1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/spa.h> 30 #include <sys/dmu.h> 31 #include <sys/zfs_context.h> 32 #include <sys/zap.h> 33 #include <sys/zap_impl.h> 34 #include <sys/zap_leaf.h> 35 #include <sys/avl.h> 36 37 38 static uint64_t mzap_write_cookie(zap_t *zap, uint64_t cookie, 39 uint64_t entptr); 40 static void mzap_upgrade(zap_t *zap, dmu_tx_t *tx); 41 42 43 static void 44 mzap_byteswap(mzap_phys_t *buf, size_t size) 45 { 46 int i, max; 47 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 48 buf->mz_salt = BSWAP_64(buf->mz_salt); 49 max = (size / MZAP_ENT_LEN) - 1; 50 for (i = 0; i < max; i++) { 51 buf->mz_chunk[i].mze_value = 52 BSWAP_64(buf->mz_chunk[i].mze_value); 53 buf->mz_chunk[i].mze_cd = 54 BSWAP_32(buf->mz_chunk[i].mze_cd); 55 } 56 } 57 58 void 59 zap_byteswap(void *buf, size_t size) 60 { 61 uint64_t block_type; 62 63 block_type = *(uint64_t *)buf; 64 65 switch (block_type) { 66 case ZBT_MICRO: 67 case BSWAP_64(ZBT_MICRO): 68 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 69 mzap_byteswap(buf, size); 70 return; 71 default: 72 ASSERT(size == (1<<ZAP_BLOCK_SHIFT)); 73 fzap_byteswap(buf, size); 74 return; 75 } 76 } 77 78 static int 79 mze_compare(const void *arg1, const void *arg2) 80 { 81 const mzap_ent_t *mze1 = arg1; 82 const mzap_ent_t *mze2 = arg2; 83 84 if (mze1->mze_hash > mze2->mze_hash) 85 return (+1); 86 if (mze1->mze_hash < mze2->mze_hash) 87 return (-1); 88 if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) 89 return (+1); 90 if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) 91 return (-1); 92 return (0); 93 } 94 95 static void 96 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) 97 { 98 mzap_ent_t *mze; 99 100 ASSERT(zap->zap_ismicro); 101 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 102 ASSERT(mzep->mze_cd < ZAP_MAXCD); 103 ASSERT3U(zap_hash(zap, mzep->mze_name), ==, hash); 104 105 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 106 mze->mze_chunkid = chunkid; 107 mze->mze_hash = hash; 108 mze->mze_phys = *mzep; 109 avl_add(&zap->zap_m.zap_avl, mze); 110 } 111 112 static mzap_ent_t * 113 mze_find(zap_t *zap, const char *name, uint64_t hash) 114 { 115 mzap_ent_t mze_tofind; 116 mzap_ent_t *mze; 117 avl_index_t idx; 118 avl_tree_t *avl = &zap->zap_m.zap_avl; 119 120 ASSERT(zap->zap_ismicro); 121 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 122 ASSERT3U(zap_hash(zap, name), ==, hash); 123 124 if (strlen(name) >= sizeof (mze_tofind.mze_phys.mze_name)) 125 return (NULL); 126 127 mze_tofind.mze_hash = hash; 128 mze_tofind.mze_phys.mze_cd = 0; 129 130 mze = avl_find(avl, &mze_tofind, &idx); 131 if (mze == NULL) 132 mze = avl_nearest(avl, idx, AVL_AFTER); 133 for (; mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 134 if (strcmp(name, mze->mze_phys.mze_name) == 0) 135 return (mze); 136 } 137 return (NULL); 138 } 139 140 static uint32_t 141 mze_find_unused_cd(zap_t *zap, uint64_t hash) 142 { 143 mzap_ent_t mze_tofind; 144 mzap_ent_t *mze; 145 avl_index_t idx; 146 avl_tree_t *avl = &zap->zap_m.zap_avl; 147 uint32_t cd; 148 149 ASSERT(zap->zap_ismicro); 150 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 151 152 mze_tofind.mze_hash = hash; 153 mze_tofind.mze_phys.mze_cd = 0; 154 155 cd = 0; 156 for (mze = avl_find(avl, &mze_tofind, &idx); 157 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 158 if (mze->mze_phys.mze_cd != cd) 159 break; 160 cd++; 161 } 162 163 return (cd); 164 } 165 166 static