1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zfs_context.h> 31 #include <sys/zap.h> 32 #include <sys/refcount.h> 33 #include <sys/zap_impl.h> 34 #include <sys/zap_leaf.h> 35 #include <sys/avl.h> 36 37 38 static void mzap_upgrade(zap_t *zap, dmu_tx_t *tx); 39 40 41 static void 42 mzap_byteswap(mzap_phys_t *buf, size_t size) 43 { 44 int i, max; 45 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 46 buf->mz_salt = BSWAP_64(buf->mz_salt); 47 max = (size / MZAP_ENT_LEN) - 1; 48 for (i = 0; i < max; i++) { 49 buf->mz_chunk[i].mze_value = 50 BSWAP_64(buf->mz_chunk[i].mze_value); 51 buf->mz_chunk[i].mze_cd = 52 BSWAP_32(buf->mz_chunk[i].mze_cd); 53 } 54 } 55 56 void 57 zap_byteswap(void *buf, size_t size) 58 { 59 uint64_t block_type; 60 61 block_type = *(uint64_t *)buf; 62 63 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 64 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 65 mzap_byteswap(buf, size); 66 } else { 67 fzap_byteswap(buf, size); 68 } 69 } 70 71 static int 72 mze_compare(const void *arg1, const void *arg2) 73 { 74 const mzap_ent_t *mze1 = arg1; 75 const mzap_ent_t *mze2 = arg2; 76 77 if (mze1->mze_hash > mze2->mze_hash) 78 return (+1); 79 if (mze1->mze_hash < mze2->mze_hash) 80 return (-1); 81 if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) 82 return (+1); 83 if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) 84 return (-1); 85 return (0); 86 } 87 88 static void 89 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) 90 { 91 mzap_ent_t *mze; 92 93 ASSERT(zap->zap_ismicro); 94 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 95 ASSERT(mzep->mze_cd < ZAP_MAXCD); 96 ASSERT3U(zap_hash(zap, mzep->mze_name), ==, hash); 97 98 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 99 mze->mze_chunkid = chunkid; 100 mze->mze_hash = hash; 101 mze->mze_phys = *mzep; 102 avl_add(&zap->zap_m.zap_avl, mze); 103 } 104 105 static mzap_ent_t * 106 mze_find(zap_t *zap, const char *name, uint64_t hash) 107 { 108 mzap_ent_t mze_tofind; 109 mzap_ent_t *mze; 110 avl_index_t idx; 111 avl_tree_t *avl = &zap->zap_m.zap_avl; 112 113 ASSERT(zap->zap_ismicro); 114 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 115 ASSERT3U(zap_hash(zap, name), ==, hash); 116 117 if (strlen(name) >= sizeof (mze_tofind.mze_phys.mze_name)) 118 return (NULL); 119 120 mze_tofind.mze_hash = hash; 121 mze_tofind.mze_phys.mze_cd = 0; 122 123 mze = avl_find(avl, &mze_tofind, &idx); 124 if (mze == NULL) 125 mze = avl_nearest(avl, idx, AVL_AFTER); 126 for (; mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 127 if (strcmp(name, mze->mze_phys.mze_name) == 0) 128 return (mze); 129 } 130 return (NULL); 131 } 132 133 static uint32_t 134 mze_find_unused_cd(zap_t *zap, uint64_t hash) 135 { 136 mzap_ent_t mze_tofind; 137 mzap_ent_t *mze; 138 avl_index_t idx; 139 avl_tree_t *avl = &zap->zap_m.zap_avl; 140 uint32_t cd; 141 142 ASSERT(zap->zap_ismicro); 143 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 144 145 mze_tofind.mze_hash = hash; 146 mze_tofind.mze_phys.mze_cd = 0; 147 148 cd = 0; 149 for (mze = avl_find(avl, &mze_tofind, &idx); 150 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 151 if (mze->mze_phys.mze_cd != cd) 152 break; 153 cd++; 154 } 155 156 return (cd); 157 } 158 159 static void 160 mze_remove(zap_t *zap, mzap_ent_t *mze) 161 { 162 ASSERT(zap->zap_ismicro); 163 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 164 165 avl_remove(&zap->zap_m.zap_avl, mze); 166 kmem_free(mze, sizeof (mzap_ent_t)); 167 } 168 169 static