1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/spa.h> 29 #include <sys/dmu.h> 30 #include <sys/zfs_context.h> 31 #include <sys/zap.h> 32 #include <sys/refcount.h> 33 #include <sys/zap_impl.h> 34 #include <sys/zap_leaf.h> 35 #include <sys/avl.h> 36 37 #ifdef _KERNEL 38 #include <sys/sunddi.h> 39 #endif 40 41 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx); 42 43 44 static uint64_t 45 zap_hash(zap_t *zap, const char *normname) 46 { 47 const uint8_t *cp; 48 uint8_t c; 49 uint64_t crc = zap->zap_salt; 50 51 /* NB: name must already be normalized, if necessary */ 52 53 ASSERT(crc != 0); 54 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY); 55 for (cp = (const uint8_t *)normname; (c = *cp) != '\0'; cp++) { 56 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF]; 57 } 58 59 /* 60 * Only use 28 bits, since we need 4 bits in the cookie for the 61 * collision differentiator. We MUST use the high bits, since 62 * those are the ones that we first pay attention to when 63 * chosing the bucket. 64 */ 65 crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1); 66 67 return (crc); 68 } 69 70 static int 71 zap_normalize(zap_t *zap, const char *name, char *namenorm) 72 { 73 size_t inlen, outlen; 74 int err; 75 76 inlen = strlen(name) + 1; 77 outlen = ZAP_MAXNAMELEN; 78 79 err = 0; 80 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen, 81 zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL, U8_UNICODE_LATEST, 82 &err); 83 84 return (err); 85 } 86 87 boolean_t 88 zap_match(zap_name_t *zn, const char *matchname) 89 { 90 if (zn->zn_matchtype == MT_FIRST) { 91 char norm[ZAP_MAXNAMELEN]; 92 93 if (zap_normalize(zn->zn_zap, matchname, norm) != 0) 94 return (B_FALSE); 95 96 return (strcmp(zn->zn_name_norm, norm) == 0); 97 } else { 98 /* MT_BEST or MT_EXACT */ 99 return (strcmp(zn->zn_name_orij, matchname) == 0); 100 } 101 } 102 103 void 104 zap_name_free(zap_name_t *zn) 105 { 106 kmem_free(zn, sizeof (zap_name_t)); 107 } 108 109 /* XXX combine this with zap_lockdir()? */ 110 zap_name_t * 111 zap_name_alloc(zap_t *zap, const char *name, matchtype_t mt) 112 { 113 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP); 114 115 zn->zn_zap = zap; 116 zn->zn_name_orij = name; 117 zn->zn_matchtype = mt; 118 if (zap->zap_normflags) { 119 if (zap_normalize(zap, name, zn->zn_normbuf) != 0) { 120 zap_name_free(zn); 121 return (NULL); 122 } 123 zn->zn_name_norm = zn->zn_normbuf; 124 } else { 125 if (mt != MT_EXACT) { 126 zap_name_free(zn); 127 return (NULL); 128 } 129 zn->zn_name_norm = zn->zn_name_orij; 130 } 131 132 zn->zn_hash = zap_hash(zap, zn->zn_name_norm); 133 return (zn); 134 } 135 136 static void 137 mzap_byteswap(mzap_phys_t *buf, size_t size) 138 { 139 int i, max; 140 buf->mz_block_type = BSWAP_64(buf->mz_block_type); 141 buf->mz_salt = BSWAP_64(buf->mz_salt); 142 max = (size / MZAP_ENT_LEN) - 1; 143 for (i = 0; i < max; i++) { 144 buf->mz_chunk[i].mze_value = 145 BSWAP_64(buf->mz_chunk[i].mze_value); 146 buf->mz_chunk[i].mze_cd = 147 BSWAP_32(buf->mz_chunk[i].mze_cd); 148 } 149 } 150 151 void 152 zap_byteswap(void *buf, size_t size) 153 { 154 uint64_t block_type; 155 156 block_type = *(uint64_t *)buf; 157 158 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) { 159 /* ASSERT(magic == ZAP_LEAF_MAGIC); */ 160 mzap_byteswap(buf, size); 161 } else { 162 fzap_byteswap(buf, size); 163 } 164 } 165 166 