xref: /titanic_41/usr/src/uts/common/fs/zfs/zap_micro.c (revision 0684b8d5d8a1e528b19e9e8014be1d015793de9c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zio.h>
27 #include <sys/spa.h>
28 #include <sys/dmu.h>
29 #include <sys/zfs_context.h>
30 #include <sys/zap.h>
31 #include <sys/refcount.h>
32 #include <sys/zap_impl.h>
33 #include <sys/zap_leaf.h>
34 #include <sys/avl.h>
35 #include <sys/arc.h>
36 #include <sys/dmu_objset.h>
37 
38 #ifdef _KERNEL
39 #include <sys/sunddi.h>
40 #endif
41 
42 static int mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags);
43 
44 uint64_t
45 zap_getflags(zap_t *zap)
46 {
47 	if (zap->zap_ismicro)
48 		return (0);
49 	return (zap->zap_u.zap_fat.zap_phys->zap_flags);
50 }
51 
52 int
53 zap_hashbits(zap_t *zap)
54 {
55 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
56 		return (48);
57 	else
58 		return (28);
59 }
60 
61 uint32_t
62 zap_maxcd(zap_t *zap)
63 {
64 	if (zap_getflags(zap) & ZAP_FLAG_HASH64)
65 		return ((1<<16)-1);
66 	else
67 		return (-1U);
68 }
69 
70 static uint64_t
71 zap_hash(zap_name_t *zn)
72 {
73 	zap_t *zap = zn->zn_zap;
74 	uint64_t h = 0;
75 
76 	if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
77 		ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
78 		h = *(uint64_t *)zn->zn_key_orig;
79 	} else {
80 		h = zap->zap_salt;
81 		ASSERT(h != 0);
82 		ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
83 
84 		if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
85 			int i;
86 			const uint64_t *wp = zn->zn_key_norm;
87 
88 			ASSERT(zn->zn_key_intlen == 8);
89 			for (i = 0; i < zn->zn_key_norm_numints; wp++, i++) {
90 				int j;
91 				uint64_t word = *wp;
92 
93 				for (j = 0; j < zn->zn_key_intlen; j++) {
94 					h = (h >> 8) ^
95 					    zfs_crc64_table[(h ^ word) & 0xFF];
96 					word >>= NBBY;
97 				}
98 			}
99 		} else {
100 			int i, len;
101 			const uint8_t *cp = zn->zn_key_norm;
102 
103 			/*
104 			 * We previously stored the terminating null on
105 			 * disk, but didn't hash it, so we need to
106 			 * continue to not hash it.  (The
107 			 * zn_key_*_numints includes the terminating
108 			 * null for non-binary keys.)
109 			 */
110 			len = zn->zn_key_norm_numints - 1;
111 
112 			ASSERT(zn->zn_key_intlen == 1);
113 			for (i = 0; i < len; cp++, i++) {
114 				h = (h >> 8) ^
115 				    zfs_crc64_table[(h ^ *cp) & 0xFF];
116 			}
117 		}
118 	}
119 	/*
120 	 * Don't use all 64 bits, since we need some in the cookie for
121 	 * the collision differentiator.  We MUST use the high bits,
122 	 * since those are the ones that we first pay attention to when
123 	 * chosing the bucket.
124 	 */
125 	h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
126 
127 	return (h);
128 }
129 
130 static int
131 zap_normalize(zap_t *zap, const char *name, char *namenorm)
132 {
133 	size_t inlen, outlen;
134 	int err;
135 
136 	ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
137 
138 	inlen = strlen(name) + 1;
139 	outlen = ZAP_MAXNAMELEN;
140 
141 	err = 0;
142 	(void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 	    zap->zap_normflags | U8_TEXTPREP_IGNORE_NULL |
144 	    U8_TEXTPREP_IGNORE_INVALID, U8_UNICODE_LATEST, &err);
145 
146 	return (err);
147 }
148 
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
151 {
152 	ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
153 
154 	if (zn->zn_matchtype == MT_FIRST) {
155 		char norm[ZAP_MAXNAMELEN];
156 
157 		if (zap_normalize(zn->zn_zap, matchname, norm) != 0)
158 			return (B_FALSE);
159 
160 		return (strcmp(zn->zn_key_norm, norm) == 0);
161 	} else {
162 		/* MT_BEST or MT_EXACT */
163 		return (strcmp(zn->zn_key_orig, matchname) == 0);
164 	}
165 }
166 
167 void
168 zap_name_free(zap_name_t *zn)
169 {
170 	kmem_free(zn, sizeof (zap_name_t));
171 }
172 
173 zap_name_t *
174 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
175 {
176 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
177 
178 	zn->zn_zap = zap;
179 	zn->zn_key_intlen = sizeof (*key);
180 	zn->zn_key_orig = key;
181 	zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
182 	zn->zn_matchtype = mt;
183 	if (zap->zap_normflags) {
184 		if (zap_normalize(zap, key, zn->zn_normbuf) != 0) {
185 			zap_name_free(zn);
186 			return (NULL);
187 		}
188 		zn->zn_key_norm = zn->zn_normbuf;
189 		zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
190 	} else {
191 		if (mt != MT_EXACT) {
192 			zap_name_free(zn);
193 			return (NULL);
194 		}
195 		zn->zn_key_norm = zn->zn_key_orig;
196 		zn->zn_key_norm_numints = zn->zn_key_orig_numints;
197 	}
198 
199 	zn->zn_hash = zap_hash(zn);
200 	return (zn);
201 }
202 
203 zap_name_t *
204 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
205 {
206 	zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
207 
208 	ASSERT(zap->zap_normflags == 0);