void 167 mze_remove(zap_t *zap, mzap_ent_t *mze) 168 { 169 ASSERT(zap->zap_ismicro); 170 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 171 172 avl_remove(&zap->zap_m.zap_avl, mze); 173 kmem_free(mze, sizeof (mzap_ent_t)); 174 } 175 176 static void 177 mze_destroy(zap_t *zap) 178 { 179 mzap_ent_t *mze; 180 void *avlcookie = NULL; 181 182 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 183 kmem_free(mze, sizeof (mzap_ent_t)); 184 avl_destroy(&zap->zap_m.zap_avl); 185 } 186 187 static zap_t * 188 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 189 { 190 zap_t *winner; 191 zap_t *zap; 192 int i; 193 194 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 195 196 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 197 rw_init(&zap->zap_rwlock, 0, 0, 0); 198 rw_enter(&zap->zap_rwlock, RW_WRITER); 199 zap->zap_objset = os; 200 zap->zap_object = obj; 201 zap->zap_dbuf = db; 202 203 if (((uint64_t *)db->db_data)[0] != ZBT_MICRO) { 204 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 205 } else { 206 zap->zap_ismicro = TRUE; 207 } 208 209 /* 210 * Make sure that zap_ismicro is set before we let others see 211 * it, because zap_lockdir() checks zap_ismicro without the lock 212 * held. 213 */ 214 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_pageout); 215 216 if (winner != NULL) { 217 kmem_free(zap, sizeof (zap_t)); 218 return (winner); 219 } 220 221 if (zap->zap_ismicro) { 222 zap->zap_salt = zap->zap_m.zap_phys->mz_salt; 223 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 224 avl_create(&zap->zap_m.zap_avl, mze_compare, 225 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 226 227 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 228 mzap_ent_phys_t *mze = 229 &zap->zap_m.zap_phys->mz_chunk[i]; 230 if (mze->mze_name[0]) { 231 zap->zap_m.zap_num_entries++; 232 mze_insert(zap, i, 233 zap_hash(zap, mze->mze_name), mze); 234 } 235 } 236 } else { 237 zap->zap_salt = zap->zap_f.zap_phys->zap_salt; 238 } 239 rw_exit(&zap->zap_rwlock); 240 return (zap); 241 } 242 243 int 244 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 245 krw_t lti, int fatreader, zap_t **zapp) 246 { 247 zap_t *zap; 248 dmu_buf_t *db; 249 krw_t lt; 250 int err; 251 252 *zapp = NULL; 253 254 db = dmu_buf_hold(os, obj, 0); 255 256 #ifdef ZFS_DEBUG 257 { 258 dmu_object_info_t doi; 259 dmu_object_info_from_db(db, &doi); 260 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 261 } 262 #endif 263 264 /* 265 * The zap can deal with EIO here, but its callers don't yet, so 266 * spare them by doing a mustsucceed read. 267 */ 268 dmu_buf_read(db); 269 270 zap = dmu_buf_get_user(db); 271 if (zap == NULL) 272 zap = mzap_open(os, obj, db); 273 274 /* 275 * We're checking zap_ismicro without the lock held, in order to 276 * tell what type of lock we want. Once we have some sort of 277 * lock, see if it really is the right type. In practice this 278 * can only be different if it was upgraded from micro to fat, 279 * and micro wanted WRITER but fat only needs READER. 