static int 167 mze_compare(const void *arg1, const void *arg2) 168 { 169 const mzap_ent_t *mze1 = arg1; 170 const mzap_ent_t *mze2 = arg2; 171 172 if (mze1->mze_hash > mze2->mze_hash) 173 return (+1); 174 if (mze1->mze_hash < mze2->mze_hash) 175 return (-1); 176 if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd) 177 return (+1); 178 if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd) 179 return (-1); 180 return (0); 181 } 182 183 static void 184 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep) 185 { 186 mzap_ent_t *mze; 187 188 ASSERT(zap->zap_ismicro); 189 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 190 ASSERT(mzep->mze_cd < ZAP_MAXCD); 191 192 mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP); 193 mze->mze_chunkid = chunkid; 194 mze->mze_hash = hash; 195 mze->mze_phys = *mzep; 196 avl_add(&zap->zap_m.zap_avl, mze); 197 } 198 199 static mzap_ent_t * 200 mze_find(zap_name_t *zn) 201 { 202 mzap_ent_t mze_tofind; 203 mzap_ent_t *mze; 204 avl_index_t idx; 205 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl; 206 207 ASSERT(zn->zn_zap->zap_ismicro); 208 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock)); 209 210 if (strlen(zn->zn_name_norm) >= sizeof (mze_tofind.mze_phys.mze_name)) 211 return (NULL); 212 213 mze_tofind.mze_hash = zn->zn_hash; 214 mze_tofind.mze_phys.mze_cd = 0; 215 216 again: 217 mze = avl_find(avl, &mze_tofind, &idx); 218 if (mze == NULL) 219 mze = avl_nearest(avl, idx, AVL_AFTER); 220 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) { 221 if (zap_match(zn, mze->mze_phys.mze_name)) 222 return (mze); 223 } 224 if (zn->zn_matchtype == MT_BEST) { 225 zn->zn_matchtype = MT_FIRST; 226 goto again; 227 } 228 return (NULL); 229 } 230 231 static uint32_t 232 mze_find_unused_cd(zap_t *zap, uint64_t hash) 233 { 234 mzap_ent_t mze_tofind; 235 mzap_ent_t *mze; 236 avl_index_t idx; 237 avl_tree_t *avl = &zap->zap_m.zap_avl; 238 uint32_t cd; 239 240 ASSERT(zap->zap_ismicro); 241 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock)); 242 243 mze_tofind.mze_hash = hash; 244 mze_tofind.mze_phys.mze_cd = 0; 245 246 cd = 0; 247 for (mze = avl_find(avl, &mze_tofind, &idx); 248 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) { 249 if (mze->mze_phys.mze_cd != cd) 250 break; 251 cd++; 252 } 253 254 return (cd); 255 } 256 257 static void 258 mze_remove(zap_t *zap, mzap_ent_t *mze) 259 { 260 ASSERT(zap->zap_ismicro); 261 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 262 263 avl_remove(&zap->zap_m.zap_avl, mze); 264 kmem_free(mze, sizeof (mzap_ent_t)); 265 } 266 267 static void 268 mze_destroy(zap_t *zap) 269 { 270 mzap_ent_t *mze; 271 void *avlcookie = NULL; 272 273 while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)) 274 kmem_free(mze, sizeof (mzap_ent_t)); 275 avl_destroy(&zap->zap_m.zap_avl); 276 } 277 278 static zap_t * 279 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db) 280 { 281 zap_t *winner; 282 zap_t *zap; 283 int i; 284 285 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t)); 286 287 zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP); 288 rw_init(&zap->zap_rwlock, 0, 0, 0); 289 rw_enter(&zap->zap_rwlock, RW_WRITER); 290 zap->zap_objset = os; 291 zap->zap_object = obj; 292 zap->zap_dbuf = db; 293 294 if (*(uint64_t *)db->db_data != ZBT_MICRO) { 295 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0); 296 