352 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 353 kmem_free(mze, sizeof (mzap_ent_t)); 354 avl_destroy(&zap->zap_m.zap_avl); 355 } 356 357 static zap_t * 358 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 359 { 360 zap_t *winner; 361 zap_t *zap; 362 int i; 363 364 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 365 366 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 367 rw_init(&zap->zap_rwlock, 0, 0, 0); 368 rw_enter(&zap->zap_rwlock, RW_WRITER); 369 zap->zap_objset = os; 370 zap->zap_object = obj; 371 zap->zap_dbuf = db; 372 373 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 374 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 375 zap->zap_f.zap_block_shift = highbit(db->db_size) - 1; 376 } else { 377 zap->zap_ismicro = TRUE; 378 } 379 380 /* 381 * Make sure that zap_ismicro is set before we let others see 382 * it, because zap_lockdir() checks zap_ismicro without the lock 383 * held. 384 */ 385 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); 386 387 if (winner != NULL) { 388 rw_exit(&zap->zap_rwlock); 389 rw_destroy(&zap->zap_rwlock); 390 if (!zap->zap_ismicro) 391 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 392 kmem_free(zap, sizeof (zap_t)); 393 return (winner); 394 } 395 396 if (zap->zap_ismicro) { 397 zap->zap_salt = zap->zap_m.zap_phys->mz_salt; 398 zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags; 399 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 400 avl_create(&zap->zap_m.zap_avl, mze_compare, 401 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 402 403 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 404 mzap_ent_phys_t *mze = 405 &zap->zap_m.zap_phys->mz_chunk[i]; 406 if (mze->mze_name[0]) { 407 zap_name_t *zn; 408 409 zap->zap_m.zap_num_entries++; 410 zn = zap_name_alloc(zap, mze->mze_name, 411 MT_EXACT); 412 mze_insert(zap, i, zn->zn_hash, mze); 413 zap_name_free(zn); 414 } 415 } 416 } else { 417 zap->zap_salt = zap->zap_f.zap_phys->zap_salt; 418 zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags; 419 420 ASSERT3U(sizeof (struct zap_leaf_header), ==, 421 2*ZAP_LEAF_CHUNKSIZE); 422 423 /* 424 * The embedded pointer table should not overlap the 425 * other members. 426 */ 427 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 428 &zap->zap_f.zap_phys->zap_salt); 429 430 /* 431 * The embedded pointer table should end at the end of 432 * the block 433 */ 434 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 435 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 436 (uintptr_t)zap->zap_f.zap_phys, ==, 437 zap->zap_dbuf->db_size); 438 } 439 rw_exit(&zap->zap_rwlock); 440 return (zap); 441 } 442 443 int 444 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 445 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 446 { 447 zap_t *zap; 448 dmu_buf_t *db; 449 krw_t lt; 450 int err; 451 452 *zapp = NULL; 453 454 err = dmu_buf_hold(os, obj, 0, NULL, &db); 455 if (err) 456 return (err); 457 458 #ifdef ZFS_DEBUG 459 { 460 dmu_object_info_t doi; 461 dmu_object_info_from_db(db, &doi); 462 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 463 } 464 #endif 465 466 zap = dmu_buf_get_user(db); 467 if (zap == NULL) 468 zap = mzap_open(os, obj, db); 469 470 /* 471 * We're checking zap_ismicro without the lock held, in order to 472 * tell what type of lock we want. Once we have some sort of 473 * lock, see if it really is the right type. In practice this 474 * can only be different if it was upgraded from micro to fat, 475 * and micro wanted WRITER but fat only needs READER. 