209 	zn->zn_zap = zap;
210 	zn->zn_key_intlen = sizeof (*key);
211 	zn->zn_key_orig = zn->zn_key_norm = key;
212 	zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
213 	zn->zn_matchtype = MT_EXACT;
214 
215 	zn->zn_hash = zap_hash(zn);
216 	return (zn);
217 }
218 
219 static void
220 mzap_byteswap(mzap_phys_t *buf, size_t size)
221 {
222 	int i, max;
223 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
224 	buf->mz_salt = BSWAP_64(buf->mz_salt);
225 	buf->mz_normflags = BSWAP_64(buf->mz_normflags);
226 	max = (size / MZAP_ENT_LEN) - 1;
227 	for (i = 0; i < max; i++) {
228 		buf->mz_chunk[i].mze_value =
229 		    BSWAP_64(buf->mz_chunk[i].mze_value);
230 		buf->mz_chunk[i].mze_cd =
231 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
232 	}
233 }
234 
235 void
236 zap_byteswap(void *buf, size_t size)
237 {
238 	uint64_t block_type;
239 
240 	block_type = *(uint64_t *)buf;
241 
242 	if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
243 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
244 		mzap_byteswap(buf, size);
245 	} else {
246 		fzap_byteswap(buf, size);
247 	}
248 }
249 
250 static int
251 mze_compare(const void *arg1, const void *arg2)
252 {
253 	const mzap_ent_t *mze1 = arg1;
254 	const mzap_ent_t *mze2 = arg2;
255 
256 	if (mze1->mze_hash > mze2->mze_hash)
257 		return (+1);
258 	if (mze1->mze_hash < mze2->mze_hash)
259 		return (-1);
260 	if (mze1->mze_cd > mze2->mze_cd)
261 		return (+1);
262 	if (mze1->mze_cd < mze2->mze_cd)
263 		return (-1);
264 	return (0);
265 }
266 
267 static void
268 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
269 {
270 	mzap_ent_t *mze;
271 
272 	ASSERT(zap->zap_ismicro);
273 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
274 
275 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
276 	mze->mze_chunkid = chunkid;
277 	mze->mze_hash = hash;
278 	mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
279 	ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
280 	avl_add(&zap->zap_m.zap_avl, mze);
281 }
282 
283 static mzap_ent_t *
284 mze_find(zap_name_t *zn)
285 {
286 	mzap_ent_t mze_tofind;
287 	mzap_ent_t *mze;
288 	avl_index_t idx;
289 	avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
290 
291 	ASSERT(zn->zn_zap->zap_ismicro);
292 	ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
293 
294 	mze_tofind.mze_hash = zn->zn_hash;
295 	mze_tofind.mze_cd = 0;
296 
297 again:
298 	mze = avl_find(avl, &mze_tofind, &idx);
299 	if (mze == NULL)
300 		mze = avl_nearest(avl, idx, AVL_AFTER);
301 	for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
302 		ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
303 		if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
304 			return (mze);
305 	}
306 	if (zn->zn_matchtype == MT_BEST) {
307 		zn->zn_matchtype = MT_FIRST;
308 		goto again;
309 	}
310 	return (NULL);
311 }
312 
313 static uint32_t
314 mze_find_unused_cd(zap_t *zap, uint64_t hash)
315 {
316 	mzap_ent_t mze_tofind;
317 	mzap_ent_t *mze;
318 	avl_index_t idx;
319 	avl_tree_t *avl = &zap->zap_m.zap_avl;
320 	uint32_t cd;
321 
322 	ASSERT(zap->zap_ismicro);
323 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
324 
325 	mze_tofind.mze_hash = hash;
326 	mze_tofind.mze_cd = 0;
327 
328 	cd = 0;
329 	for (mze = avl_find(avl, &mze_tofind, &idx);
330 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
331 		if (mze->mze_cd != cd)
332 			break;
333 		cd++;
334 	}
335 
336 	return (cd);
337 }
338 
339 static void
340 mze_remove(zap_t *zap, mzap_ent_t *mze)
341 {
342 	ASSERT(zap->zap_ismicro);
343 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
344 
345 	avl_remove(&zap->zap_m.zap_avl, mze);
346 	kmem_free(mze, sizeof (mzap_ent_t));
347 }
348 
349 static void
350 mze_destroy(zap_t *zap)
351 {
352 	mzap_ent_t *mze;
353 	void *avlcookie = NULL;
354 
355 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
356 		kmem_free(mze, sizeof (mzap_ent_t));
357 	avl_destroy(&zap->zap_m.zap_avl);
358 }
359 
360 static zap_t *
361 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
362 {
363 	zap_t *winner;
364 	zap_t *zap;
365 	int i;
366 
367 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
368 
369 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
370 	rw_init(&zap->zap_rwlock, 0, 0, 0);
371 	rw_enter(&zap->zap_rwlock, RW_WRITER);
372 	zap->zap_objset = os;
373 	zap->zap_object = obj;
374 	zap->zap_dbuf = db;
375 
376 	if (*(uint64_t *)db->db_data != ZBT_MICRO) {
377 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
378 		zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
379 	} else {
380 		zap->zap_ismicro = TRUE;
381 	}
382 
383 	/*
384 	 * Make sure that zap_ismicro is set before we let others see
385 	 * it, because zap_lockdir() checks zap_ismicro without the lock
386 	 * held.
