xref: /titanic_41/usr/src/uts/common/fs/zfs/zap_micro.c (revision 3b130e0a496138cdbe9e8aab0c1003faf847cf5b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zio.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zfs_context.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 #include <sys/arc.h>
36 
37 #ifdef _KERNEL
38 #include <sys/sunddi.h>
39 #endif
40 
41 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
42 
43 uint64_t
44 zap_getflags(zap_t *zap)
45 {
46 	if (zap->zap_ismicro)
47 		return (0);
48 	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
49 }
50 
51 int
52 zap_hashbits(zap_t *zap)
53 {
54 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
55 		return (48);
56 	else
57 		return (28);
58 }
59 
60 uint32_t
61 zap_maxcd(zap_t *zap)
62 {
63 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
64 		return ((1<<16)-1);
65 	else
66 		return (-1U);
67 }
68 
69 static uint64_t
70 zap_hash(zap_name_t *zn)
71 {
72 	zap_t *zap = zn->zn_zap;
73 	uint64_t h = 0;
74 
75 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
76 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
77 		h = *(uint64_t *)zn->zn_key_orig;
78 	} else {
79 		h = zap->zap_salt;
80 		ASSERT(h != 0);
81 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
82 
83 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
84 			int i;
85 			const uint64_t *wp = zn->zn_key_norm;
86 
87 			ASSERT(zn->zn_key_intlen == 8);
88 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
89 				int j;
90 				uint64_t word = *wp;
91 
92 				for (j = 0; j < zn->zn_key_intlen; j++) {
93 					h = (h >> 8) ^
94 					    zfs_crc64_table[(h ^ word) & 0xFF];
95 					word >>= NBBY;
96 				}
97 			}
98 		} else {
99 			int i, len;
100 			const uint8_t *cp = zn->zn_key_norm;
101 
102 			/*
103 			 * We previously stored the terminating null on
104 			 * disk, but didn't hash it, so we need to
105 			 * continue to not hash it.  (The
106 			 * zn_key_*_numints includes the terminating
107 			 * null for non-binary keys.)
108 			 */
109 			len = zn->zn_key_norm_numints - 1;
110 
111 			ASSERT(zn->zn_key_intlen == 1);
112 			for (i = 0; i < len; cp++, i++) {
113 				h = (h >> 8) ^
114 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
115 			}
116 		}
117 	}
118 	/*
119 	 * Don't use all 64 bits, since we need some in the cookie for
120 	 * the collision differentiator.  We MUST use the high bits,
121 	 * since those are the ones that we first pay attention to when
122 	 * chosing the bucket.
123 	 */
124 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
125 
126 	return (h);
127 }
128 
129 static int
130 zap_normalize(zap_t *zap, const char *name, char *namenorm)
131 {
132 	size_t inlen, outlen;
133 	int err;
134 
135 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
136 
137 	inlen = strlen(name) + 1;
138 	outlen = ZAP_MAXNAMELEN;
139 
140 	err = 0;
141 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
142 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
143 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
144 
145 	return (err);
146 }
147 
148 boolean_t
149 zap_match(zap_name_t *zn, const char *matchname)
150 {
151 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
152 
153 	if (zn->zn_matchtype == MT_FIRST) {
154 		char norm[ZAP_MAXNAMELEN];
155 
156 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
157 			return (B_FALSE);
158 
159 		return (strcmp(zn->zn_key_norm, norm) == 0);
160 	} else {
161 		/* MT_BEST or MT_EXACT */
162 		return (strcmp(zn->zn_key_orig, matchname) == 0);
163 	}
164 }
165 
166 void
167 zap_name_free(zap_name_t *zn)
168 {
169 	kmem_free(zn, sizeof (zap_name_t));
170 }
171 
172 zap_name_t *
173 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
174 {
175 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
176 
177 	zn->zn_zap = zap;
178 	zn->zn_key_intlen = sizeof (*key);
179 	zn->zn_key_orig = key;
180 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
181 	zn->zn_matchtype = mt;
182 	if (zap->zap_normflags) {
183 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
184 			zap_name_free(zn);
185 			return (NULL);
186 		}
187 		zn->zn_key_norm = zn->zn_normbuf;
188 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
189 	} else {
190 		if (mt != MT_EXACT) {
191 			zap_name_free(zn);
192 			return (NULL);
193 		}
194 		zn->zn_key_norm = zn->zn_key_orig;
195 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
196 	}
197 
198 	zn->zn_hash = zap_hash(zn);
199 	return (zn);
200 }
201 
202 zap_name_t *
203 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
204 {
205 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
206 
207 	ASSERT(zap->zap_normflags == 0);
208 	zn->zn_zap = zap;
209 	zn->zn_key_intlen = sizeof (*key);