476 */ 477 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 478 rw_enter(&zap->zap_rwlock, lt); 479 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 480 /* it was upgraded, now we only need reader */ 481 ASSERT(lt == RW_WRITER); 482 ASSERT(RW_READER == 483 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 484 rw_downgrade(&zap->zap_rwlock); 485 lt = RW_READER; 486 } 487 488 zap->zap_objset = os; 489 490 if (lt == RW_WRITER) 491 dmu_buf_will_dirty(db, tx); 492 493 ASSERT3P(zap->zap_dbuf, ==, db); 494 495 ASSERT(!zap->zap_ismicro || 496 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 497 if (zap->zap_ismicro && tx && adding && 498 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 499 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 500 if (newsz > MZAP_MAX_BLKSZ) { 501 dprintf("upgrading obj %llu: num_entries=%u\n", 502 obj, zap->zap_m.zap_num_entries); 503 *zapp = zap; 504 return (mzap_upgrade(zapp, tx, 0)); 505 } 506 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 507 ASSERT3U(err, ==, 0); 508 zap->zap_m.zap_num_chunks = 509 db->db_size / MZAP_ENT_LEN - 1; 510 } 511 512 *zapp = zap; 513 return (0); 514 } 515 516 void 517 zap_unlockdir(zap_t *zap) 518 { 519 rw_exit(&zap->zap_rwlock); 520 dmu_buf_rele(zap->zap_dbuf, NULL); 521 } 522 523 static int 524 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags) 525 { 526 mzap_phys_t *mzp; 527 int i, sz, nchunks; 528 int err = 0; 529 zap_t *zap = *zapp; 530 531 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 532 533 sz = zap->zap_dbuf->db_size; 534 mzp = kmem_alloc(sz, KM_SLEEP); 535 bcopy(zap->zap_dbuf->db_data, mzp, sz); 536 nchunks = zap->zap_m.zap_num_chunks; 537 538 if (!flags) { 539 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 540 1ULL << fzap_default_block_shift, 0, tx); 541 if (err) { 542 kmem_free(mzp, sz); 543 return (err); 544 } 545 } 546 547 dprintf("upgrading obj=%llu with %u chunks\n", 548 zap->zap_object, nchunks); 549 /* XXX destroy the avl later, so we can use the stored hash value */ 550 mze_destroy(zap); 551 552 fzap_upgrade(zap, tx, flags); 553 554 for (i = 0; i < nchunks; i++) { 555 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 556 zap_name_t *zn; 557 if (mze->mze_name[0] == 0) 558 continue; 559 dprintf("adding %s=%llu\n", 560 mze->mze_name, mze->mze_value); 561 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 562 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 563 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 564 zap_name_free(zn); 565 if (err) 566 break; 567 } 568 kmem_free(mzp, sz); 569 *zapp = zap; 570 return (err); 571 } 572 573 static void 574 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags, 575 dmu_tx_t *tx) 576 { 577 dmu_buf_t *db; 578 mzap_phys_t *zp; 579 580 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db)); 581 582 #ifdef ZFS_DEBUG 583 { 584 dmu_object_info_t doi; 585 dmu_object_info_from_db(db, &doi); 586 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 587 } 588 #endif 589 590 dmu_buf_will_dirty(db, tx); 591 zp = db->db_data; 592 zp->mz_block_type = ZBT_MICRO; 593 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 594 zp->mz_normflags = normflags; 595 dmu_buf_rele(db, FTAG); 596 597 if (flags != 0) { 598 zap_t *zap; 599 /* Only fat zap supports flags; upgrade immediately. */ 600 VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER, 601 B_FALSE, B_FALSE, &zap)); 602 VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags)); 603 zap_unlockdir(zap); 604 } 605 } 606 607 int 608 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 