zap->zap_f.zap_block_shift = highbit(db->db_size) - 1; 297 } else { 298 zap->zap_ismicro = TRUE; 299 } 300 301 /* 302 * Make sure that zap_ismicro is set before we let others see 303 * it, because zap_lockdir() checks zap_ismicro without the lock 304 * held. 305 */ 306 winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict); 307 308 if (winner != NULL) { 309 rw_exit(&zap->zap_rwlock); 310 rw_destroy(&zap->zap_rwlock); 311 if (!zap->zap_ismicro) 312 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 313 kmem_free(zap, sizeof (zap_t)); 314 return (winner); 315 } 316 317 if (zap->zap_ismicro) { 318 zap->zap_salt = zap->zap_m.zap_phys->mz_salt; 319 zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags; 320 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1; 321 avl_create(&zap->zap_m.zap_avl, mze_compare, 322 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node)); 323 324 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 325 mzap_ent_phys_t *mze = 326 &zap->zap_m.zap_phys->mz_chunk[i]; 327 if (mze->mze_name[0]) { 328 zap_name_t *zn; 329 330 zap->zap_m.zap_num_entries++; 331 zn = zap_name_alloc(zap, mze->mze_name, 332 MT_EXACT); 333 mze_insert(zap, i, zn->zn_hash, mze); 334 zap_name_free(zn); 335 } 336 } 337 } else { 338 zap->zap_salt = zap->zap_f.zap_phys->zap_salt; 339 zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags; 340 341 ASSERT3U(sizeof (struct zap_leaf_header), ==, 342 2*ZAP_LEAF_CHUNKSIZE); 343 344 /* 345 * The embedded pointer table should not overlap the 346 * other members. 347 */ 348 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >, 349 &zap->zap_f.zap_phys->zap_salt); 350 351 /* 352 * The embedded pointer table should end at the end of 353 * the block 354 */ 355 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap, 356 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) - 357 (uintptr_t)zap->zap_f.zap_phys, ==, 358 zap->zap_dbuf->db_size); 359 } 360 rw_exit(&zap->zap_rwlock); 361 return (zap); 362 } 363 364 int 365 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx, 366 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp) 367 { 368 zap_t *zap; 369 dmu_buf_t *db; 370 krw_t lt; 371 int err; 372 373 *zapp = NULL; 374 375 err = dmu_buf_hold(os, obj, 0, NULL, &db); 376 if (err) 377 return (err); 378 379 #ifdef ZFS_DEBUG 380 { 381 dmu_object_info_t doi; 382 dmu_object_info_from_db(db, &doi); 383 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 384 } 385 #endif 386 387 zap = dmu_buf_get_user(db); 388 if (zap == NULL) 389 zap = mzap_open(os, obj, db); 390 391 /* 392 * We're checking zap_ismicro without the lock held, in order to 393 * tell what type of lock we want. Once we have some sort of 394 * lock, see if it really is the right type. In practice this 395 * can only be different if it was upgraded from micro to fat, 396 * and micro wanted WRITER but fat only needs READER. 