280 */ 281 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 282 rw_enter(&zap->zap_rwlock, lt); 283 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 284 /* it was upgraded, now we only need reader */ 285 ASSERT(lt == RW_WRITER); 286 ASSERT(RW_READER == 287 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 288 rw_downgrade(&zap->zap_rwlock); 289 lt = RW_READER; 290 } 291 292 zap->zap_objset = os; 293 294 if (lt == RW_WRITER) 295 dmu_buf_will_dirty(db, tx); 296 297 ASSERT3P(zap->zap_dbuf, ==, db); 298 299 ASSERT(!zap->zap_ismicro || 300 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 301 if (zap->zap_ismicro && tx && 302 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 303 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 304 if (newsz > MZAP_MAX_BLKSZ) { 305 dprintf("upgrading obj %llu: num_entries=%u\n", 306 obj, zap->zap_m.zap_num_entries); 307 mzap_upgrade(zap, tx); 308 *zapp = zap; 309 return (0); 310 } 311 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 312 ASSERT3U(err, ==, 0); 313 zap->zap_m.zap_num_chunks = 314 db->db_size / MZAP_ENT_LEN - 1; 315 } 316 317 *zapp = zap; 318 return (0); 319 } 320 321 void 322 zap_unlockdir(zap_t *zap) 323 { 324 rw_exit(&zap->zap_rwlock); 325 dmu_buf_rele(zap->zap_dbuf); 326 } 327 328 static void 329 mzap_upgrade(zap_t *zap, dmu_tx_t *tx) 330 { 331 mzap_phys_t *mzp; 332 int i, sz, nchunks, err; 333 334 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 335 336 sz = zap->zap_dbuf->db_size; 337 mzp = kmem_alloc(sz, KM_SLEEP); 338 bcopy(zap->zap_dbuf->db_data, mzp, sz); 339 nchunks = zap->zap_m.zap_num_chunks; 340 341 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 342 1ULL << ZAP_BLOCK_SHIFT, 0, tx); 343 ASSERT(err == 0); 344 345 dprintf("upgrading obj=%llu with %u chunks\n", 346 zap->zap_object, nchunks); 347 mze_destroy(zap); 348 349 fzap_upgrade(zap, tx); 350 351 for (i = 0; i < nchunks; i++) { 352 int err; 353 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 354 if (mze->mze_name[0] == 0) 355 continue; 356 dprintf("adding %s=%llu\n", 357 mze->mze_name, mze->mze_value); 358 err = fzap_add_cd(zap, 359 mze->mze_name, 8, 1, &mze->mze_value, 360 mze->mze_cd, tx, NULL); 361 ASSERT3U(err, ==, 0); 362 } 363 kmem_free(mzp, sz); 364 } 365 366 uint64_t 367 zap_hash(zap_t *zap, const char *name) 368 { 369 const uint8_t *cp; 370 uint8_t c; 371 uint64_t crc = zap->zap_salt; 372 373 ASSERT(crc != 0); 374 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 375 for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++) 376 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF]; 377 378 /* 379 * Only use 28 bits, since we need 4 bits in the cookie for the 380 * collision differentiator. We MUST use the high bits, since 381 * those are the onces that we first pay attention to when 382 * chosing the bucket. 383 */ 384 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 385 386 return (crc); 387 } 388 389 390 static void 391 mzap_create_impl(objset_t *os, uint64_t obj, dmu_tx_t *tx) 392 { 393 dmu_buf_t *db; 394 mzap_phys_t *zp; 395 396 db = dmu_buf_hold(os, obj, 0); 397 398 #ifdef ZFS_DEBUG 399 { 400 dmu_object_info_t doi; 401 dmu_object_info_from_db(db, &doi); 402 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 403 } 404 #endif 405 406 dmu_buf_will_dirty(db, tx); 407 zp = db->db_data; 408 zp->mz_block_type = ZBT_MICRO; 409 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 410 ASSERT(zp->mz_salt != 0); 411 dmu_buf_rele(db); 412 } 413 414 int 415 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 416 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 417 { 418 int err; 419 420 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 421 if (err != 0) 422 return (err); 423 mzap_create_impl(os, obj, tx); 424 return (0); 425 } 426 427 uint64_t 428 zap_create(objset_t *os, dmu_object_type_t ot, 429 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 430 { 431 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 432 433 mzap_create_impl(os, obj, tx); 434 return (obj); 435 } 436 437 int 438 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 439 { 440 /* 441 * dmu_object_free will free the object number and free the 442 * data. Freeing the data will cause our pageout function to be 443 * called, which will destroy our data (zap_leaf_t's and zap_t). 