609 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 610 { 611 return (zap_create_claim_norm(os, obj, 612 0, ot, bonustype, bonuslen, tx)); 613 } 614 615 int 616 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 617 dmu_object_type_t ot, 618 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 619 { 620 int err; 621 622 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 623 if (err != 0) 624 return (err); 625 mzap_create_impl(os, obj, normflags, 0, tx); 626 return (0); 627 } 628 629 uint64_t 630 zap_create(objset_t *os, dmu_object_type_t ot, 631 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 632 { 633 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 634 } 635 636 uint64_t 637 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 638 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 639 { 640 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 641 642 mzap_create_impl(os, obj, normflags, 0, tx); 643 return (obj); 644 } 645 646 uint64_t 647 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 648 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 649 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 650 { 651 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 652 653 ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT && 654 leaf_blockshift <= SPA_MAXBLOCKSHIFT && 655 indirect_blockshift >= SPA_MINBLOCKSHIFT && 656 indirect_blockshift <= SPA_MAXBLOCKSHIFT); 657 658 VERIFY(dmu_object_set_blocksize(os, obj, 659 1ULL << leaf_blockshift, indirect_blockshift, tx) == 0); 660 661 mzap_create_impl(os, obj, normflags, flags, tx); 662 return (obj); 663 } 664 665 int 666 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 667 { 668 /* 669 * dmu_object_free will free the object number and free the 670 * data. Freeing the data will cause our pageout function to be 671 * called, which will destroy our data (zap_leaf_t's and zap_t). 672 */ 673 674 return (dmu_object_free(os, zapobj, tx)); 675 } 676 677 _NOTE(ARGSUSED(0)) 678 void 679 zap_evict(dmu_buf_t *db, void *vzap) 680 { 681 zap_t *zap = vzap; 682 683 rw_destroy(&zap->zap_rwlock); 684 685 if (zap->zap_ismicro) 686 mze_destroy(zap); 687 else 688 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 689 690 kmem_free(zap, sizeof (zap_t)); 691 } 692 693 int 694 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 695 { 696 zap_t *zap; 697 int err; 698 699 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 700 if (err) 701 return (err); 702 if (!zap->zap_ismicro) { 703 err = fzap_count(zap, count); 704 } else { 705 *count = zap->zap_m.zap_num_entries; 706 } 707 zap_unlockdir(zap); 708 return (err); 709 } 710 711 /* 712 * zn may be NULL; if not specified, it will be computed if needed. 713 * See also the comment above zap_entry_normalization_conflict(). 714 */ 715 static boolean_t 716 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 717 { 718 mzap_ent_t *other; 719 int direction = AVL_BEFORE; 720 boolean_t allocdzn = B_FALSE; 721 722 if (zap->zap_normflags == 0) 723 return (B_FALSE); 724 725 again: 726 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 727 other && other->mze_hash == mze->mze_hash; 728 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 729 730 if (zn == NULL) { 731 zn = zap_name_alloc(zap, mze->mze_phys.mze_name, 732 MT_FIRST); 733 allocdzn = B_TRUE; 734 } 735 if (zap_match(zn, other->mze_phys.mze_name)) { 736 if (allocdzn) 737 zap_name_free(zn); 738 return (B_TRUE); 739 } 740 } 741 742 if (direction == AVL_BEFORE) { 743 direction = AVL_AFTER; 744 goto again; 745 } 746 747 if (allocdzn) 748 zap_name_free(zn); 749 return (B_FALSE); 750 } 751 752 /* 753 * Routines for manipulating attributes. 