387 	 */
388 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_evict);
389 
390 	if (winner != NULL) {
391 		rw_exit(&zap->zap_rwlock);
392 		rw_destroy(&zap->zap_rwlock);
393 		if (!zap->zap_ismicro)
394 			mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
395 		kmem_free(zap, sizeof (zap_t));
396 		return (winner);
397 	}
398 
399 	if (zap->zap_ismicro) {
400 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
401 		zap->zap_normflags = zap->zap_m.zap_phys->mz_normflags;
402 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
403 		avl_create(&zap->zap_m.zap_avl, mze_compare,
404 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
405 
406 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
407 			mzap_ent_phys_t *mze =
408 			    &zap->zap_m.zap_phys->mz_chunk[i];
409 			if (mze->mze_name[0]) {
410 				zap_name_t *zn;
411 
412 				zap->zap_m.zap_num_entries++;
413 				zn = zap_name_alloc(zap, mze->mze_name,
414 				    MT_EXACT);
415 				mze_insert(zap, i, zn->zn_hash);
416 				zap_name_free(zn);
417 			}
418 		}
419 	} else {
420 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
421 		zap->zap_normflags = zap->zap_f.zap_phys->zap_normflags;
422 
423 		ASSERT3U(sizeof (struct zap_leaf_header), ==,
424 		    2*ZAP_LEAF_CHUNKSIZE);
425 
426 		/*
427 		 * The embedded pointer table should not overlap the
428 		 * other members.
429 		 */
430 		ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
431 		    &zap->zap_f.zap_phys->zap_salt);
432 
433 		/*
434 		 * The embedded pointer table should end at the end of
435 		 * the block
436 		 */
437 		ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
438 		    1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
439 		    (uintptr_t)zap->zap_f.zap_phys, ==,
440 		    zap->zap_dbuf->db_size);
441 	}
442 	rw_exit(&zap->zap_rwlock);
443 	return (zap);
444 }
445 
446 int
447 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
448     krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
449 {
450 	zap_t *zap;
451 	dmu_buf_t *db;
452 	krw_t lt;
453 	int err;
454 
455 	*zapp = NULL;
456 
457 	err = dmu_buf_hold(os, obj, 0, NULL, &db, DMU_READ_NO_PREFETCH);
458 	if (err)
459 		return (err);
460 
461 #ifdef ZFS_DEBUG
462 	{
463 		dmu_object_info_t doi;
464 		dmu_object_info_from_db(db, &doi);
465 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
466 	}
467 #endif
468 
469 	zap = dmu_buf_get_user(db);
470 	if (zap == NULL)
471 		zap = mzap_open(os, obj, db);
472 
473 	/*
474 	 * We're checking zap_ismicro without the lock held, in order to
475 	 * tell what type of lock we want.  Once we have some sort of
476 	 * lock, see if it really is the right type.  In practice this
477 	 * can only be different if it was upgraded from micro to fat,
478 	 * and micro wanted WRITER but fat only needs READER.