void 170 mze_destroy(zap_t *zap) 171 { 172 mzap_ent_t *mze; 173 void *avlcookie = NULL; 174 175 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 176 kmem_free(mze, sizeof (mzap_ent_t)); 177 avl_destroy(&zap->zap_m.zap_avl); 178 } 179 180 static zap_t * 181 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 182 { 183 zap_t *winner; 184 zap_t *zap; 185 int i; 186 187 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 188 189 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 190 rw_init(&zap->zap_rwlock, 0, 0, 0); 191 rw_enter(&zap->zap_rwlock, RW_WRITER); 192 zap->zap_objset = os; 193 zap->zap_object = obj; 194 zap->zap_dbuf = db; 195 196 if (((uint64_t *)db->db_data)[0] != ZBT_MICRO) { 197 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 198 zap->zap_f.zap_block_shift = highbit(db->db_size) - 1; 199 } else { 200 zap->zap_ismicro = TRUE; 201 } 202 203 /* 204 * Make sure that zap_ismicro is set before we let others see 205 * it, because zap_lockdir() checks zap_ismicro without the lock 206 * held. 207 */ 208 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); 209 210 if (winner != NULL) { 211 kmem_free(zap, sizeof (zap_t)); 212 return (winner); 213 } 214 215 if (zap->zap_ismicro) { 216 zap->zap_salt = zap->zap_m.zap_phys->mz_salt; 217 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 218 avl_create(&zap->zap_m.zap_avl, mze_compare, 219 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 220 221 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 222 mzap_ent_phys_t *mze = 223 &zap->zap_m.zap_phys->mz_chunk[i]; 224 if (mze->mze_name[0]) { 225 zap->zap_m.zap_num_entries++; 226 mze_insert(zap, i, 227 zap_hash(zap, mze->mze_name), mze); 228 } 229 } 230 } else { 231 zap->zap_salt = zap->zap_f.zap_phys->zap_salt; 232 233 ASSERT3U(sizeof (struct zap_leaf_header), ==, 234 2*ZAP_LEAF_CHUNKSIZE); 235 236 /* 237 * The embedded pointer table should not overlap the 238 * other members. 239 */ 240 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 241 &zap->zap_f.zap_phys->zap_salt); 242 243 /* 244 * The embedded pointer table should end at the end of 245 * the block 246 */ 247 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 248 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 249 (uintptr_t)zap->zap_f.zap_phys, ==, 250 zap->zap_dbuf->db_size); 251 } 252 rw_exit(&zap->zap_rwlock); 253 return (zap); 254 } 255 256 int 257 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 258 krw_t lti, int fatreader, zap_t **zapp) 259 { 260 zap_t *zap; 261 dmu_buf_t *db; 262 krw_t lt; 263 int err; 264 265 *zapp = NULL; 266 267 err = dmu_buf_hold(os, obj, 0, NULL, &db); 268 if (err) 269 return (err); 270 271 #ifdef ZFS_DEBUG 272 { 273 dmu_object_info_t doi; 274 dmu_object_info_from_db(db, &doi); 275 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 276 } 277 #endif 278 279 zap = dmu_buf_get_user(db); 280 if (zap == NULL) 281 zap = mzap_open(os, obj, db); 282 283 /* 284 * We're checking zap_ismicro without the lock held, in order to 285 * tell what type of lock we want. Once we have some sort of 286 * lock, see if it really is the right type. In practice this 287 * can only be different if it was upgraded from micro to fat, 288 * and micro wanted WRITER but fat only needs READER. 