754 */ 755 756 int 757 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 758 uint64_t integer_size, uint64_t num_integers, void *buf) 759 { 760 return (zap_lookup_norm(os, zapobj, name, integer_size, 761 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 762 } 763 764 int 765 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 766 uint64_t integer_size, uint64_t num_integers, void *buf, 767 matchtype_t mt, char *realname, int rn_len, 768 boolean_t *ncp) 769 { 770 zap_t *zap; 771 int err; 772 mzap_ent_t *mze; 773 zap_name_t *zn; 774 775 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 776 if (err) 777 return (err); 778 zn = zap_name_alloc(zap, name, mt); 779 if (zn == NULL) { 780 zap_unlockdir(zap); 781 return (ENOTSUP); 782 } 783 784 if (!zap->zap_ismicro) { 785 err = fzap_lookup(zn, integer_size, num_integers, buf, 786 realname, rn_len, ncp); 787 } else { 788 mze = mze_find(zn); 789 if (mze == NULL) { 790 err = ENOENT; 791 } else { 792 if (num_integers < 1) { 793 err = EOVERFLOW; 794 } else if (integer_size != 8) { 795 err = EINVAL; 796 } else { 797 *(uint64_t *)buf = mze->mze_phys.mze_value; 798 (void) strlcpy(realname, 799 mze->mze_phys.mze_name, rn_len); 800 if (ncp) { 801 *ncp = mzap_normalization_conflict(zap, 802 zn, mze); 803 } 804 } 805 } 806 } 807 zap_name_free(zn); 808 zap_unlockdir(zap); 809 return (err); 810 } 811 812 int 813 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 814 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf) 815 { 816 zap_t *zap; 817 int err; 818 zap_name_t *zn; 819 820 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 821 if (err) 822 return (err); 823 zn = zap_name_alloc_uint64(zap, key, key_numints); 824 if (zn == NULL) { 825 zap_unlockdir(zap); 826 return (ENOTSUP); 827 } 828 829 err = fzap_lookup(zn, integer_size, num_integers, buf, 830 NULL, 0, NULL); 831 zap_name_free(zn); 832 zap_unlockdir(zap); 833 return (err); 834 } 835 836 int 837 zap_contains(objset_t *os, uint64_t zapobj, const char *name) 838 { 839 int err = (zap_lookup_norm(os, zapobj, name, 0, 840 0, NULL, MT_EXACT, NULL, 0, NULL)); 841 if (err == EOVERFLOW || err == EINVAL) 842 err = 0; /* found, but skipped reading the value */ 843 return (err); 844 } 845 846 int 847 zap_length(objset_t *os, uint64_t zapobj, const char *name, 848 uint64_t *integer_size, uint64_t *num_integers) 849 { 850 zap_t *zap; 851 int err; 852 mzap_ent_t *mze; 853 zap_name_t *zn; 854 855 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 856 if (err) 857 return (err); 858 zn = zap_name_alloc(zap, name, MT_EXACT); 859 if (zn == NULL) { 860 zap_unlockdir(zap); 861 return (ENOTSUP); 862 } 863 if (!zap->zap_ismicro) { 864 err = fzap_length(zn, integer_size, num_integers); 865 } else { 866 mze = mze_find(zn); 867 if (mze == NULL) { 868 err = ENOENT; 869 } else { 870 if (integer_size) 871 *integer_size = 8; 872 if (num_integers) 873 *num_integers = 1; 874 } 875 } 876 zap_name_free(zn); 877 zap_unlockdir(zap); 878 return (err); 879 } 880 881 int 882 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 883 int key_numints, uint64_t *integer_size, uint64_t *num_integers) 884 { 885 zap_t *zap; 886 int err; 887 zap_name_t *zn; 888 889 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 890 if (err) 891 return (err); 892 zn = zap_name_alloc_uint64(zap, key, key_numints); 893 if (zn == NULL) { 894 zap_unlockdir(zap); 895 return (ENOTSUP); 896 } 897 err = fzap_length(zn, integer_size, num_integers); 