397 */ 398 lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti; 399 rw_enter(&zap->zap_rwlock, lt); 400 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) { 401 /* it was upgraded, now we only need reader */ 402 ASSERT(lt == RW_WRITER); 403 ASSERT(RW_READER == 404 (!zap->zap_ismicro && fatreader) ? RW_READER : lti); 405 rw_downgrade(&zap->zap_rwlock); 406 lt = RW_READER; 407 } 408 409 zap->zap_objset = os; 410 411 if (lt == RW_WRITER) 412 dmu_buf_will_dirty(db, tx); 413 414 ASSERT3P(zap->zap_dbuf, ==, db); 415 416 ASSERT(!zap->zap_ismicro || 417 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks); 418 if (zap->zap_ismicro && tx && adding && 419 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) { 420 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE; 421 if (newsz > MZAP_MAX_BLKSZ) { 422 dprintf("upgrading obj %llu: num_entries=%u\n", 423 obj, zap->zap_m.zap_num_entries); 424 *zapp = zap; 425 return (mzap_upgrade(zapp, tx)); 426 } 427 err = dmu_object_set_blocksize(os, obj, newsz, 0, tx); 428 ASSERT3U(err, ==, 0); 429 zap->zap_m.zap_num_chunks = 430 db->db_size / MZAP_ENT_LEN - 1; 431 } 432 433 *zapp = zap; 434 return (0); 435 } 436 437 void 438 zap_unlockdir(zap_t *zap) 439 { 440 rw_exit(&zap->zap_rwlock); 441 dmu_buf_rele(zap->zap_dbuf, NULL); 442 } 443 444 static int 445 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx) 446 { 447 mzap_phys_t *mzp; 448 int i, sz, nchunks, err; 449 zap_t *zap = *zapp; 450 451 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 452 453 sz = zap->zap_dbuf->db_size; 454 mzp = kmem_alloc(sz, KM_SLEEP); 455 bcopy(zap->zap_dbuf->db_data, mzp, sz); 456 nchunks = zap->zap_m.zap_num_chunks; 457 458 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object, 459 1ULL << fzap_default_block_shift, 0, tx); 460 if (err) { 461 kmem_free(mzp, sz); 462 return (err); 463 } 464 465 dprintf("upgrading obj=%llu with %u chunks\n", 466 zap->zap_object, nchunks); 467 /* XXX destroy the avl later, so we can use the stored hash value */ 468 mze_destroy(zap); 469 470 fzap_upgrade(zap, tx); 471 472 for (i = 0; i < nchunks; i++) { 473 int err; 474 mzap_ent_phys_t *mze = &mzp->mz_chunk[i]; 475 zap_name_t *zn; 476 if (mze->mze_name[0] == 0) 477 continue; 478 dprintf("adding %s=%llu\n", 479 mze->mze_name, mze->mze_value); 480 zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT); 481 err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx); 482 zap = zn->zn_zap; /* fzap_add_cd() may change zap */ 483 zap_name_free(zn); 484 if (err) 485 break; 486 } 487 kmem_free(mzp, sz); 488 *zapp = zap; 489 return (err); 490 } 491 492 static void 493 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, dmu_tx_t *tx) 494 { 495 dmu_buf_t *db; 496 mzap_phys_t *zp; 497 498 VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db)); 499 500 #ifdef ZFS_DEBUG 501 { 502 dmu_object_info_t doi; 503 dmu_object_info_from_db(db, &doi); 504 ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap); 505 } 506 #endif 507 508 dmu_buf_will_dirty(db, tx); 509 zp = db->db_data; 510 zp->mz_block_type = ZBT_MICRO; 511 zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL; 512 zp->mz_normflags = normflags; 513 dmu_buf_rele(db, FTAG); 514 } 515 516 int 517 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot, 518 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 519 { 520 return (zap_create_claim_norm(os, obj, 521 0, ot, bonustype, bonuslen, tx)); 522 } 523 524 int 525 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags, 526 dmu_object_type_t ot, 527 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 528 { 529 int err; 530 531 err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx); 532 if (err != 0) 533 return (err); 534 mzap_create_impl(os, obj, normflags, tx); 535 return (0); 536 } 537 538 uint64_t 539 zap_create(objset_t *os, dmu_object_type_t ot, 540 