289 */ 290 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 291 rw_enter(&zap->zap_rwlock, lt); 292 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 293 /* it was upgraded, now we only need reader */ 294 ASSERT(lt == RW_WRITER); 295 ASSERT(RW_READER == 296 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 297 rw_downgrade(&zap->zap_rwlock); 298 lt = RW_READER; 299 } 300 301 zap->zap_objset = os; 302 303 if (lt == RW_WRITER) 304 dmu_buf_will_dirty(db, tx); 305 306 ASSERT3P(zap->zap_dbuf, ==, db); 307 308 ASSERT(!zap->zap_ismicro || 309 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 310 if (zap->zap_ismicro && tx && 311 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 312 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 313 if (newsz > MZAP_MAX_BLKSZ) { 314 dprintf("upgrading obj %llu: num_entries=%u\n", 315 obj, zap->zap_m.zap_num_entries); 316 mzap_upgrade(zap, tx); 317 *zapp = zap; 318 return (0); 319 } 320 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 321 ASSERT3U(err, ==, 0); 322 zap->zap_m.zap_num_chunks = 323 db->db_size / MZAP_ENT_LEN - 1; 324 } 325 326 *zapp = zap; 327 return (0); 328 } 329 330 void 331 zap_unlockdir(zap_t *zap) 332 { 333 rw_exit(&zap->zap_rwlock); 334 dmu_buf_rele(zap->zap_dbuf, NULL); 335 } 336 337 static void 338 mzap_upgrade(zap_t *zap, dmu_tx_t *tx) 339 { 340 mzap_phys_t *mzp; 341 int i, sz, nchunks, err; 342 343 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 344 345 sz = zap->zap_dbuf->db_size; 346 mzp = kmem_alloc(sz, KM_SLEEP); 347 bcopy(zap->zap_dbuf->db_data, mzp, sz); 348 nchunks = zap->zap_m.zap_num_chunks; 349 350 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 351 1ULL << fzap_default_block_shift, 0, tx); 352 ASSERT(err == 0); 353 354 dprintf("upgrading obj=%llu with %u chunks\n", 355 zap->zap_object, nchunks); 356 mze_destroy(zap); 357 358 fzap_upgrade(zap, tx); 359 360 for (i = 0; i < nchunks; i++) { 361 int err; 362 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 363 if (mze->mze_name[0] == 0) 364 continue; 365 dprintf("adding %s=%llu\n", 366 mze->mze_name, mze->mze_value); 367 err = fzap_add_cd(zap, 368 mze->mze_name, 8, 1, &mze->mze_value, 369 mze->mze_cd, tx); 370 ASSERT3U(err, ==, 0); 371 } 372 kmem_free(mzp, sz); 373 } 374 375 uint64_t 376 zap_hash(zap_t *zap, const char *name) 377 { 378 const uint8_t *cp; 379 uint8_t c; 380 uint64_t crc = zap->zap_salt; 381 382 ASSERT(crc != 0); 383 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 384 for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++) 385 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF]; 386 387 /* 388 * Only use 28 bits, since we need 4 bits in the cookie for the 389 * collision differentiator. We MUST use the high bits, since 390 * those are the onces that we first pay attention to when 391 * chosing the bucket. 392 */ 393 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 394 395 return (crc); 396 } 397 398 399 static void 400 mzap_create_impl(objset_t *os, uint64_t obj, dmu_tx_t *tx) 401 { 402 dmu_buf_t *db; 403 mzap_phys_t *zp; 404 405 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db)); 406 407 #ifdef ZFS_DEBUG 408 { 409 dmu_object_info_t doi; 410 dmu_object_info_from_db(db, &doi); 411 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 412 } 413 #endif 414 415 dmu_buf_will_dirty(db, tx); 416 zp = db->db_data; 417 zp->mz_block_type = ZBT_MICRO; 418 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 419 ASSERT(zp->mz_salt != 0); 420 dmu_buf_rele(db, FTAG); 421 } 422 423 int 424 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 425 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 426 { 427 int err; 428 429 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 430 if (err != 0) 431 return (err); 