444 */ 445 446 return (dmu_object_free(os, zapobj, tx)); 447 } 448 449 _NOTE(ARGSUSED(0)) 450 void 451 zap_pageout(dmu_buf_t *db, void *vmzap) 452 { 453 zap_t *zap = vmzap; 454 455 rw_destroy(&zap->zap_rwlock); 456 457 if (zap->zap_ismicro) { 458 mze_destroy(zap); 459 } 460 461 kmem_free(zap, sizeof (zap_t)); 462 } 463 464 465 int 466 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 467 { 468 zap_t *zap; 469 int err; 470 471 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 472 if (err) 473 return (err); 474 if (!zap->zap_ismicro) { 475 err = fzap_count(zap, count); 476 } else { 477 *count = zap->zap_m.zap_num_entries; 478 } 479 zap_unlockdir(zap); 480 return (err); 481 } 482 483 /* 484 * Routines for maniplulating attributes. 485 */ 486 487 int 488 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 489 uint64_t integer_size, uint64_t num_integers, void *buf) 490 { 491 zap_t *zap; 492 int err; 493 mzap_ent_t *mze; 494 495 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 496 if (err) 497 return (err); 498 if (!zap->zap_ismicro) { 499 err = fzap_lookup(zap, name, 500 integer_size, num_integers, buf); 501 } else { 502 mze = mze_find(zap, name, zap_hash(zap, name)); 503 if (mze == NULL) { 504 err = ENOENT; 505 } else { 506 if (num_integers < 1) 507 err = EOVERFLOW; 508 else if (integer_size != 8) 509 err = EINVAL; 510 else 511 *(uint64_t *)buf = mze->mze_phys.mze_value; 512 } 513 } 514 zap_unlockdir(zap); 515 return (err); 516 } 517 518 int 519 zap_length(objset_t *os, uint64_t zapobj, const char *name, 520 uint64_t *integer_size, uint64_t *num_integers) 521 { 522 zap_t *zap; 523 int err; 524 mzap_ent_t *mze; 525 526 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 527 if (err) 528 return (err); 529 if (!zap->zap_ismicro) { 530 err = fzap_length(zap, name, integer_size, num_integers); 531 } else { 532 mze = mze_find(zap, name, zap_hash(zap, name)); 533 if (mze == NULL) { 534 err = ENOENT; 535 } else { 536 if (integer_size) 537 *integer_size = 8; 538 if (num_integers) 539 *num_integers = 1; 540 } 541 } 542 zap_unlockdir(zap); 543 return (err); 544 } 545 546 static void 547 mzap_addent(zap_t *zap, const char *name, uint64_t hash, uint64_t value) 548 { 549 int i; 550 int start = zap->zap_m.zap_alloc_next; 551 uint32_t cd; 552 553 dprintf("obj=%llu %s=%llu\n", zap->zap_object, name, value); 554 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 555 556 #ifdef ZFS_DEBUG 557 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 558 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 559 ASSERT(strcmp(name, mze->mze_name) != 0); 560 } 561 #endif 562 563 cd = mze_find_unused_cd(zap, hash); 564 /* given the limited size of the microzap, this can't happen */ 565 ASSERT(cd != ZAP_MAXCD); 566 567 again: 568 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 569 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 570 if (mze->mze_name[0] == 0) { 571 mze->mze_value = value; 572 mze->mze_cd = cd; 573 (void) strcpy(mze->mze_name, name); 574 zap->zap_m.zap_num_entries++; 