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 541 { 542 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx)); 543 } 544 545 uint64_t 546 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot, 547 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 548 { 549 uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx); 550 551 mzap_create_impl(os, obj, normflags, tx); 552 return (obj); 553 } 554 555 int 556 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx) 557 { 558 /* 559 * dmu_object_free will free the object number and free the 560 * data. Freeing the data will cause our pageout function to be 561 * called, which will destroy our data (zap_leaf_t's and zap_t). 562 */ 563 564 return (dmu_object_free(os, zapobj, tx)); 565 } 566 567 _NOTE(ARGSUSED(0)) 568 void 569 zap_evict(dmu_buf_t *db, void *vzap) 570 { 571 zap_t *zap = vzap; 572 573 rw_destroy(&zap->zap_rwlock); 574 575 if (zap->zap_ismicro) 576 mze_destroy(zap); 577 else 578 mutex_destroy(&zap->zap_f.zap_num_entries_mtx); 579 580 kmem_free(zap, sizeof (zap_t)); 581 } 582 583 int 584 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count) 585 { 586 zap_t *zap; 587 int err; 588 589 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 590 if (err) 591 return (err); 592 if (!zap->zap_ismicro) { 593 err = fzap_count(zap, count); 594 } else { 595 *count = zap->zap_m.zap_num_entries; 596 } 597 zap_unlockdir(zap); 598 return (err); 599 } 600 601 /* 602 * zn may be NULL; if not specified, it will be computed if needed. 603 * See also the comment above zap_entry_normalization_conflict(). 604 */ 605 static boolean_t 606 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze) 607 { 608 mzap_ent_t *other; 609 int direction = AVL_BEFORE; 610 boolean_t allocdzn = B_FALSE; 611 612 if (zap->zap_normflags == 0) 613 return (B_FALSE); 614 615 again: 616 for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction); 617 other && other->mze_hash == mze->mze_hash; 618 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) { 619 620 if (zn == NULL) { 621 zn = zap_name_alloc(zap, mze->mze_phys.mze_name, 622 MT_FIRST); 623 allocdzn = B_TRUE; 624 } 625 if (zap_match(zn, other->mze_phys.mze_name)) { 626 if (allocdzn) 627 zap_name_free(zn); 628 return (B_TRUE); 629 } 630 } 631 632 if (direction == AVL_BEFORE) { 633 direction = AVL_AFTER; 634 goto again; 635 } 636 637 if (allocdzn) 638 zap_name_free(zn); 639 return (B_FALSE); 640 } 641 642 /* 643 * Routines for manipulating attributes. 644 */ 645 646 int 647 zap_lookup(objset_t *os, uint64_t zapobj, const char *name, 648 uint64_t integer_size, uint64_t num_integers, void *buf) 649 { 650 return (zap_lookup_norm(os, zapobj, name, integer_size, 651 num_integers, buf, MT_EXACT, NULL, 0, NULL)); 652 } 653 654 int 655 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name, 656 uint64_t integer_size, uint64_t num_integers, void *buf, 657 matchtype_t mt, char *realname, int rn_len, 658 boolean_t *ncp) 659 { 660 zap_t *zap; 661 int err; 662 mzap_ent_t *mze; 663 zap_name_t *zn; 664 665 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 666 if (err) 667 return (err); 668 zn = zap_name_alloc(zap, name, mt); 669 if (zn == NULL) { 670 zap_unlockdir(zap); 671 return (ENOTSUP); 672 } 673 674 if (!zap->zap_ismicro) { 675 err = fzap_lookup(zn, integer_size, num_integers, buf, 676 realname, rn_len, ncp); 677 } else { 678 mze = mze_find(zn); 679 if (mze == NULL) { 680 err = ENOENT; 681 } else { 682 if (num_integers < 1) { 683 err = EOVERFLOW; 684 } else if (integer_size != 8) { 685 err = EINVAL; 686 } else { 687 *(uint64_t *)buf = mze->mze_phys.mze_value; 688 (void) strlcpy(realname, 689 mze->mze_phys.mze_name, rn_len); 690 if (ncp) { 691 *ncp = mzap_normalization_conflict(zap, 692 zn, mze); 693 } 694 } 695 } 696 } 697 zap_name_free(zn); 698 zap_unlockdir(zap); 699 return (err); 700 } 701 702 int 703 zap_length(objset_t *os, uint64_t zapobj, const char *name, 704 uint64_t *integer_size, uint64_t *num_integers) 705 { 706 zap_t *zap; 707 int err; 708 mzap_ent_t *mze; 709 zap_name_t *zn; 710 711 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 712 if (err) 713 return (err); 714 zn = zap_name_alloc(zap, name, MT_EXACT); 715 if (zn == NULL) { 716 zap_unlockdir(zap); 717 return (ENOTSUP); 718 } 719 if (!zap->zap_ismicro) { 720 err = fzap_length(zn, integer_size, num_integers); 721 } else { 722 mze = mze_find(zn); 723 if (mze == NULL) { 724 err = ENOENT; 725 } else { 726 if (integer_size) 727 *integer_size = 8; 728 if (num_integers) 729 *num_integers = 1; 730 } 731 } 732 zap_name_free(zn); 733 zap_unlockdir(zap); 734 return (err); 735 } 736 737 static void 738 mzap_addent(zap_name_t *zn, uint64_t value) 739 { 740 int i; 741 zap_t *zap = zn->zn_zap; 742 int start = zap->zap_m.zap_alloc_next; 743 uint32_t cd; 744 745 dprintf("obj=%llu %s=%llu\n", zap->zap_object, 746 zn->zn_name_orij, value); 747 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock)); 748 749 #ifdef ZFS_DEBUG 750 for (i = 0; i < zap->zap_m.zap_num_chunks; i++) { 751 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 752 ASSERT(strcmp(zn->zn_name_orij, mze->mze_name) != 0); 753 } 754 #endif 755 756 cd = mze_find_unused_cd(zap, zn->zn_hash); 757 /* given the limited size of the microzap, this can't happen */ 758 ASSERT(cd != ZAP_MAXCD); 759 760 again: 761 for (i = start; i < zap->zap_m.zap_num_chunks; i++) { 762 mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i]; 763 if (mze->mze_name[0] == 0) { 764 mze->mze_value = value; 765 mze->mze_cd = cd; 766 (void) strcpy(mze->mze_name, zn->zn_name_orij); 767 zap->zap_m.zap_num_entries++; 768 zap->zap_m.zap_alloc_next = i+1; 769 if (zap->zap_m.zap_alloc_next == 770 zap->zap_m.zap_num_chunks) 771 zap->zap_m.zap_alloc_next = 0; 772 mze_insert(zap, i, zn->zn_hash, mze); 773 return; 774 } 775 } 776 if (start != 0) { 777 start = 0; 778 goto again; 779 } 780 ASSERT(!"out of entries!"); 781 } 782 783 int 784 zap_add(objset_t *os, uint64_t zapobj, const char *name, 785 int integer_size, uint64_t num_integers, 786 const void *val, dmu_tx_t *tx) 787 { 788 zap_t *zap; 789 int err; 790 mzap_ent_t *mze; 791 const uint64_t *intval = val; 792 zap_name_t *zn; 793 794 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 795 if (err) 796 return (err); 797 zn = zap_name_alloc(zap, name, MT_EXACT); 798 if (zn == NULL) { 799 zap_unlockdir(zap); 800 return (ENOTSUP); 801 } 802 if (!zap->zap_ismicro) { 803 err = fzap_add(zn, integer_size, num_integers, val, tx); 804 zap = zn->zn_zap; /* fzap_add() may change zap */ 805 } else if (integer_size != 8 || num_integers != 1 || 806 strlen(name) >= MZAP_NAME_LEN) { 807 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 808 zapobj, integer_size, num_integers, name); 809 err = mzap_upgrade(&zn->zn_zap, tx); 