479 	 */
480 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
481 	rw_enter(&zap->zap_rwlock, lt);
482 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
483 		/* it was upgraded, now we only need reader */
484 		ASSERT(lt == RW_WRITER);
485 		ASSERT(RW_READER ==
486 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
487 		rw_downgrade(&zap->zap_rwlock);
488 		lt = RW_READER;
489 	}
490 
491 	zap->zap_objset = os;
492 
493 	if (lt == RW_WRITER)
494 		dmu_buf_will_dirty(db, tx);
495 
496 	ASSERT3P(zap->zap_dbuf, ==, db);
497 
498 	ASSERT(!zap->zap_ismicro ||
499 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
500 	if (zap->zap_ismicro && tx && adding &&
501 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
502 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
503 		if (newsz > MZAP_MAX_BLKSZ) {
504 			dprintf("upgrading obj %llu: num_entries=%u\n",
505 			    obj, zap->zap_m.zap_num_entries);
506 			*zapp = zap;
507 			return (mzap_upgrade(zapp, tx, 0));
508 		}
509 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
510 		ASSERT0(err);
511 		zap->zap_m.zap_num_chunks =
512 		    db->db_size / MZAP_ENT_LEN - 1;
513 	}
514 
515 	*zapp = zap;
516 	return (0);
517 }
518 
519 void
520 zap_unlockdir(zap_t *zap)
521 {
522 	rw_exit(&zap->zap_rwlock);
523 	dmu_buf_rele(zap->zap_dbuf, NULL);
524 }
525 
526 static int
527 mzap_upgrade(zap_t **zapp, dmu_tx_t *tx, zap_flags_t flags)
528 {
529 	mzap_phys_t *mzp;
530 	int i, sz, nchunks;
531 	int err = 0;
532 	zap_t *zap = *zapp;
533 
534 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
535 
536 	sz = zap->zap_dbuf->db_size;
537 	mzp = kmem_alloc(sz, KM_SLEEP);
538 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
539 	nchunks = zap->zap_m.zap_num_chunks;
540 
541 	if (!flags) {
542 		err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
543 		    1ULL << fzap_default_block_shift, 0, tx);
544 		if (err) {
545 			kmem_free(mzp, sz);
546 			return (err);
547 		}
548 	}
549 
550 	dprintf("upgrading obj=%llu with %u chunks\n",
551 	    zap->zap_object, nchunks);
552 	/* XXX destroy the avl later, so we can use the stored hash value */
553 	mze_destroy(zap);
554 
555 	fzap_upgrade(zap, tx, flags);
556 
557 	for (i = 0; i < nchunks; i++) {
558 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
559 		zap_name_t *zn;
560 		if (mze->mze_name[0] == 0)
561 			continue;
562 		dprintf("adding %s=%llu\n",
563 		    mze->mze_name, mze->mze_value);
564 		zn = zap_name_alloc(zap, mze->mze_name, MT_EXACT);
565 		err = fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd, tx);
566 		zap = zn->zn_zap;	/* fzap_add_cd() may change zap */
567 		zap_name_free(zn);
568 		if (err)
569 			break;
570 	}
571 	kmem_free(mzp, sz);
572 	*zapp = zap;
573 	return (err);
574 }
575 
576 void
577 mzap_create_impl(objset_t *os, uint64_t obj, int normflags, zap_flags_t flags,
578     dmu_tx_t *tx)
579 {
580 	dmu_buf_t *db;
581 	mzap_phys_t *zp;
582 
583 	VERIFY(0 == dmu_buf_hold(os, obj, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
584 
585 #ifdef ZFS_DEBUG
586 	{
587 		dmu_object_info_t doi;
588 		dmu_object_info_from_db(db, &doi);
589 		ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
590 	}
591 #endif
592 
593 	dmu_buf_will_dirty(db, tx);
594 	zp = db->db_data;
595 	zp->mz_block_type = ZBT_MICRO;
596 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
597 	zp->mz_normflags = normflags;
598 	dmu_buf_rele(db, FTAG);
599 
600 	if (flags != 0) {
601 		zap_t *zap;
602 		/* Only fat zap supports flags; upgrade immediately. */
603 		VERIFY(0 == zap_lockdir(os, obj, tx, RW_WRITER,
604 		    B_FALSE, B_FALSE, &zap));
605 		VERIFY3U(0, ==, mzap_upgrade(&zap, tx, flags));
606 		zap_unlockdir(zap);
607 	}
608 }
609 
610 int
611 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
612     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
613 {
614 	return (zap_create_claim_norm(os, obj,
615 	    0, ot, bonustype, bonuslen, tx));
616 }
617 
618 int
619 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
620     dmu_object_type_t ot,
621     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
622 {
623 	int err;
624 
625 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
626 	if (err != 0)
627 		return (err);
628 	mzap_create_impl(os, obj, normflags, 0, tx);
629 	return (0);
630 }
631 
632 uint64_t
633 zap_create(objset_t *os, dmu_object_type_t ot,
634     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
635 {
636 	return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
637 }
638 
639 uint64_t
640 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
641     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
642 {
643 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
644 
645 	mzap_create_impl(os, obj, normflags, 0, tx);
646 	return (obj);
647 }
648 
649 uint64_t
650 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
651     dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
652     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
653 {
654 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
655 
656 	ASSERT(leaf_blockshift >= SPA_MINBLOCKSHIFT &&
657 	    leaf_blockshift <= SPA_OLD_MAXBLOCKSHIFT &&
658 	    indirect_blockshift >= SPA_MINBLOCKSHIFT &&
659 	    indirect_blockshift <= SPA_OLD_MAXBLOCKSHIFT);
660 
661 	VERIFY(dmu_object_set_blocksize(os, obj,
662 	    1ULL << leaf_blockshift, indirect_blockshift, tx) == 0);
663 
664 	mzap_create_impl(os, obj, normflags, flags, tx);
665 	return (obj);
666 }
667 
668 int
669 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
670 {
671 	/*
672 	 * dmu_object_free will free the object number and free the
673 	 * data.  Freeing the data will cause our pageout function to be
674 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
675 	 */
676 
677 	return (dmu_object_free(os, zapobj, tx));
678 }
679 
680 _NOTE(ARGSUSED(0))
681 void
682 zap_evict(dmu_buf_t *db, void *vzap)
683 {
684 	zap_t *zap = vzap;
685 
686 	rw_destroy(&zap->zap_rwlock);
687 
688 	if (zap->zap_ismicro)
689 		mze_destroy(zap);
690 	else
691 		mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
692 
693 	kmem_free(zap, sizeof (zap_t));
694 }
695 
696 int
697 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
698 {
699 	zap_t *zap;
700 	int err;
701 
702 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
703 	if (err)
704 		return (err);
705 	if (!zap->zap_ismicro) {
706 		err = fzap_count(zap, count);
707 	} else {
708 		*count = zap->zap_m.zap_num_entries;
709 	}
710 	zap_unlockdir(zap);
711 	return (err);
712 }
713 
714 /*
715  * zn may be NULL; if not specified, it will be computed if needed.