575 zap->zap_m.zap_alloc_next = i+1; 576 if (zap->zap_m.zap_alloc_next == 577 zap->zap_m.zap_num_chunks) 578 zap->zap_m.zap_alloc_next = 0; 579 mze_insert(zap, i, hash, mze); 580 return; 581 } 582 } 583 if (start != 0) { 584 start = 0; 585 goto again; 586 } 587 ASSERT(!"out of entries!"); 588 } 589 590 int 591 zap_add(objset_t *os, uint64_t zapobj, const char *name, 592 int integer_size, uint64_t num_integers, 593 const void *val, dmu_tx_t *tx) 594 { 595 zap_t *zap; 596 int err; 597 mzap_ent_t *mze; 598 const uint64_t *intval = val; 599 uint64_t hash; 600 601 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 602 if (err) 603 return (err); 604 if (!zap->zap_ismicro) { 605 err = fzap_add(zap, name, integer_size, num_integers, val, tx); 606 } else if (integer_size != 8 || num_integers != 1 || 607 strlen(name) >= MZAP_NAME_LEN) { 608 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 609 zapobj, integer_size, num_integers, name); 610 mzap_upgrade(zap, tx); 611 err = fzap_add(zap, name, integer_size, num_integers, val, tx); 612 } else { 613 hash = zap_hash(zap, name); 614 mze = mze_find(zap, name, hash); 615 if (mze != NULL) { 616 err = EEXIST; 617 } else { 618 mzap_addent(zap, name, hash, *intval); 619 } 620 } 621 zap_unlockdir(zap); 622 return (err); 623 } 624 625 int 626 zap_update(objset_t *os, uint64_t zapobj, const char *name, 627 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 628 { 629 zap_t *zap; 630 mzap_ent_t *mze; 631 const uint64_t *intval = val; 632 uint64_t hash; 633 int err; 634 635 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 636 if (err) 637 return (err); 638 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 639 if (!zap->zap_ismicro) { 640 err = fzap_update(zap, name, 641 integer_size, num_integers, val, tx); 642 } else if (integer_size != 8 || num_integers != 1 || 643 strlen(name) >= MZAP_NAME_LEN) { 644 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 645 zapobj, integer_size, num_integers, name); 646 mzap_upgrade(zap, tx); 647 err = fzap_update(zap, name, 648 integer_size, num_integers, val, tx); 649 } else { 650 hash = zap_hash(zap, name); 651 mze = mze_find(zap, name, hash); 652 if (mze != NULL) { 653 mze->mze_phys.mze_value = *intval; 654 zap->zap_m.zap_phys->mz_chunk 655 [mze->mze_chunkid].mze_value = *intval; 656 } else { 657 mzap_addent(zap, name, hash, *intval); 658 } 659 } 660 zap_unlockdir(zap); 661 return (0); 662 } 663 664 int 665 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 666 { 667 zap_t *zap; 668 int err; 669 mzap_ent_t *mze; 670 671 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 672 if (err) 673 return (err); 674 if (!zap->zap_ismicro) { 675 err = fzap_remove(zap, name, tx); 676 } else { 677 mze = mze_find(zap, name, zap_hash(zap, name)); 678 if (mze == NULL) { 679 dprintf("fail: %s\n", name); 680 err = ENOENT; 681 } else { 682 dprintf("success: %s\n", name); 683 zap->zap_m.zap_num_entries--; 684 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 685 sizeof (mzap_ent_phys_t)); 686 mze_remove(zap, mze); 687 } 688 } 689 zap_unlockdir(zap); 690 return (err); 691 } 692 693 694 /* 695 * Routines for iterating over the attributes. 696 */ 697 698 /* 699 * We want to keep the high 32 bits of the cursor zero if we can, so 700 * that 32-bit programs can access this. So use a small hash value so 701 * we can fit 4 bits of cd into the 32-bit cursor. 