432 mzap_create_impl(os, obj, tx); 433 return (0); 434 } 435 436 uint64_t 437 zap_create(objset_t *os, dmu_object_type_t ot, 438 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 439 { 440 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 441 442 mzap_create_impl(os, obj, tx); 443 return (obj); 444 } 445 446 int 447 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 448 { 449 /* 450 * dmu_object_free will free the object number and free the 451 * data. Freeing the data will cause our pageout function to be 452 * called, which will destroy our data (zap_leaf_t's and zap_t). 453 */ 454 455 return (dmu_object_free(os, zapobj, tx)); 456 } 457 458 _NOTE(ARGSUSED(0)) 459 void 460 zap_evict(dmu_buf_t *db, void *vzap) 461 { 462 zap_t *zap = vzap; 463 464 rw_destroy(&zap->zap_rwlock); 465 466 if (zap->zap_ismicro) 467 mze_destroy(zap); 468 469 kmem_free(zap, sizeof (zap_t)); 470 } 471 472 int 473 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 474 { 475 zap_t *zap; 476 int err; 477 478 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 479 if (err) 480 return (err); 481 if (!zap->zap_ismicro) { 482 err = fzap_count(zap, count); 483 } else { 484 *count = zap->zap_m.zap_num_entries; 485 } 486 zap_unlockdir(zap); 487 return (err); 488 } 489 490 /* 491 * Routines for maniplulating attributes. 492 */ 493 494 int 495 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 496 uint64_t integer_size, uint64_t num_integers, void *buf) 497 { 498 zap_t *zap; 499 int err; 500 mzap_ent_t *mze; 501 502 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 503 if (err) 504 return (err); 505 if (!zap->zap_ismicro) { 506 err = fzap_lookup(zap, name, 507 integer_size, num_integers, buf); 508 } else { 509 mze = mze_find(zap, name, zap_hash(zap, name)); 510 if (mze == NULL) { 511 err = ENOENT; 512 } else { 513 if (num_integers < 1) 514 err = EOVERFLOW; 515 else if (integer_size != 8) 516 err = EINVAL; 517 else 518 *(uint64_t *)buf = mze->mze_phys.mze_value; 519 } 520 } 521 zap_unlockdir(zap); 522 return (err); 523 } 524 525 int 526 zap_length(objset_t *os, uint64_t zapobj, const char *name, 527 uint64_t *integer_size, uint64_t *num_integers) 528 { 529 zap_t *zap; 530 int err; 531 mzap_ent_t *mze; 532 533 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 534 if (err) 535 return (err); 536 if (!zap->zap_ismicro) { 537 err = fzap_length(zap, name, integer_size, num_integers); 538 } else { 539 mze = mze_find(zap, name, zap_hash(zap, name)); 540 if (mze == NULL) { 541 err = ENOENT; 542 } else { 543 if (integer_size) 544 *integer_size = 8; 545 if (num_integers) 546 *num_integers = 1; 547 } 548 } 549 zap_unlockdir(zap); 550 return (err); 551 } 552 553 static void 554 mzap_addent(zap_t *zap, const char *name, uint64_t hash, uint64_t value) 555 { 556 int i; 557 int start = zap->zap_m.zap_alloc_next; 558 uint32_t cd; 559 560 dprintf("obj=%llu %s=%llu\n", zap->zap_object, name, value); 561 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 562 563 #ifdef ZFS_DEBUG 564 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 565 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 566 ASSERT(strcmp(name, mze->mze_name) != 0); 567 } 568 #endif 569 570 cd = mze_find_unused_cd(zap, hash); 571 /* given the limited size of the microzap, this can't happen */ 572 ASSERT(cd != ZAP_MAXCD); 573 574 again: 575 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 576 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 577 if (mze->mze_name[0] == 0) { 578 mze->mze_value = value; 579 mze->mze_cd = cd; 580 (void) strcpy(mze->mze_name, name); 581 zap->zap_m.zap_num_entries++; 582 zap->zap_m.zap_alloc_next = i+1; 583 if (zap->zap_m.zap_alloc_next == 584 zap->zap_m.zap_num_chunks) 585 zap->zap_m.zap_alloc_next = 0; 586 mze_insert(zap, i, hash, mze); 587 return; 588 } 589 } 590 if (start != 0) { 591 start = 0; 592 goto again; 593 } 594 ASSERT(!"out of entries!"); 595 } 596 597 int 598 zap_add(objset_t *os, uint64_t zapobj, const char *name, 599 int integer_size, uint64_t num_integers, 600 const void *val, dmu_tx_t *tx) 601 { 602 zap_t *zap; 603 int err; 604 mzap_ent_t *mze; 605 const uint64_t *intval = val; 606 uint64_t hash; 607 608 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 609 if (err) 610 return (err); 611 if (!zap->zap_ismicro) { 612 err = fzap_add(zap, name, integer_size, num_integers, val, tx); 613 } else if (integer_size != 8 || num_integers != 1 || 614 strlen(name) >= MZAP_NAME_LEN) { 615 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 616 zapobj, integer_size, num_integers, name); 617 mzap_upgrade(zap, tx); 618 err = fzap_add(zap, name, integer_size, num_integers, val, tx); 619 } else { 620 hash = zap_hash(zap, name); 621 mze = mze_find(zap, name, hash); 622 if (mze != NULL) { 623 err = EEXIST; 624 } else { 625 mzap_addent(zap, name, hash, *intval); 626 } 627 } 628 zap_unlockdir(zap); 629 return (err); 630 } 631 632 int 633 zap_update(objset_t *os, uint64_t zapobj, const char *name, 634 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 635 { 636 zap_t *zap; 637 mzap_ent_t *mze; 638 const uint64_t *intval = val; 639 uint64_t hash; 640 int err; 641 642 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 643 if (err) 644 return (err); 645 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 646 if (!zap->zap_ismicro) { 647 err = fzap_update(zap, name, 648 integer_size, num_integers, val, tx); 649 } else if (integer_size != 8 || num_integers != 1 || 650 strlen(name) >= MZAP_NAME_LEN) { 651 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 652 zapobj, integer_size, num_integers, name); 653 mzap_upgrade(zap, tx); 654 err = fzap_update(zap, name, 655 integer_size, num_integers, val, tx); 656 } else { 657 hash = zap_hash(zap, name); 658 mze = mze_find(zap, name, hash); 659 if (mze != NULL) { 660 mze->mze_phys.mze_value = *intval; 661 zap->zap_m.zap_phys->mz_chunk 662 [mze->mze_chunkid].mze_value = *intval; 663 } else { 664 mzap_addent(zap, name, hash, *intval); 665 } 666 } 667 zap_unlockdir(zap); 668 return (err); 669 } 670 671 int 672 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 673 { 674 zap_t *zap; 675 int err; 676 mzap_ent_t *mze; 677 678 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap); 679 if (err) 680 return (err); 681 if (!zap->zap_ismicro) { 682 err = fzap_remove(zap, name, tx); 683 } else { 684 mze = mze_find(zap, name, zap_hash(zap, name)); 685 if (mze == NULL) { 686 dprintf("fail: %s\n", name); 687 err = ENOENT; 688 } else { 689 dprintf("success: %s\n", name); 690 zap->zap_m.zap_num_entries--; 691 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 692 sizeof (mzap_ent_phys_t)); 693 mze_remove(zap, mze); 694 } 695 } 696 zap_unlockdir(zap); 697 return (err); 698 } 699 700 701 /* 702 * Routines for iterating over the attributes. 703 */ 704 705 /* 706 * We want to keep the high 32 bits of the cursor zero if we can, so 707 * that 32-bit programs can access this. So use a small hash value so 708 * we can fit 4 bits of cd into the 32-bit cursor. 