898 zap_name_free(zn); 899 zap_unlockdir(zap); 900 return (err); 901 } 902 903 static void 904 mzap_addent(zap_name_t *zn, uint64_t value) 905 { 906 int i; 907 zap_t *zap = zn->zn_zap; 908 int start = zap->zap_m.zap_alloc_next; 909 uint32_t cd; 910 911 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 912 913 #ifdef ZFS_DEBUG 914 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 915 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 916 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0); 917 } 918 #endif 919 920 cd = mze_find_unused_cd(zap, zn->zn_hash); 921 /* given the limited size of the microzap, this can't happen */ 922 ASSERT(cd < zap_maxcd(zap)); 923 924 again: 925 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 926 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 927 if (mze->mze_name[0] == 0) { 928 mze->mze_value = value; 929 mze->mze_cd = cd; 930 (void) strcpy(mze->mze_name, zn->zn_key_orig); 931 zap->zap_m.zap_num_entries++; 932 zap->zap_m.zap_alloc_next = i+1; 933 if (zap->zap_m.zap_alloc_next == 934 zap->zap_m.zap_num_chunks) 935 zap->zap_m.zap_alloc_next = 0; 936 mze_insert(zap, i, zn->zn_hash, mze); 937 return; 938 } 939 } 940 if (start != 0) { 941 start = 0; 942 goto again; 943 } 944 ASSERT(!"out of entries!"); 945 } 946 947 int 948 zap_add(objset_t *os, uint64_t zapobj, const char *key, 949 int integer_size, uint64_t num_integers, 950 const void *val, dmu_tx_t *tx) 951 { 952 zap_t *zap; 953 int err; 954 mzap_ent_t *mze; 955 const uint64_t *intval = val; 956 zap_name_t *zn; 957 958 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 959 if (err) 960 return (err); 961 zn = zap_name_alloc(zap, key, MT_EXACT); 962 if (zn == NULL) { 963 zap_unlockdir(zap); 964 return (ENOTSUP); 965 } 966 if (!zap->zap_ismicro) { 967 err = fzap_add(zn, integer_size, num_integers, val, tx); 968 zap = zn->zn_zap; /* fzap_add() may change zap */ 969 } else if (integer_size != 8 || num_integers != 1 || 970 strlen(key) >= MZAP_NAME_LEN) { 971 err = mzap_upgrade(&zn->zn_zap, tx, 0); 972 if (err == 0) 973 err = fzap_add(zn, integer_size, num_integers, val, tx); 974 zap = zn->zn_zap; /* fzap_add() may change zap */ 975 } else { 976 mze = mze_find(zn); 977 if (mze != NULL) { 978 err = EEXIST; 979 } else { 980 mzap_addent(zn, *intval); 981 } 982 } 983 ASSERT(zap == zn->zn_zap); 984 zap_name_free(zn); 985 if (zap != NULL) /* may be NULL if fzap_add() failed */ 986 zap_unlockdir(zap); 987 return (err); 988 } 989 990 int 991 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 992 int key_numints, int integer_size, uint64_t num_integers, 993 const void *val, dmu_tx_t *tx) 994 { 995 zap_t *zap; 996 int err; 997 zap_name_t *zn; 998 999 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1000 if (err) 1001 return (err); 1002 zn = zap_name_alloc_uint64(zap, key, key_numints); 1003 if (zn == NULL) { 1004 zap_unlockdir(zap); 1005 return (ENOTSUP); 1006 } 1007 err = fzap_add(zn, integer_size, num_integers, val, tx); 1008 zap = zn->zn_zap; /* fzap_add() may change zap */ 1009 zap_name_free(zn); 1010 if (zap != NULL) /* may be NULL if fzap_add() failed */ 1011 zap_unlockdir(zap); 1012 return (err); 1013 } 1014 1015 int 1016 zap_update(objset_t *os, uint64_t zapobj, const char *name, 1017 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1018 { 1019 zap_t *zap; 1020 mzap_ent_t *mze; 1021 const uint64_t *intval = val; 1022 zap_name_t *zn; 1023 int err; 1024 1025 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1026 if (err) 1027 return (err); 1028 zn = zap_name_alloc(zap, name, MT_EXACT); 