210 	zn->zn_key_orig = zn->zn_key_norm = key;
211 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
212 	zn->zn_matchtype = MT_EXACT;
213 
214 	zn->zn_hash = zap_hash(zn);
215 	return (zn);
216 }
217 
218 static void
219 mzap_byteswap(mzap_phys_t *buf, size_t size)
220 {
221 	int i, max;
222 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
223 	buf->mz_salt = BSWAP_64(buf->mz_salt);
224 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
225 	max = (size / MZAP_ENT_LEN) - 1;
226 	for (i = 0; i < max; i++) {
227 		buf->mz_chunk[i].mze_value =
228 		    BSWAP_64(buf->mz_chunk[i].mze_value);
229 		buf->mz_chunk[i].mze_cd =
230 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
231 	}
232 }
233 
234 void
235 zap_byteswap(void *buf, size_t size)
236 {
237 	uint64_t block_type;
238 
239 	block_type = *(uint64_t *)buf;
240 
241 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
242 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
243 		mzap_byteswap(buf, size);
244 	} else {
245 		fzap_byteswap(buf, size);
246 	}
247 }
248 
249 static int
250 mze_compare(const void *arg1, const void *arg2)
251 {
252 	const mzap_ent_t *mze1 = arg1;
253 	const mzap_ent_t *mze2 = arg2;
254 
255 	if (mze1->mze_hash > mze2->mze_hash)
256 		return (+1);
257 	if (mze1->mze_hash < mze2->mze_hash)
258 		return (-1);
259 	if (mze1->mze_cd > mze2->mze_cd)
260 		return (+1);
261 	if (mze1->mze_cd < mze2->mze_cd)
262 		return (-1);
263 	return (0);
264 }
265 
266 static void
267 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
268 {
269 	mzap_ent_t *mze;
270 
271 	ASSERT(zap->zap_ismicro);
272 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
273 
274 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
275 	mze->mze_chunkid = chunkid;
276 	mze->mze_hash = hash;
277 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
278 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
279 	avl_add(&zap->zap_m.zap_avl, mze);
280 }
281 
282 static mzap_ent_t *
283 mze_find(zap_name_t *zn)
284 {
285 	mzap_ent_t mze_tofind;
286 	mzap_ent_t *mze;
287 	avl_index_t idx;
288 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
289 
290 	ASSERT(zn->zn_zap->zap_ismicro);
291 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
292 
293 	mze_tofind.mze_hash = zn->zn_hash;
294 	mze_tofind.mze_cd = 0;
295 
296 again:
297 	mze = avl_find(avl, &mze_tofind, &idx);
298 	if (mze == NULL)
299 		mze = avl_nearest(avl, idx, AVL_AFTER);
300 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
301 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
302 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
303 			return (mze);
304 	}
305 	if (zn->zn_matchtype == MT_BEST) {
306 		zn->zn_matchtype = MT_FIRST;
307 		goto again;
308 	}
309 	return (NULL);
310 }
311 
312 static uint32_t
313 mze_find_unused_cd(zap_t *zap, uint64_t hash)
314 {
315 	mzap_ent_t mze_tofind;
316 	mzap_ent_t *mze;
317 	avl_index_t idx;
318 	avl_tree_t *avl = &zap->zap_m.zap_avl;
319 	uint32_t cd;
320 
321 	ASSERT(zap->zap_ismicro);
322 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
323 
324 	mze_tofind.mze_hash = hash;
325 	mze_tofind.mze_cd = 0;
326 
327 	cd = 0;
328 	for (mze = avl_find(avl, &mze_tofind, &idx);
329 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
330 		if (mze->mze_cd != cd)
331 			break;
332 		cd++;
333 	}
334 
335 	return (cd);
336 }
337 
338 static void
339 mze_remove(zap_t *zap, mzap_ent_t *mze)
340 {
341 	ASSERT(zap->zap_ismicro);
342 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
343 
344 	avl_remove(&zap->zap_m.zap_avl, mze);
345 	kmem_free(mze, sizeof (mzap_ent_t));
346 }
347 
348 static void
349 mze_destroy(zap_t *zap)
350 {
351 	mzap_ent_t *mze;
352 	void *avlcookie = NULL;
353 
354 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
355 		kmem_free(mze, sizeof (mzap_ent_t));
356 	avl_destroy(&zap->zap_m.zap_avl);
357 }
358 
359 static zap_t *
360 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
361 {
362 	zap_t *winner;
363 	zap_t *zap;
364 	int i;
365 
366 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
367 
368 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
369 	rw_init(&zap->zap_rwlock, 0, 0, 0);
370 	rw_enter(&zap->zap_rwlock, RW_WRITER);
371 	zap->zap_objset = os;
372 	zap->zap_object = obj;
373 	zap->zap_dbuf = db;
374 
375 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
376 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
377 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
378 	} else {
379 		zap->zap_ismicro = TRUE;
380 	}
381 
382 	/*
383 	 * Make sure that zap_ismicro is set before we let others see
384 	 * it, because zap_lockdir() checks zap_ismicro without the lock
385 	 * held.