716  * See also the comment above zap_entry_normalization_conflict().
717  */
718 static boolean_t
719 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
720 {
721 	mzap_ent_t *other;
722 	int direction = AVL_BEFORE;
723 	boolean_t allocdzn = B_FALSE;
724 
725 	if (zap->zap_normflags == 0)
726 		return (B_FALSE);
727 
728 again:
729 	for (other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
730 	    other && other->mze_hash == mze->mze_hash;
731 	    other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
732 
733 		if (zn == NULL) {
734 			zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
735 			    MT_FIRST);
736 			allocdzn = B_TRUE;
737 		}
738 		if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
739 			if (allocdzn)
740 				zap_name_free(zn);
741 			return (B_TRUE);
742 		}
743 	}
744 
745 	if (direction == AVL_BEFORE) {
746 		direction = AVL_AFTER;
747 		goto again;
748 	}
749 
750 	if (allocdzn)
751 		zap_name_free(zn);
752 	return (B_FALSE);
753 }
754 
755 /*
756  * Routines for manipulating attributes.
757  */
758 
759 int
760 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
761     uint64_t integer_size, uint64_t num_integers, void *buf)
762 {
763 	return (zap_lookup_norm(os, zapobj, name, integer_size,
764 	    num_integers, buf, MT_EXACT, NULL, 0, NULL));
765 }
766 
767 int
768 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
769     uint64_t integer_size, uint64_t num_integers, void *buf,
770     matchtype_t mt, char *realname, int rn_len,
771     boolean_t *ncp)
772 {
773 	zap_t *zap;
774 	int err;
775 	mzap_ent_t *mze;
776 	zap_name_t *zn;
777 
778 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
779 	if (err)
780 		return (err);
781 	zn = zap_name_alloc(zap, name, mt);
782 	if (zn == NULL) {
783 		zap_unlockdir(zap);
784 		return (SET_ERROR(ENOTSUP));
785 	}
786 
787 	if (!zap->zap_ismicro) {
788 		err = fzap_lookup(zn, integer_size, num_integers, buf,
789 		    realname, rn_len, ncp);
790 	} else {
791 		mze = mze_find(zn);
792 		if (mze == NULL) {
793 			err = SET_ERROR(ENOENT);
794 		} else {
795 			if (num_integers < 1) {
796 				err = SET_ERROR(EOVERFLOW);
797 			} else if (integer_size != 8) {
798 				err = SET_ERROR(EINVAL);
799 			} else {
800 				*(uint64_t *)buf =
801 				    MZE_PHYS(zap, mze)->mze_value;
802 				(void) strlcpy(realname,
803 				    MZE_PHYS(zap, mze)->mze_name, rn_len);
804 				if (ncp) {
805 					*ncp = mzap_normalization_conflict(zap,
806 					    zn, mze);
807 				}
808 			}
809 		}
810 	}
811 	zap_name_free(zn);
812 	zap_unlockdir(zap);
813 	return (err);
814 }
815 
816 int
817 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
818     int key_numints)
819 {
820 	zap_t *zap;
821 	int err;
822 	zap_name_t *zn;
823 
824 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
825 	if (err)
826 		return (err);
827 	zn = zap_name_alloc_uint64(zap, key, key_numints);
828 	if (zn == NULL) {
829 		zap_unlockdir(zap);
830 		return (SET_ERROR(ENOTSUP));
831 	}
832 
833 	fzap_prefetch(zn);
834 	zap_name_free(zn);
835 	zap_unlockdir(zap);
836 	return (err);
837 }
838 
839 int
840 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
841     int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
842 {
843 	zap_t *zap;
844 	int err;
845 	zap_name_t *zn;
846 
847 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
848 	if (err)
849 		return (err);
850 	zn = zap_name_alloc_uint64(zap, key, key_numints);
851 	if (zn == NULL) {
852 		zap_unlockdir(zap);
853 		return (SET_ERROR(ENOTSUP));
854 	}
855 
856 	err = fzap_lookup(zn, integer_size, num_integers, buf,
857 	    NULL, 0, NULL);
858 	zap_name_free(zn);
859 	zap_unlockdir(zap);
860 	return (err);
861 }
862 
863 int
864 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
865 {
866 	int err = zap_lookup_norm(os, zapobj, name, 0,
867 	    0, NULL, MT_EXACT, NULL, 0, NULL);
868 	if (err == EOVERFLOW || err == EINVAL)
869 		err = 0; /* found, but skipped reading the value */
870 	return (err);
871 }
872 
873 int
874 zap_length(objset_t *os, uint64_t zapobj, const char *name,
875     uint64_t *integer_size, uint64_t *num_integers)
876 {
877 	zap_t *zap;
878 	int err;
879 	mzap_ent_t *mze;
880 	zap_name_t *zn;
881 
882 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
883 	if (err)
884 		return (err);