1029 if (zn == NULL) { 1030 zap_unlockdir(zap); 1031 return (ENOTSUP); 1032 } 1033 if (!zap->zap_ismicro) { 1034 err = fzap_update(zn, integer_size, num_integers, val, tx); 1035 zap = zn->zn_zap; /* fzap_update() may change zap */ 1036 } else if (integer_size != 8 || num_integers != 1 || 1037 strlen(name) >= MZAP_NAME_LEN) { 1038 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 1039 zapobj, integer_size, num_integers, name); 1040 err = mzap_upgrade(&zn->zn_zap, tx, 0); 1041 if (err == 0) 1042 err = fzap_update(zn, integer_size, num_integers, 1043 val, tx); 1044 zap = zn->zn_zap; /* fzap_update() may change zap */ 1045 } else { 1046 mze = mze_find(zn); 1047 if (mze != NULL) { 1048 mze->mze_phys.mze_value = *intval; 1049 zap->zap_m.zap_phys->mz_chunk 1050 [mze->mze_chunkid].mze_value = *intval; 1051 } else { 1052 mzap_addent(zn, *intval); 1053 } 1054 } 1055 ASSERT(zap == zn->zn_zap); 1056 zap_name_free(zn); 1057 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1058 zap_unlockdir(zap); 1059 return (err); 1060 } 1061 1062 int 1063 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1064 int key_numints, 1065 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 1066 { 1067 zap_t *zap; 1068 zap_name_t *zn; 1069 int err; 1070 1071 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 1072 if (err) 1073 return (err); 1074 zn = zap_name_alloc_uint64(zap, key, key_numints); 1075 if (zn == NULL) { 1076 zap_unlockdir(zap); 1077 return (ENOTSUP); 1078 } 1079 err = fzap_update(zn, integer_size, num_integers, val, tx); 1080 zap = zn->zn_zap; /* fzap_update() may change zap */ 1081 zap_name_free(zn); 1082 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 1083 zap_unlockdir(zap); 1084 return (err); 1085 } 1086 1087 int 1088 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 1089 { 1090 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 1091 } 1092 1093 int 1094 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 1095 matchtype_t mt, dmu_tx_t *tx) 1096 { 1097 zap_t *zap; 1098 int err; 1099 mzap_ent_t *mze; 1100 zap_name_t *zn; 1101 1102 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1103 if (err) 1104 return (err); 1105 zn = zap_name_alloc(zap, name, mt); 1106 if (zn == NULL) { 1107 zap_unlockdir(zap); 1108 return (ENOTSUP); 1109 } 1110 if (!zap->zap_ismicro) { 1111 err = fzap_remove(zn, tx); 1112 } else { 1113 mze = mze_find(zn); 1114 if (mze == NULL) { 1115 err = ENOENT; 1116 } else { 1117 zap->zap_m.zap_num_entries--; 1118 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 1119 sizeof (mzap_ent_phys_t)); 1120 mze_remove(zap, mze); 1121 } 1122 } 1123 zap_name_free(zn); 1124 zap_unlockdir(zap); 1125 return (err); 1126 } 1127 1128 int 1129 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 1130 int key_numints, dmu_tx_t *tx) 1131 { 1132 zap_t *zap; 1133 int err; 1134 zap_name_t *zn; 1135 1136 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 1137 if (err) 1138 return (err); 1139 zn = zap_name_alloc_uint64(zap, key, key_numints); 1140 if (zn == NULL) { 1141 zap_unlockdir(zap); 1142 return (ENOTSUP); 1143 } 1144 err = fzap_remove(zn, tx); 1145 zap_name_free(zn); 1146 zap_unlockdir(zap); 1147 return (err); 1148 } 1149 1150 /* 1151 * Routines for iterating over the attributes. 