709 * 710 * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ] 711 */ 712 void 713 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 714 uint64_t serialized) 715 { 716 zc->zc_objset = os; 717 zc->zc_zap = NULL; 718 zc->zc_leaf = NULL; 719 zc->zc_zapobj = zapobj; 720 if (serialized == -1ULL) { 721 zc->zc_hash = -1ULL; 722 zc->zc_cd = 0; 723 } else { 724 zc->zc_hash = serialized << (64-ZAP_HASHBITS); 725 zc->zc_cd = serialized >> ZAP_HASHBITS; 726 if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */ 727 zc->zc_cd = 0; 728 } 729 } 730 731 void 732 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 733 { 734 zap_cursor_init_serialized(zc, os, zapobj, 0); 735 } 736 737 void 738 zap_cursor_fini(zap_cursor_t *zc) 739 { 740 if (zc->zc_zap) { 741 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 742 zap_unlockdir(zc->zc_zap); 743 zc->zc_zap = NULL; 744 } 745 if (zc->zc_leaf) { 746 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 747 zap_put_leaf(zc->zc_leaf); 748 zc->zc_leaf = NULL; 749 } 750 zc->zc_objset = NULL; 751 } 752 753 uint64_t 754 zap_cursor_serialize(zap_cursor_t *zc) 755 { 756 if (zc->zc_hash == -1ULL) 757 return (-1ULL); 758 ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0); 759 ASSERT(zc->zc_cd < ZAP_MAXCD); 760 return ((zc->zc_hash >> (64-ZAP_HASHBITS)) | 761 ((uint64_t)zc->zc_cd << ZAP_HASHBITS)); 762 } 763 764 int 765 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 766 { 767 int err; 768 avl_index_t idx; 769 mzap_ent_t mze_tofind; 770 mzap_ent_t *mze; 771 772 if (zc->zc_hash == -1ULL) 773 return (ENOENT); 774 775 if (zc->zc_zap == NULL) { 776 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 777 RW_READER, TRUE, &zc->zc_zap); 778 if (err) 779 return (err); 780 } else { 781 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 782 } 783 if (!zc->zc_zap->zap_ismicro) { 784 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 785 } else { 786 err = ENOENT; 787 788 mze_tofind.mze_hash = zc->zc_hash; 789 mze_tofind.mze_phys.mze_cd = zc->zc_cd; 790 791 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 792 ASSERT(mze == NULL || 0 == bcmp(&mze->mze_phys, 793 &zc->zc_zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 794 sizeof (mze->mze_phys))); 795 if (mze == NULL) { 796 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 797 idx, AVL_AFTER); 798 } 799 if (mze) { 800 za->za_integer_length = 8; 801 za->za_num_integers = 1; 802 za->za_first_integer = mze->mze_phys.mze_value; 803 (void) strcpy(za->za_name, mze->mze_phys.mze_name); 804 zc->zc_hash = mze->mze_hash; 805 zc->zc_cd = mze->mze_phys.mze_cd; 806 err = 0; 807 } else { 808 zc->zc_hash = -1ULL; 809 } 810 } 811 rw_exit(&zc->zc_zap->zap_rwlock); 812 return (err); 813 } 814 815 void 816 zap_cursor_advance(zap_cursor_t *zc) 817 { 818 if (zc->zc_hash == -1ULL) 819 return; 820 zc->zc_cd++; 821 if (zc->zc_cd >= ZAP_MAXCD) { 822 zc->zc_cd = 0; 823 zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS); 824 if (zc->zc_hash == 0) /* EOF */ 825 zc->zc_hash = -1ULL; 826 } 827 } 828 829 int 830 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 831 { 832 int err; 833 zap_t *zap; 834 835 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap); 836 if (err) 837 return (err); 838 839 bzero(zs, sizeof (zap_stats_t)); 840 841 if (zap->zap_ismicro) { 842 zs->zs_blocksize = zap->zap_dbuf->db_size; 843 zs->zs_num_entries = zap->zap_m.zap_num_entries; 844 zs->zs_num_blocks = 1; 845 } else { 846 fzap_get_stats(zap, zs); 847 } 848 zap_unlockdir(zap); 849 return (0); 850 } 851