386 	 */
387 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
388 
389 	if (winner != NULL) {
390 		rw_exit(&zap->zap_rwlock);
391 		rw_destroy(&zap->zap_rwlock);
392 		if (!zap->zap_ismicro)
393 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
394 		kmem_free(zap, sizeof (zap_t));
395 		return (winner);
396 	}
397 
398 	if (zap->zap_ismicro) {
399 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
400 		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
401 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
402 		avl_create(&zap->zap_m.zap_avl, mze_compare,
403 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
404 
405 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
406 			mzap_ent_phys_t *mze =
407 			    &zap->zap_m.zap_phys->mz_chunk[i];
408 			if (mze->mze_name[0]) {
409 				zap_name_t *zn;
410 
411 				zap->zap_m.zap_num_entries++;
412 				zn = zap_name_alloc(zap, mze->mze_name,
413 				    MT_EXACT);
414 				mze_insert(zap, i, zn->zn_hash);
415 				zap_name_free(zn);
416 			}
417 		}
418 	} else {
419 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
420 		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
421 
422 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
423 		    2*ZAP_LEAF_CHUNKSIZE);
424 
425 		/*
426 		 * The embedded pointer table should not overlap the
427 		 * other members.
428 		 */
429 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
430 		    &zap->zap_f.zap_phys->zap_salt);
431 
432 		/*
433 		 * The embedded pointer table should end at the end of
434 		 * the block
435 		 */
436 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
437 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
438 		    (uintptr_t)zap->zap_f.zap_phys, ==,
439 		    zap->zap_dbuf->db_size);
440 	}
441 	rw_exit(&zap->zap_rwlock);
442 	return (zap);
443 }
444 
445 int
446 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
447     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
448 {
449 	zap_t *zap;
450 	dmu_buf_t *db;
451 	krw_t lt;
452 	int err;
453 
454 	*zapp = NULL;
455 
456 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
457 	if (err)
458 		return (err);
459 
460 #ifdef ZFS_DEBUG
461 	{
462 		dmu_object_info_t doi;
463 		dmu_object_info_from_db(db, &doi);
464 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
465 	}
466 #endif
467 
468 	zap = dmu_buf_get_user(db);
469 	if (zap == NULL)
470 		zap = mzap_open(os, obj, db);
471 
472 	/*
473 	 * We're checking zap_ismicro without the lock held, in order to
474 	 * tell what type of lock we want.  Once we have some sort of
475 	 * lock, see if it really is the right type.  In practice this
476 	 * can only be different if it was upgraded from micro to fat,
477 	 * and micro wanted WRITER but fat only needs READER.
478 	 */
479 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
480 	rw_enter(&zap->zap_rwlock, lt);
481 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
482 		/* it was upgraded, now we only need reader */
483 		ASSERT(lt == RW_WRITER);
484 		ASSERT(RW_READER ==
485 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
486 		rw_downgrade(&zap->zap_rwlock);
487 		lt = RW_READER;
488 	}
489 
490 	zap->zap_objset = os;
491 
492 	if (lt == RW_WRITER)
493 		dmu_buf_will_dirty(db, tx);
494 
495 	ASSERT3P(zap->zap_dbuf, ==, db);
496 
497 	ASSERT(!zap->zap_ismicro ||
498 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
499 	if (zap->zap_ismicro && tx && adding &&
500 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
501 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
502 		if (newsz > MZAP_MAX_BLKSZ) {
503 			dprintf("upgrading obj %llu: num_entries=%u\n",
504 			    obj, zap->zap_m.zap_num_entries);
505 			*zapp = zap;
506 			return (mzap_upgrade(zapp, tx, 0));
507 		}
508 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
509 		ASSERT0(err);
510 		zap->zap_m.zap_num_chunks =
511 		    db->db_size / MZAP_ENT_LEN - 1;
512 	}
513 
514 	*zapp = zap;
515 	return (0);
516 }
517 
518 void
519 zap_unlockdir(zap_t *zap)
520 {
521 	rw_exit(&zap->zap_rwlock);
522 	dmu_buf_rele(zap->zap_dbuf, NULL);
523 }
524 
525 static int
526 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
527 {
528 	mzap_phys_t *mzp;
529 	int i, sz, nchunks;
530 	int err = 0;
531 	zap_t *zap = *zapp;
532 
533 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
534 
535 	sz = zap->zap_dbuf->db_size;
536 	mzp = kmem_alloc(sz, KM_SLEEP);
537 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
538 	nchunks = zap->zap_m.zap_num_chunks;
539 
540 	if (!flags) {
541 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
542 		    1ULL << fzap_default_block_shift, 0, tx);
543 		if (err) {
544 			kmem_free(mzp, sz);
545 			return (err);
546 		}
547 	}
548 
549 	dprintf("upgrading obj=%llu with %u chunks\n",
550 	    zap->zap_object, nchunks);
551 	/* XXX destroy the avl later, so we can use the stored hash value */
552 	mze_destroy(zap);
553 
554 	fzap_upgrade(zap, tx, flags);
555 
556 	for (i = 0; i < nchunks; i++) {
557 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
558 		zap_name_t *zn;
559 		if (mze->mze_name[0] == 0)
560 			continue;
561 		dprintf("adding %s=%llu\n",