1152 */ 1153 1154 void 1155 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 1156 uint64_t serialized) 1157 { 1158 zc->zc_objset = os; 1159 zc->zc_zap = NULL; 1160 zc->zc_leaf = NULL; 1161 zc->zc_zapobj = zapobj; 1162 zc->zc_serialized = serialized; 1163 zc->zc_hash = 0; 1164 zc->zc_cd = 0; 1165 } 1166 1167 void 1168 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 1169 { 1170 zap_cursor_init_serialized(zc, os, zapobj, 0); 1171 } 1172 1173 void 1174 zap_cursor_fini(zap_cursor_t *zc) 1175 { 1176 if (zc->zc_zap) { 1177 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1178 zap_unlockdir(zc->zc_zap); 1179 zc->zc_zap = NULL; 1180 } 1181 if (zc->zc_leaf) { 1182 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 1183 zap_put_leaf(zc->zc_leaf); 1184 zc->zc_leaf = NULL; 1185 } 1186 zc->zc_objset = NULL; 1187 } 1188 1189 uint64_t 1190 zap_cursor_serialize(zap_cursor_t *zc) 1191 { 1192 if (zc->zc_hash == -1ULL) 1193 return (-1ULL); 1194 if (zc->zc_zap == NULL) 1195 return (zc->zc_serialized); 1196 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0); 1197 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap)); 1198 1199 /* 1200 * We want to keep the high 32 bits of the cursor zero if we can, so 1201 * that 32-bit programs can access this. So usually use a small 1202 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits 1203 * of the cursor. 1204 * 1205 * [ collision differentiator | zap_hashbits()-bit hash value ] 1206 */ 1207 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) | 1208 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap))); 1209 } 1210 1211 int 1212 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 1213 { 1214 int err; 1215 avl_index_t idx; 1216 mzap_ent_t mze_tofind; 1217 mzap_ent_t *mze; 1218 1219 if (zc->zc_hash == -1ULL) 1220 return (ENOENT); 1221 1222 if (zc->zc_zap == NULL) { 1223 int hb; 1224 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1225 RW_READER, TRUE, FALSE, &zc->zc_zap); 1226 if (err) 1227 return (err); 1228 1229 /* 1230 * To support zap_cursor_init_serialized, advance, retrieve, 1231 * we must add to the existing zc_cd, which may already 1232 * be 1 due to the zap_cursor_advance. 1233 */ 1234 ASSERT(zc->zc_hash == 0); 1235 hb = zap_hashbits(zc->zc_zap); 1236 zc->zc_hash = zc->zc_serialized << (64 - hb); 1237 zc->zc_cd += zc->zc_serialized >> hb; 1238 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */ 1239 zc->zc_cd = 0; 1240 } else { 1241 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1242 } 1243 if (!zc->zc_zap->zap_ismicro) { 1244 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1245 } else { 1246 err = ENOENT; 1247 1248 mze_tofind.mze_hash = zc->zc_hash; 1249 mze_tofind.mze_phys.mze_cd = zc->zc_cd; 1250 1251 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1252 if (mze == NULL) { 1253 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1254 idx, AVL_AFTER); 1255 } 1256 if (mze) { 1257 ASSERT(0 == bcmp(&mze->mze_phys, 1258 &zc->zc_zap->zap_m.zap_phys->mz_chunk 1259 [mze->mze_chunkid], sizeof (mze->mze_phys))); 1260 1261 za->za_normalization_conflict = 1262 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1263 za->za_integer_length = 8; 1264 za->za_num_integers = 1; 1265 za->za_first_integer = mze->mze_phys.mze_value; 1266 (void) strcpy(za->za_name, mze->mze_phys.mze_name); 1267 zc->zc_hash = mze->mze_hash; 1268 zc->zc_cd = mze->mze_phys.mze_cd; 1269 err = 0; 1270 } else { 1271 zc->zc_hash = -1ULL; 1272 } 1273 } 1274 rw_exit(&zc->zc_zap->zap_rwlock); 1275 return (err); 1276 } 1277 1278 void 1279 zap_cursor_advance(zap_cursor_t *zc) 1280 { 1281 if (zc->zc_hash == -1ULL) 1282 return; 1283 zc->zc_cd++; 1284 } 1285 1286 int 1287 zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt) 1288 { 1289 int err = 0; 1290 mzap_ent_t *mze; 1291 zap_name_t *zn; 1292 1293 if (zc->zc_zap == NULL) { 1294 