810 if (err == 0) 811 err = fzap_add(zn, integer_size, num_integers, val, tx); 812 zap = zn->zn_zap; /* fzap_add() may change zap */ 813 } else { 814 mze = mze_find(zn); 815 if (mze != NULL) { 816 err = EEXIST; 817 } else { 818 mzap_addent(zn, *intval); 819 } 820 } 821 ASSERT(zap == zn->zn_zap); 822 zap_name_free(zn); 823 if (zap != NULL) /* may be NULL if fzap_add() failed */ 824 zap_unlockdir(zap); 825 return (err); 826 } 827 828 int 829 zap_update(objset_t *os, uint64_t zapobj, const char *name, 830 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx) 831 { 832 zap_t *zap; 833 mzap_ent_t *mze; 834 const uint64_t *intval = val; 835 zap_name_t *zn; 836 int err; 837 838 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap); 839 if (err) 840 return (err); 841 zn = zap_name_alloc(zap, name, MT_EXACT); 842 if (zn == NULL) { 843 zap_unlockdir(zap); 844 return (ENOTSUP); 845 } 846 if (!zap->zap_ismicro) { 847 err = fzap_update(zn, integer_size, num_integers, val, tx); 848 zap = zn->zn_zap; /* fzap_update() may change zap */ 849 } else if (integer_size != 8 || num_integers != 1 || 850 strlen(name) >= MZAP_NAME_LEN) { 851 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n", 852 zapobj, integer_size, num_integers, name); 853 err = mzap_upgrade(&zn->zn_zap, tx); 854 if (err == 0) 855 err = fzap_update(zn, integer_size, num_integers, 856 val, tx); 857 zap = zn->zn_zap; /* fzap_update() may change zap */ 858 } else { 859 mze = mze_find(zn); 860 if (mze != NULL) { 861 mze->mze_phys.mze_value = *intval; 862 zap->zap_m.zap_phys->mz_chunk 863 [mze->mze_chunkid].mze_value = *intval; 864 } else { 865 mzap_addent(zn, *intval); 866 } 867 } 868 ASSERT(zap == zn->zn_zap); 869 zap_name_free(zn); 870 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */ 871 zap_unlockdir(zap); 872 return (err); 873 } 874 875 int 876 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx) 877 { 878 return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx)); 879 } 880 881 int 882 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name, 883 matchtype_t mt, dmu_tx_t *tx) 884 { 885 zap_t *zap; 886 int err; 887 mzap_ent_t *mze; 888 zap_name_t *zn; 889 890 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap); 891 if (err) 892 return (err); 893 zn = zap_name_alloc(zap, name, mt); 894 if (zn == NULL) { 895 zap_unlockdir(zap); 896 return (ENOTSUP); 897 } 898 if (!zap->zap_ismicro) { 899 err = fzap_remove(zn, tx); 900 } else { 901 mze = mze_find(zn); 902 if (mze == NULL) { 903 err = ENOENT; 904 } else { 905 zap->zap_m.zap_num_entries--; 906 bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid], 907 sizeof (mzap_ent_phys_t)); 908 mze_remove(zap, mze); 909 } 910 } 911 zap_name_free(zn); 912 zap_unlockdir(zap); 913 return (err); 914 } 915 916 /* 917 * Routines for iterating over the attributes. 918 */ 919 920 /* 921 * We want to keep the high 32 bits of the cursor zero if we can, so 922 * that 32-bit programs can access this. So use a small hash value so 923 * we can fit 4 bits of cd into the 32-bit cursor. 