562 		    mze->mze_name, mze->mze_value);
563 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
564 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
565 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
566 		zap_name_free(zn);
567 		if (err)
568 			break;
569 	}
570 	kmem_free(mzp, sz);
571 	*zapp = zap;
572 	return (err);
573 }
574 
575 void
576 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
577     dmu_tx_t *tx)
578 {
579 	dmu_buf_t *db;
580 	mzap_phys_t *zp;
581 
582 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
583 
584 #ifdef ZFS_DEBUG
585 	{
586 		dmu_object_info_t doi;
587 		dmu_object_info_from_db(db, &doi);
588 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
589 	}
590 #endif
591 
592 	dmu_buf_will_dirty(db, tx);
593 	zp = db->db_data;
594 	zp->mz_block_type = ZBT_MICRO;
595 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
596 	zp->mz_normflags = normflags;
597 	dmu_buf_rele(db, FTAG);
598 
599 	if (flags != 0) {
600 		zap_t *zap;
601 		/* Only fat zap supports flags; upgrade immediately. */
602 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
603 		    B_FALSE, B_FALSE, &zap));
604 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
605 		zap_unlockdir(zap);
606 	}
607 }
608 
609 int
610 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
611     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
612 {
613 	return (zap_create_claim_norm(os, obj,
614 	    0, ot, bonustype, bonuslen, tx));
615 }
616 
617 int
618 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
619     dmu_object_type_t ot,
620     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
621 {
622 	int err;
623 
624 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
625 	if (err != 0)
626 		return (err);
627 	mzap_create_impl(os, obj, normflags, 0, tx);
628 	return (0);
629 }
630 
631 uint64_t
632 zap_create(objset_t *os, dmu_object_type_t ot,
633     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
634 {
635 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
636 }
637 
638 uint64_t
639 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
640     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
641 {
642 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
643 
644 	mzap_create_impl(os, obj, normflags, 0, tx);
645 	return (obj);
646 }
647 
648 uint64_t
649 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
650     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
651     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
652 {
653 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
654 
655 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
656 	    leaf_blockshift <= SPA_MAXBLOCKSHIFT &&
657 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
658 	    indirect_blockshift <= SPA_MAXBLOCKSHIFT);
659 
660 	VERIFY(dmu_object_set_blocksize(os, obj,
661 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
662 
663 	mzap_create_impl(os, obj, normflags, flags, tx);
664 	return (obj);
665 }
666 
667 int
668 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
669 {
670 	/*
671 	 * dmu_object_free will free the object number and free the
672 	 * data.  Freeing the data will cause our pageout function to be
673 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
674 	 */
675 
676 	return (dmu_object_free(os, zapobj, tx));
677 }
678 
679 _NOTE(ARGSUSED(0))
680 void
681 zap_evict(dmu_buf_t *db, void *vzap)
682 {
683 	zap_t *zap = vzap;
684 
685 	rw_destroy(&zap->zap_rwlock);
686 
687 	if (zap->zap_ismicro)
688 		mze_destroy(zap);
689 	else
690 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
691 
692 	kmem_free(zap, sizeof (zap_t));
693 }
694 
695 int
696 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
697 {
698 	zap_t *zap;
699 	int err;
700 
701 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
702 	if (err)
703 		return (err);
704 	if (!zap->zap_ismicro) {
705 		err = fzap_count(zap, count);
706 	} else {
707 		*count = zap->zap_m.zap_num_entries;
708 	}
709 	zap_unlockdir(zap);
710 	return (err);
711 }
712 
713 /*
714  * zn may be NULL; if not specified, it will be computed if needed.
715  * See also the comment above zap_entry_normalization_conflict().
716  */
717 static boolean_t
718 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
719 {
720 	mzap_ent_t *other;
721 	int direction = AVL_BEFORE;
722 	boolean_t allocdzn = B_FALSE;
723 
724 	if (zap->zap_normflags == 0)
725 		return (B_FALSE);
726 
727 again:
728 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
729 	    other && other->mze_hash == mze->mze_hash;
730 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
731 
732 		if (zn == NULL) {
733 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
734 			    MT_FIRST);
735 			allocdzn = B_TRUE;
736 		}
737 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
738 			if (allocdzn)
739 				zap_name_free(zn);
740 			return (B_TRUE);
741 		}
742 	}
743 
744 	if (direction == AVL_BEFORE) {
745 		direction = AVL_AFTER;
746 		goto again;
747 	}
748 
749 	if (allocdzn)
750 		zap_name_free(zn);
751 	return (B_FALSE);
752 }
753 
754 /*
755  * Routines for manipulating attributes.