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 1295 RW_READER, TRUE, FALSE, &zc->zc_zap); 1296 if (err) 1297 return (err); 1298 } else { 1299 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 1300 } 1301 1302 zn = zap_name_alloc(zc->zc_zap, name, mt); 1303 if (zn == NULL) { 1304 rw_exit(&zc->zc_zap->zap_rwlock); 1305 return (ENOTSUP); 1306 } 1307 1308 if (!zc->zc_zap->zap_ismicro) { 1309 err = fzap_cursor_move_to_key(zc, zn); 1310 } else { 1311 mze = mze_find(zn); 1312 if (mze == NULL) { 1313 err = ENOENT; 1314 goto out; 1315 } 1316 zc->zc_hash = mze->mze_hash; 1317 zc->zc_cd = mze->mze_phys.mze_cd; 1318 } 1319 1320 out: 1321 zap_name_free(zn); 1322 rw_exit(&zc->zc_zap->zap_rwlock); 1323 return (err); 1324 } 1325 1326 int 1327 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1328 { 1329 int err; 1330 zap_t *zap; 1331 1332 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1333 if (err) 1334 return (err); 1335 1336 bzero(zs, sizeof (zap_stats_t)); 1337 1338 if (zap->zap_ismicro) { 1339 zs->zs_blocksize = zap->zap_dbuf->db_size; 1340 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1341 zs->zs_num_blocks = 1; 1342 } else { 1343 fzap_get_stats(zap, zs); 1344 } 1345 zap_unlockdir(zap); 1346 return (0); 1347 } 1348 1349 int 1350 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add, 1351 uint64_t *towrite, uint64_t *tooverwrite) 1352 { 1353 zap_t *zap; 1354 int err = 0; 1355 1356 1357 /* 1358 * Since, we don't have a name, we cannot figure out which blocks will 1359 * be affected in this operation. So, account for the worst case : 1360 * - 3 blocks overwritten: target leaf, ptrtbl block, header block 1361 * - 4 new blocks written if adding: 1362 * - 2 blocks for possibly split leaves, 1363 * - 2 grown ptrtbl blocks 1364 * 1365 * This also accomodates the case where an add operation to a fairly 1366 * large microzap results in a promotion to fatzap. 1367 */ 1368 if (name == NULL) { 1369 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; 1370 return (err); 1371 } 1372 1373 /* 1374 * We lock the zap with adding == FALSE. Because, if we pass 1375 * the actual value of add, it could trigger a mzap_upgrade(). 1376 * At present we are just evaluating the possibility of this operation 1377 * and hence we donot want to trigger an upgrade. 1378 */ 1379 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1380 if (err) 1381 return (err); 1382 1383 if (!zap->zap_ismicro) { 1384 zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT); 1385 if (zn) { 1386 err = fzap_count_write(zn, add, towrite, 1387 tooverwrite); 1388 zap_name_free(zn); 1389 } else { 1390 /* 1391 * We treat this case as similar to (name == NULL) 1392 */ 1393 *towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE; 1394 } 1395 } else { 1396 /* 1397 * We are here if (name != NULL) and this is a micro-zap. 1398 * We account for the header block depending on whether it 1399 * is freeable. 1400 * 1401 * Incase of an add-operation it is hard to find out 1402 * if this add will promote this microzap to fatzap. 1403 * Hence, we consider the worst case and account for the 1404 * blocks assuming this microzap would be promoted to a 1405 * fatzap. 1406 * 1407 * 1 block overwritten : header block 1408 * 4 new blocks written : 2 new split leaf, 2 grown 1409 * ptrtbl blocks 1410 */ 1411 if (dmu_buf_freeable(zap->zap_dbuf)) 1412 *tooverwrite += SPA_MAXBLOCKSIZE; 1413 else 1414 *towrite += SPA_MAXBLOCKSIZE; 1415 1416 if (add) { 1417 *towrite += 4 * SPA_MAXBLOCKSIZE; 1418 } 1419 } 1420 1421 zap_unlockdir(zap); 1422 return (err); 1423 } 1424