702 * 703 * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ] 704 */ 705 void 706 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 707 uint64_t serialized) 708 { 709 zc->zc_objset = os; 710 zc->zc_zap = NULL; 711 zc->zc_leaf = NULL; 712 zc->zc_zapobj = zapobj; 713 if (serialized == -1ULL) { 714 zc->zc_hash = -1ULL; 715 zc->zc_cd = 0; 716 } else { 717 zc->zc_hash = serialized << (64-ZAP_HASHBITS); 718 zc->zc_cd = serialized >> ZAP_HASHBITS; 719 if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */ 720 zc->zc_cd = 0; 721 } 722 } 723 724 void 725 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 726 { 727 zap_cursor_init_serialized(zc, os, zapobj, 0); 728 } 729 730 void 731 zap_cursor_fini(zap_cursor_t *zc) 732 { 733 if (zc->zc_zap) { 734 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 735 zap_unlockdir(zc->zc_zap); 736 zc->zc_zap = NULL; 737 } 738 if (zc->zc_leaf) { 739 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 740 zap_put_leaf(zc->zc_leaf); 741 zc->zc_leaf = NULL; 742 } 743 zc->zc_objset = NULL; 744 } 745 746 uint64_t 747 zap_cursor_serialize(zap_cursor_t *zc) 748 { 749 if (zc->zc_hash == -1ULL) 750 return (-1ULL); 751 ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0); 752 ASSERT(zc->zc_cd < ZAP_MAXCD); 753 return ((zc->zc_hash >> (64-ZAP_HASHBITS)) | 754 ((uint64_t)zc->zc_cd << ZAP_HASHBITS)); 755 } 756 757 int 758 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 759 { 760 int err; 761 avl_index_t idx; 762 mzap_ent_t mze_tofind; 763 mzap_ent_t *mze; 764 765 if (zc->zc_hash == -1ULL) 766 return (ENOENT); 767 768 if (zc->zc_zap == NULL) { 769 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 770 RW_READER, TRUE, &zc->zc_zap); 771 if (err) 772 return (err); 773 } else { 774 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 775 } 776 if (!zc->zc_zap->zap_ismicro) { 777 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 778 } else { 779 err = ENOENT; 780 781 mze_tofind.mze_hash = zc->zc_hash; 782 mze_tofind.mze_phys.mze_cd = zc->zc_cd; 783 784 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 785 ASSERT(mze == NULL || 0 == bcmp(&mze->mze_phys, 786 &zc->zc_zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 787 sizeof (mze->mze_phys))); 788 if (mze == NULL) { 789 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 790 idx, AVL_AFTER); 791 } 792 if (mze) { 793 za->za_integer_length = 8; 794 za->za_num_integers = 1; 795 za->za_first_integer = mze->mze_phys.mze_value; 796 (void) strcpy(za->za_name, mze->mze_phys.mze_name); 797 zc->zc_hash = mze->mze_hash; 798 zc->zc_cd = mze->mze_phys.mze_cd; 799 err = 0; 800 } else { 801 zc->zc_hash = -1ULL; 802 } 803 } 804 rw_exit(&zc->zc_zap->zap_rwlock); 805 return (err); 806 } 807 808 void 809 zap_cursor_advance(zap_cursor_t *zc) 810 { 811 if (zc->zc_hash == -1ULL) 812 return; 813 zc->zc_cd++; 814 if (zc->zc_cd >= ZAP_MAXCD) { 815 zc->zc_cd = 0; 816 zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS); 817 if (zc->zc_hash == 0) /* EOF */ 818 zc->zc_hash = -1ULL; 819 } 820 } 821 822 int 823 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 824 { 825 int err; 826 zap_t *zap; 827 828 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 829 if (err) 830 return (err); 831 832 bzero(zs, sizeof (zap_stats_t)); 833 834 if (zap->zap_ismicro) { 835 zs->zs_blocksize = zap->zap_dbuf->db_size; 836 zs->zs_num_entries = zap->zap_m.zap_num_entries; 837 zs->zs_num_blocks = 1; 838 } else { 839 fzap_get_stats(zap, zs); 840 } 841 zap_unlockdir(zap); 842 return (0); 843 } 844