756  */
757 
758 int
759 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
760     uint64_t integer_size, uint64_t num_integers, void *buf)
761 {
762 	return (zap_lookup_norm(os, zapobj, name, integer_size,
763 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
764 }
765 
766 int
767 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
768     uint64_t integer_size, uint64_t num_integers, void *buf,
769     matchtype_t mt, char *realname, int rn_len,
770     boolean_t *ncp)
771 {
772 	zap_t *zap;
773 	int err;
774 	mzap_ent_t *mze;
775 	zap_name_t *zn;
776 
777 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
778 	if (err)
779 		return (err);
780 	zn = zap_name_alloc(zap, name, mt);
781 	if (zn == NULL) {
782 		zap_unlockdir(zap);
783 		return (SET_ERROR(ENOTSUP));
784 	}
785 
786 	if (!zap->zap_ismicro) {
787 		err = fzap_lookup(zn, integer_size, num_integers, buf,
788 		    realname, rn_len, ncp);
789 	} else {
790 		mze = mze_find(zn);
791 		if (mze == NULL) {
792 			err = SET_ERROR(ENOENT);
793 		} else {
794 			if (num_integers < 1) {
795 				err = SET_ERROR(EOVERFLOW);
796 			} else if (integer_size != 8) {
797 				err = SET_ERROR(EINVAL);
798 			} else {
799 				*(uint64_t *)buf =
800 				    MZE_PHYS(zap, mze)->mze_value;
801 				(void) strlcpy(realname,
802 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
803 				if (ncp) {
804 					*ncp = mzap_normalization_conflict(zap,
805 					    zn, mze);
806 				}
807 			}
808 		}
809 	}
810 	zap_name_free(zn);
811 	zap_unlockdir(zap);
812 	return (err);
813 }
814 
815 int
816 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
817     int key_numints)
818 {
819 	zap_t *zap;
820 	int err;
821 	zap_name_t *zn;
822 
823 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
824 	if (err)
825 		return (err);
826 	zn = zap_name_alloc_uint64(zap, key, key_numints);
827 	if (zn == NULL) {
828 		zap_unlockdir(zap);
829 		return (SET_ERROR(ENOTSUP));
830 	}
831 
832 	fzap_prefetch(zn);
833 	zap_name_free(zn);
834 	zap_unlockdir(zap);
835 	return (err);
836 }
837 
838 int
839 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
840     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
841 {
842 	zap_t *zap;
843 	int err;
844 	zap_name_t *zn;
845 
846 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
847 	if (err)
848 		return (err);
849 	zn = zap_name_alloc_uint64(zap, key, key_numints);
850 	if (zn == NULL) {
851 		zap_unlockdir(zap);
852 		return (SET_ERROR(ENOTSUP));
853 	}
854 
855 	err = fzap_lookup(zn, integer_size, num_integers, buf,
856 	    NULL, 0, NULL);
857 	zap_name_free(zn);
858 	zap_unlockdir(zap);
859 	return (err);
860 }
861 
862 int
863 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
864 {
865 	int err = zap_lookup_norm(os, zapobj, name, 0,
866 	    0, NULL, MT_EXACT, NULL, 0, NULL);
867 	if (err == EOVERFLOW || err == EINVAL)
868 		err = 0; /* found, but skipped reading the value */
869 	return (err);
870 }
871 
872 int
873 zap_length(objset_t *os, uint64_t zapobj, const char *name,
874     uint64_t *integer_size, uint64_t *num_integers)
875 {
876 	zap_t *zap;
877 	int err;
878 	mzap_ent_t *mze;
879 	zap_name_t *zn;
880 
881 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
882 	if (err)
883 		return (err);
884 	zn = zap_name_alloc(zap, name, MT_EXACT);
885 	if (zn == NULL) {
886 		zap_unlockdir(zap);
887 		return (SET_ERROR(ENOTSUP));
888 	}
889 	if (!zap->zap_ismicro) {
890 		err = fzap_length(zn, integer_size, num_integers);
891 	} else {
892 		mze = mze_find(zn);
893 		if (mze == NULL) {
894 			err = SET_ERROR(ENOENT);
895 		} else {
896 			if (integer_size)
897 				*integer_size = 8;
898 			if (num_integers)
899 				*num_integers = 1;
900 		}
901 	}
902 	zap_name_free(zn);
903 	zap_unlockdir(zap);
904 	return (err);
905 }
906 
907 int
908 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
909     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
910 {
911 	zap_t *zap;
912 	int err;
913 	zap_name_t *zn;
914 
915 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