885 	zn = zap_name_alloc(zap, name, MT_EXACT);
886 	if (zn == NULL) {
887 		zap_unlockdir(zap);
888 		return (SET_ERROR(ENOTSUP));
889 	}
890 	if (!zap->zap_ismicro) {
891 		err = fzap_length(zn, integer_size, num_integers);
892 	} else {
893 		mze = mze_find(zn);
894 		if (mze == NULL) {
895 			err = SET_ERROR(ENOENT);
896 		} else {
897 			if (integer_size)
898 				*integer_size = 8;
899 			if (num_integers)
900 				*num_integers = 1;
901 		}
902 	}
903 	zap_name_free(zn);
904 	zap_unlockdir(zap);
905 	return (err);
906 }
907 
908 int
909 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
910     int key_numints, uint64_t *integer_size, uint64_t *num_integers)
911 {
912 	zap_t *zap;
913 	int err;
914 	zap_name_t *zn;
915 
916 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
917 	if (err)
918 		return (err);
919 	zn = zap_name_alloc_uint64(zap, key, key_numints);
920 	if (zn == NULL) {
921 		zap_unlockdir(zap);
922 		return (SET_ERROR(ENOTSUP));
923 	}
924 	err = fzap_length(zn, integer_size, num_integers);
925 	zap_name_free(zn);
926 	zap_unlockdir(zap);
927 	return (err);
928 }
929 
930 static void
931 mzap_addent(zap_name_t *zn, uint64_t value)
932 {
933 	int i;
934 	zap_t *zap = zn->zn_zap;
935 	int start = zap->zap_m.zap_alloc_next;
936 	uint32_t cd;
937 
938 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
939 
940 #ifdef ZFS_DEBUG
941 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
942 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
943 		ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
944 	}
945 #endif
946 
947 	cd = mze_find_unused_cd(zap, zn->zn_hash);
948 	/* given the limited size of the microzap, this can't happen */
949 	ASSERT(cd < zap_maxcd(zap));
950 
951 again:
952 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
953 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
954 		if (mze->mze_name[0] == 0) {
955 			mze->mze_value = value;
956 			mze->mze_cd = cd;
957 			(void) strcpy(mze->mze_name, zn->zn_key_orig);
958 			zap->zap_m.zap_num_entries++;
959 			zap->zap_m.zap_alloc_next = i+1;
960 			if (zap->zap_m.zap_alloc_next ==
961 			    zap->zap_m.zap_num_chunks)
962 				zap->zap_m.zap_alloc_next = 0;
963 			mze_insert(zap, i, zn->zn_hash);
964 			return;
965 		}
966 	}
967 	if (start != 0) {
968 		start = 0;
969 		goto again;
970 	}
971 	ASSERT(!"out of entries!");
972 }
973 
974 int
975 zap_add(objset_t *os, uint64_t zapobj, const char *key,
976     int integer_size, uint64_t num_integers,
977     const void *val, dmu_tx_t *tx)
978 {
979 	zap_t *zap;
980 	int err;
981 	mzap_ent_t *mze;
982 	const uint64_t *intval = val;
983 	zap_name_t *zn;
984 
985 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
986 	if (err)
987 		return (err);
988 	zn = zap_name_alloc(zap, key, MT_EXACT);
989 	if (zn == NULL) {
990 		zap_unlockdir(zap);
991 		return (SET_ERROR(ENOTSUP));
992 	}
993 	if (!zap->zap_ismicro) {
994 		err = fzap_add(zn, integer_size, num_integers, val, tx);
995 		zap = zn->zn_zap;	/* fzap_add() may change zap */
996 	} else if (integer_size != 8 || num_integers != 1 ||
997 	    strlen(key) >= MZAP_NAME_LEN) {
998 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
999 		if (err == 0)
1000 			err = fzap_add(zn, integer_size, num_integers, val, tx);
1001 		zap = zn->zn_zap;	/* fzap_add() may change zap */
1002 	} else {
1003 		mze = mze_find(zn);
1004 		if (mze != NULL) {
1005 			err = SET_ERROR(EEXIST);
1006 		} else {
1007 			mzap_addent(zn, *intval);
1008 		}
1009 	}
1010 	ASSERT(zap == zn->zn_zap);
1011 	zap_name_free(zn);
1012 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1013 		zap_unlockdir(zap);
1014 	return (err);
1015 }
1016 
1017 int
1018 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1019     int key_numints, int integer_size, uint64_t num_integers,
1020     const void *val, dmu_tx_t *tx)
1021 {
1022 	zap_t *zap;
1023 	int err;
1024 	zap_name_t *zn;
1025 
1026 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1027 	if (err)
1028 		return (err);
1029 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1030 	if (zn == NULL) {
1031 		zap_unlockdir(zap);
1032 		return (SET_ERROR(ENOTSUP));
1033 	}
1034 	err = fzap_add(zn, integer_size, num_integers, val, tx);
1035 	zap = zn->zn_zap;	/* fzap_add() may change zap */
1036 	zap_name_free(zn);