924 * 925 * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ] 926 */ 927 void 928 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj, 929 uint64_t serialized) 930 { 931 zc->zc_objset = os; 932 zc->zc_zap = NULL; 933 zc->zc_leaf = NULL; 934 zc->zc_zapobj = zapobj; 935 if (serialized == -1ULL) { 936 zc->zc_hash = -1ULL; 937 zc->zc_cd = 0; 938 } else { 939 zc->zc_hash = serialized << (64-ZAP_HASHBITS); 940 zc->zc_cd = serialized >> ZAP_HASHBITS; 941 if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */ 942 zc->zc_cd = 0; 943 } 944 } 945 946 void 947 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj) 948 { 949 zap_cursor_init_serialized(zc, os, zapobj, 0); 950 } 951 952 void 953 zap_cursor_fini(zap_cursor_t *zc) 954 { 955 if (zc->zc_zap) { 956 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 957 zap_unlockdir(zc->zc_zap); 958 zc->zc_zap = NULL; 959 } 960 if (zc->zc_leaf) { 961 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER); 962 zap_put_leaf(zc->zc_leaf); 963 zc->zc_leaf = NULL; 964 } 965 zc->zc_objset = NULL; 966 } 967 968 uint64_t 969 zap_cursor_serialize(zap_cursor_t *zc) 970 { 971 if (zc->zc_hash == -1ULL) 972 return (-1ULL); 973 ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0); 974 ASSERT(zc->zc_cd < ZAP_MAXCD); 975 return ((zc->zc_hash >> (64-ZAP_HASHBITS)) | 976 ((uint64_t)zc->zc_cd << ZAP_HASHBITS)); 977 } 978 979 int 980 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za) 981 { 982 int err; 983 avl_index_t idx; 984 mzap_ent_t mze_tofind; 985 mzap_ent_t *mze; 986 987 if (zc->zc_hash == -1ULL) 988 return (ENOENT); 989 990 if (zc->zc_zap == NULL) { 991 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL, 992 RW_READER, TRUE, FALSE, &zc->zc_zap); 993 if (err) 994 return (err); 995 } else { 996 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER); 997 } 998 if (!zc->zc_zap->zap_ismicro) { 999 err = fzap_cursor_retrieve(zc->zc_zap, zc, za); 1000 } else { 1001 err = ENOENT; 1002 1003 mze_tofind.mze_hash = zc->zc_hash; 1004 mze_tofind.mze_phys.mze_cd = zc->zc_cd; 1005 1006 mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx); 1007 if (mze == NULL) { 1008 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl, 1009 idx, AVL_AFTER); 1010 } 1011 if (mze) { 1012 ASSERT(0 == bcmp(&mze->mze_phys, 1013 &zc->zc_zap->zap_m.zap_phys->mz_chunk 1014 [mze->mze_chunkid], sizeof (mze->mze_phys))); 1015 1016 za->za_normalization_conflict = 1017 mzap_normalization_conflict(zc->zc_zap, NULL, mze); 1018 za->za_integer_length = 8; 1019 za->za_num_integers = 1; 1020 za->za_first_integer = mze->mze_phys.mze_value; 1021 (void) strcpy(za->za_name, mze->mze_phys.mze_name); 1022 zc->zc_hash = mze->mze_hash; 1023 zc->zc_cd = mze->mze_phys.mze_cd; 1024 err = 0; 1025 } else { 1026 zc->zc_hash = -1ULL; 1027 } 1028 } 1029 rw_exit(&zc->zc_zap->zap_rwlock); 1030 return (err); 1031 } 1032 1033 void 1034 zap_cursor_advance(zap_cursor_t *zc) 1035 { 1036 if (zc->zc_hash == -1ULL) 1037 return; 1038 zc->zc_cd++; 1039 if (zc->zc_cd >= ZAP_MAXCD) { 1040 zc->zc_cd = 0; 1041 zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS); 1042 if (zc->zc_hash == 0) /* EOF */ 1043 zc->zc_hash = -1ULL; 1044 } 1045 } 1046 1047 int 1048 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs) 1049 { 1050 int err; 1051 zap_t *zap; 1052 1053 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap); 1054 if (err) 1055 return (err); 1056 1057 bzero(zs, sizeof (zap_stats_t)); 1058 1059 if (zap->zap_ismicro) { 1060 zs->zs_blocksize = zap->zap_dbuf->db_size; 1061 zs->zs_num_entries = zap->zap_m.zap_num_entries; 1062 zs->zs_num_blocks = 1; 1063 } else { 1064 fzap_get_stats(zap, zs); 1065 } 1066 zap_unlockdir(zap); 1067 return (0); 1068 } 1069