916 	if (err)
917 		return (err);
918 	zn = zap_name_alloc_uint64(zap, key, key_numints);
919 	if (zn == NULL) {
920 		zap_unlockdir(zap);
921 		return (SET_ERROR(ENOTSUP));
922 	}
923 	err = fzap_length(zn, integer_size, num_integers);
924 	zap_name_free(zn);
925 	zap_unlockdir(zap);
926 	return (err);
927 }
928 
929 static void
930 mzap_addent(zap_name_t *zn, uint64_t value)
931 {
932 	int i;
933 	zap_t *zap = zn->zn_zap;
934 	int start = zap->zap_m.zap_alloc_next;
935 	uint32_t cd;
936 
937 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
938 
939 #ifdef ZFS_DEBUG
940 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
941 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
942 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
943 	}
944 #endif
945 
946 	cd = mze_find_unused_cd(zap, zn->zn_hash);
947 	/* given the limited size of the microzap, this can't happen */
948 	ASSERT(cd < zap_maxcd(zap));
949 
950 again:
951 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
952 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
953 		if (mze->mze_name[0] == 0) {
954 			mze->mze_value = value;
955 			mze->mze_cd = cd;
956 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
957 			zap->zap_m.zap_num_entries++;
958 			zap->zap_m.zap_alloc_next = i+1;
959 			if (zap->zap_m.zap_alloc_next ==
960 			    zap->zap_m.zap_num_chunks)
961 				zap->zap_m.zap_alloc_next = 0;
962 			mze_insert(zap, i, zn->zn_hash);
963 			return;
964 		}
965 	}
966 	if (start != 0) {
967 		start = 0;
968 		goto again;
969 	}
970 	ASSERT(!"out of entries!");
971 }
972 
973 int
974 zap_add(objset_t *os, uint64_t zapobj, const char *key,
975     int integer_size, uint64_t num_integers,
976     const void *val, dmu_tx_t *tx)
977 {
978 	zap_t *zap;
979 	int err;
980 	mzap_ent_t *mze;
981 	const uint64_t *intval = val;
982 	zap_name_t *zn;
983 
984 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
985 	if (err)
986 		return (err);
987 	zn = zap_name_alloc(zap, key, MT_EXACT);
988 	if (zn == NULL) {
989 		zap_unlockdir(zap);
990 		return (SET_ERROR(ENOTSUP));
991 	}
992 	if (!zap->zap_ismicro) {
993 		err = fzap_add(zn, integer_size, num_integers, val, tx);
994 		zap = zn->zn_zap;	/* fzap_add() may change zap */
995 	} else if (integer_size != 8 || num_integers != 1 ||
996 	    strlen(key) >= MZAP_NAME_LEN) {
997 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
998 		if (err == 0)
999 			err = fzap_add(zn, integer_size, num_integers, val, tx);
1000 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1001 	} else {
1002 		mze = mze_find(zn);
1003 		if (mze != NULL) {
1004 			err = SET_ERROR(EEXIST);
1005 		} else {
1006 			mzap_addent(zn, *intval);
1007 		}
1008 	}
1009 	ASSERT(zap == zn->zn_zap);
1010 	zap_name_free(zn);
1011 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1012 		zap_unlockdir(zap);
1013 	return (err);
1014 }
1015 
1016 int
1017 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1018     int key_numints, int integer_size, uint64_t num_integers,
1019     const void *val, dmu_tx_t *tx)
1020 {
1021 	zap_t *zap;
1022 	int err;
1023 	zap_name_t *zn;
1024 
1025 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1026 	if (err)
1027 		return (err);
1028 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1029 	if (zn == NULL) {
1030 		zap_unlockdir(zap);
1031 		return (SET_ERROR(ENOTSUP));
1032 	}
1033 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1034 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1035 	zap_name_free(zn);
1036 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1037 		zap_unlockdir(zap);
1038 	return (err);
1039 }
1040 
1041 int
1042 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1043     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1044 {
1045 	zap_t *zap;
1046 	mzap_ent_t *mze;
1047 	uint64_t oldval;
1048 	const uint64_t *intval = val;
1049 	zap_name_t *zn;
1050 	int err;
1051 
1052 #ifdef ZFS_DEBUG
1053 	/*
1054 	 * If there is an old value, it shouldn't change across the
1055 	 * lockdir (eg, due to bprewrite's xlation).