1037 	if (zap != NULL)	/* may be NULL if fzap_add() failed */
1038 		zap_unlockdir(zap);
1039 	return (err);
1040 }
1041 
1042 int
1043 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1044     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1045 {
1046 	zap_t *zap;
1047 	mzap_ent_t *mze;
1048 	uint64_t oldval;
1049 	const uint64_t *intval = val;
1050 	zap_name_t *zn;
1051 	int err;
1052 
1053 #ifdef ZFS_DEBUG
1054 	/*
1055 	 * If there is an old value, it shouldn't change across the
1056 	 * lockdir (eg, due to bprewrite's xlation).
1057 	 */
1058 	if (integer_size == 8 && num_integers == 1)
1059 		(void) zap_lookup(os, zapobj, name, 8, 1, &oldval);
1060 #endif
1061 
1062 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1063 	if (err)
1064 		return (err);
1065 	zn = zap_name_alloc(zap, name, MT_EXACT);
1066 	if (zn == NULL) {
1067 		zap_unlockdir(zap);
1068 		return (SET_ERROR(ENOTSUP));
1069 	}
1070 	if (!zap->zap_ismicro) {
1071 		err = fzap_update(zn, integer_size, num_integers, val, tx);
1072 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1073 	} else if (integer_size != 8 || num_integers != 1 ||
1074 	    strlen(name) >= MZAP_NAME_LEN) {
1075 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1076 		    zapobj, integer_size, num_integers, name);
1077 		err = mzap_upgrade(&zn->zn_zap, tx, 0);
1078 		if (err == 0)
1079 			err = fzap_update(zn, integer_size, num_integers,
1080 			    val, tx);
1081 		zap = zn->zn_zap;	/* fzap_update() may change zap */
1082 	} else {
1083 		mze = mze_find(zn);
1084 		if (mze != NULL) {
1085 			ASSERT3U(MZE_PHYS(zap, mze)->mze_value, ==, oldval);
1086 			MZE_PHYS(zap, mze)->mze_value = *intval;
1087 		} else {
1088 			mzap_addent(zn, *intval);
1089 		}
1090 	}
1091 	ASSERT(zap == zn->zn_zap);
1092 	zap_name_free(zn);
1093 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1094 		zap_unlockdir(zap);
1095 	return (err);
1096 }
1097 
1098 int
1099 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1100     int key_numints,
1101     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1102 {
1103 	zap_t *zap;
1104 	zap_name_t *zn;
1105 	int err;
1106 
1107 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, &zap);
1108 	if (err)
1109 		return (err);
1110 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1111 	if (zn == NULL) {
1112 		zap_unlockdir(zap);
1113 		return (SET_ERROR(ENOTSUP));
1114 	}
1115 	err = fzap_update(zn, integer_size, num_integers, val, tx);
1116 	zap = zn->zn_zap;	/* fzap_update() may change zap */
1117 	zap_name_free(zn);
1118 	if (zap != NULL)	/* may be NULL if fzap_upgrade() failed */
1119 		zap_unlockdir(zap);
1120 	return (err);
1121 }
1122 
1123 int
1124 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1125 {
1126 	return (zap_remove_norm(os, zapobj, name, MT_EXACT, tx));
1127 }
1128 
1129 int
1130 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1131     matchtype_t mt, dmu_tx_t *tx)
1132 {
1133 	zap_t *zap;
1134 	int err;
1135 	mzap_ent_t *mze;
1136 	zap_name_t *zn;
1137 
1138 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1139 	if (err)
1140 		return (err);
1141 	zn = zap_name_alloc(zap, name, mt);
1142 	if (zn == NULL) {
1143 		zap_unlockdir(zap);
1144 		return (SET_ERROR(ENOTSUP));
1145 	}
1146 	if (!zap->zap_ismicro) {
1147 		err = fzap_remove(zn, tx);
1148 	} else {
1149 		mze = mze_find(zn);
1150 		if (mze == NULL) {
1151 			err = SET_ERROR(ENOENT);
1152 		} else {
1153 			zap->zap_m.zap_num_entries--;
1154 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
1155 			    sizeof (mzap_ent_phys_t));
1156 			mze_remove(zap, mze);
1157 		}
1158 	}
1159 	zap_name_free(zn);
1160 	zap_unlockdir(zap);
1161 	return (err);
1162 }
1163 
1164 int
1165 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1166     int key_numints, dmu_tx_t *tx)
1167 {
1168 	zap_t *zap;
1169 	int err;
1170 	zap_name_t *zn;
1171 
1172 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, &zap);
1173 	if (err)
1174 		return (err);
1175 	zn = zap_name_alloc_uint64(zap, key, key_numints);
1176 	if (zn == NULL) {
1177 		zap_unlockdir(zap);
1178 		return (SET_ERROR(ENOTSUP));
1179 	}
1180 	err = fzap_remove(zn, tx);
1181 	zap_name_free(zn);
1182 	zap_unlockdir(zap);
1183 	return (err);
1184 }
1185 
1186 /*
1187  * Routines for iterating over the attributes.