1056 	 */
1057 	if (integer_size == 8 && num_integers == 1)
1058 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1059 #endif
1060 
1061 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1062 	if (err)
1063 		return (err);
1064 	zn = zap_name_alloc(zap, name, MT_EXACT);
1065 	if (zn == NULL) {
1066 		zap_unlockdir(zap);
1067 		return (SET_ERROR(ENOTSUP));
1068 	}
1069 	if (!zap->zap_ismicro) {
1070 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1071 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1072 	} else if (integer_size != 8 || num_integers != 1 ||
1073 	    strlen(name) >= MZAP_NAME_LEN) {
1074 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1075 		    zapobj, integer_size, num_integers, name);
1076 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1077 		if (err == 0)
1078 			err = fzap_update(zn, integer_size, num_integers,
1079 			    val, tx);
1080 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1081 	} else {
1082 		mze = mze_find(zn);
1083 		if (mze != NULL) {
1084 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1085 			MZE_PHYS(zap, mze)->mze_value = *intval;
1086 		} else {
1087 			mzap_addent(zn, *intval);
1088 		}
1089 	}
1090 	ASSERT(zap == zn->zn_zap);
1091 	zap_name_free(zn);
1092 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1093 		zap_unlockdir(zap);
1094 	return (err);
1095 }
1096 
1097 int
1098 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1099     int key_numints,
1100     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1101 {
1102 	zap_t *zap;
1103 	zap_name_t *zn;
1104 	int err;
1105 
1106 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1107 	if (err)
1108 		return (err);
1109 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1110 	if (zn == NULL) {
1111 		zap_unlockdir(zap);
1112 		return (SET_ERROR(ENOTSUP));
1113 	}
1114 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1115 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1116 	zap_name_free(zn);
1117 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1118 		zap_unlockdir(zap);
1119 	return (err);
1120 }
1121 
1122 int
1123 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1124 {
1125 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1126 }
1127 
1128 int
1129 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1130     matchtype_t mt, dmu_tx_t *tx)
1131 {
1132 	zap_t *zap;
1133 	int err;
1134 	mzap_ent_t *mze;
1135 	zap_name_t *zn;
1136 
1137 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1138 	if (err)
1139 		return (err);
1140 	zn = zap_name_alloc(zap, name, mt);
1141 	if (zn == NULL) {
1142 		zap_unlockdir(zap);
1143 		return (SET_ERROR(ENOTSUP));
1144 	}
1145 	if (!zap->zap_ismicro) {
1146 		err = fzap_remove(zn, tx);
1147 	} else {
1148 		mze = mze_find(zn);
1149 		if (mze == NULL) {
1150 			err = SET_ERROR(ENOENT);
1151 		} else {
1152 			zap->zap_m.zap_num_entries--;
1153 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1154 			    sizeof (mzap_ent_phys_t));
1155 			mze_remove(zap, mze);
1156 		}
1157 	}
1158 	zap_name_free(zn);
1159 	zap_unlockdir(zap);
1160 	return (err);
1161 }
1162 
1163 int
1164 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1165     int key_numints, dmu_tx_t *tx)
1166 {
1167 	zap_t *zap;
1168 	int err;
1169 	zap_name_t *zn;
1170 
1171 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1172 	if (err)
1173 		return (err);
1174 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1175 	if (zn == NULL) {
1176 		zap_unlockdir(zap);
1177 		return (SET_ERROR(ENOTSUP));
1178 	}
1179 	err = fzap_remove(zn, tx);
1180 	zap_name_free(zn);
1181 	zap_unlockdir(zap);
1182 	return (err);
1183 }
1184 
1185 /*
1186  * Routines for iterating over the attributes.
1187  */
1188 
1189 void
1190 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1191     uint64_t serialized)
1192 {
1193 	zc->zc_objset = os;
1194 	zc->zc_zap = NULL;
1195 	zc->zc_leaf = NULL;
1196 	zc->zc_zapobj = zapobj;
1197 	zc->zc_serialized = serialized;
1198 	zc->zc_hash = 0;
1199 	zc->zc_cd = 0;
1200 }
1201 
1202 void
1203 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1204 {
1205 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1206 }
1207 
1208 void
1209 zap_cursor_fini(zap_cursor_t *zc)
1210 {
1211 	if (zc->zc_zap) {
1212 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1213 		zap_unlockdir(zc->zc_zap);
1214 		zc->zc_zap = NULL;
1215 	}
1216 	if (zc->zc_leaf) {
1217 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1218 		zap_put_leaf(zc->zc_leaf);
1219 		zc->zc_leaf = NULL;
1220 	}
1221 	zc->zc_objset = NULL;
1222 }
1223 
1224 uint64_t
1225 zap_cursor_serialize(zap_cursor_t *zc)
1226 {
1227 	if (zc->zc_hash == -1ULL)
1228 		return (-1ULL);
1229 	if (zc->zc_zap == NULL)
1230 		return (zc->zc_serialized);
1231 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1232 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1233 
1234 	/*
1235 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1236 	 * that 32-bit programs can access this.  So usually use a small
1237 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1238 	 * of the cursor.
1239 	 *
1240 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1241 	 */
1242 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1243 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1244 }
1245 
1246 int
1247 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1248 {
1249 	int err;
1250 	avl_index_t idx;
1251 	mzap_ent_t mze_tofind;
1252 	mzap_ent_t *mze;
1253 
1254 	if (zc->zc_hash == -1ULL)
1255 		return (SET_ERROR(ENOENT));
1256 
1257 	if (zc->zc_zap == NULL) {
1258 		int hb;
1259 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1260 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1261 		if (err)
1262 			return (err);
1263 
1264 		/*
1265 		 * To support zap_cursor_init_serialized, advance, retrieve,
1266 		 * we must add to the existing zc_cd, which may already
1267 		 * be 1 due to the zap_cursor_advance.
1268 		 */
1269 		ASSERT(zc->zc_hash == 0);
1270 		hb = zap_hashbits(zc->zc_zap);
1271 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1272 		zc->zc_cd += zc->zc_serialized >> hb;
1273 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1274 			zc->zc_cd = 0;
1275 	} else {
1276 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1277 	}
1278 	if (!zc->zc_zap->zap_ismicro) {
1279 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1280 	} else {
1281 		mze_tofind.mze_hash = zc->zc_hash;
1282 		mze_tofind.mze_cd = zc->zc_cd;
1283 
1284 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1285 		if (mze == NULL) {
1286 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1287 			    idx, AVL_AFTER);
1288 		}
1289 		if (mze) {
1290 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1291 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1292 			za->za_normalization_conflict =
1293 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1294 			za->za_integer_length = 8;
1295 			za->za_num_integers = 1;
1296 			za->za_first_integer = mzep->mze_value;
1297 			(void) strcpy(za->za_name, mzep->mze_name);
1298 			zc->zc_hash = mze->mze_hash;
1299 			zc->zc_cd = mze->mze_cd;
1300 			err = 0;
1301 		} else {
1302 			zc->zc_hash = -1ULL;
1303 			err = SET_ERROR(ENOENT);
1304 		}
1305 	}
1306 	rw_exit(&zc->zc_zap->zap_rwlock);
1307 	return (err);
1308 }
1309 
1310 void
1311 zap_cursor_advance(zap_cursor_t *zc)
1312 {
1313 	if (zc->zc_hash == -1ULL)
1314 		return;
1315 	zc->zc_cd++;
1316 }
1317 
1318 int
1319 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1320 {
1321 	int err;
1322 	zap_t *zap;
1323 
1324 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1325 	if (err)
1326 		return (err);
1327 
1328 	bzero(zs, sizeof (zap_stats_t));
1329 
1330 	if (zap->zap_ismicro) {
1331 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1332 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1333 		zs->zs_num_blocks = 1;
1334 	} else {
1335 		fzap_get_stats(zap, zs);
1336 	}
1337 	zap_unlockdir(zap);
1338 	return (0);
1339 }
1340 
1341 int
1342 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1343     uint64_t *towrite, uint64_t *tooverwrite)
1344 {
1345 	zap_t *zap;
1346 	int err = 0;
1347 
1348 
1349 	/*
1350 	 * Since, we don't have a name, we cannot figure out which blocks will
1351 	 * be affected in this operation. So, account for the worst case :
1352 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1353 	 * - 4 new blocks written if adding:
1354 	 * 	- 2 blocks for possibly split leaves,
1355 	 * 	- 2 grown ptrtbl blocks
1356 	 *
1357 	 * This also accomodates the case where an add operation to a fairly
1358 	 * large microzap results in a promotion to fatzap.
1359 	 */
1360 	if (name == NULL) {
1361 		*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1362 		return (err);
1363 	}
1364 
1365 	/*
1366 	 * We lock the zap with adding == FALSE. Because, if we pass
1367 	 * the actual value of add, it could trigger a mzap_upgrade().
1368 	 * At present we are just evaluating the possibility of this operation
1369 	 * and hence we donot want to trigger an upgrade.
1370 	 */
1371 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1372 	if (err)
1373 		return (err);
1374 
1375 	if (!zap->zap_ismicro) {
1376 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1377 		if (zn) {
1378 			err = fzap_count_write(zn, add, towrite,
1379 			    tooverwrite);
1380 			zap_name_free(zn);
1381 		} else {
1382 			/*
1383 			 * We treat this case as similar to (name == NULL)
1384 			 */
1385 			*towrite += (3 + (add ? 4 : 0)) * SPA_MAXBLOCKSIZE;
1386 		}
1387 	} else {
1388 		/*
1389 		 * We are here if (name != NULL) and this is a micro-zap.
1390 		 * We account for the header block depending on whether it
1391 		 * is freeable.
1392 		 *
1393 		 * Incase of an add-operation it is hard to find out
1394 		 * if this add will promote this microzap to fatzap.
1395 		 * Hence, we consider the worst case and account for the
1396 		 * blocks assuming this microzap would be promoted to a
1397 		 * fatzap.
1398 		 *
1399 		 * 1 block overwritten  : header block
1400 		 * 4 new blocks written : 2 new split leaf, 2 grown
1401 		 *			ptrtbl blocks
1402 		 */
1403 		if (dmu_buf_freeable(zap->zap_dbuf))
1404 			*tooverwrite += SPA_MAXBLOCKSIZE;
1405 		else
1406 			*towrite += SPA_MAXBLOCKSIZE;
1407 
1408 		if (add) {
1409 			*towrite += 4 * SPA_MAXBLOCKSIZE;
1410 		}
1411 	}
1412 
1413 	zap_unlockdir(zap);
1414 	return (err);
1415 }
1416