1188  */
1189 
1190 void
1191 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1192     uint64_t serialized)
1193 {
1194 	zc->zc_objset = os;
1195 	zc->zc_zap = NULL;
1196 	zc->zc_leaf = NULL;
1197 	zc->zc_zapobj = zapobj;
1198 	zc->zc_serialized = serialized;
1199 	zc->zc_hash = 0;
1200 	zc->zc_cd = 0;
1201 }
1202 
1203 void
1204 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1205 {
1206 	zap_cursor_init_serialized(zc, os, zapobj, 0);
1207 }
1208 
1209 void
1210 zap_cursor_fini(zap_cursor_t *zc)
1211 {
1212 	if (zc->zc_zap) {
1213 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1214 		zap_unlockdir(zc->zc_zap);
1215 		zc->zc_zap = NULL;
1216 	}
1217 	if (zc->zc_leaf) {
1218 		rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1219 		zap_put_leaf(zc->zc_leaf);
1220 		zc->zc_leaf = NULL;
1221 	}
1222 	zc->zc_objset = NULL;
1223 }
1224 
1225 uint64_t
1226 zap_cursor_serialize(zap_cursor_t *zc)
1227 {
1228 	if (zc->zc_hash == -1ULL)
1229 		return (-1ULL);
1230 	if (zc->zc_zap == NULL)
1231 		return (zc->zc_serialized);
1232 	ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1233 	ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1234 
1235 	/*
1236 	 * We want to keep the high 32 bits of the cursor zero if we can, so
1237 	 * that 32-bit programs can access this.  So usually use a small
1238 	 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1239 	 * of the cursor.
1240 	 *
1241 	 * [ collision differentiator | zap_hashbits()-bit hash value ]
1242 	 */
1243 	return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1244 	    ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1245 }
1246 
1247 int
1248 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1249 {
1250 	int err;
1251 	avl_index_t idx;
1252 	mzap_ent_t mze_tofind;
1253 	mzap_ent_t *mze;
1254 
1255 	if (zc->zc_hash == -1ULL)
1256 		return (SET_ERROR(ENOENT));
1257 
1258 	if (zc->zc_zap == NULL) {
1259 		int hb;
1260 		err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1261 		    RW_READER, TRUE, FALSE, &zc->zc_zap);
1262 		if (err)
1263 			return (err);
1264 
1265 		/*
1266 		 * To support zap_cursor_init_serialized, advance, retrieve,
1267 		 * we must add to the existing zc_cd, which may already
1268 		 * be 1 due to the zap_cursor_advance.
1269 		 */
1270 		ASSERT(zc->zc_hash == 0);
1271 		hb = zap_hashbits(zc->zc_zap);
1272 		zc->zc_hash = zc->zc_serialized << (64 - hb);
1273 		zc->zc_cd += zc->zc_serialized >> hb;
1274 		if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1275 			zc->zc_cd = 0;
1276 	} else {
1277 		rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1278 	}
1279 	if (!zc->zc_zap->zap_ismicro) {
1280 		err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1281 	} else {
1282 		mze_tofind.mze_hash = zc->zc_hash;
1283 		mze_tofind.mze_cd = zc->zc_cd;
1284 
1285 		mze = avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1286 		if (mze == NULL) {
1287 			mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1288 			    idx, AVL_AFTER);
1289 		}
1290 		if (mze) {
1291 			mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1292 			ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1293 			za->za_normalization_conflict =
1294 			    mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1295 			za->za_integer_length = 8;
1296 			za->za_num_integers = 1;
1297 			za->za_first_integer = mzep->mze_value;
1298 			(void) strcpy(za->za_name, mzep->mze_name);
1299 			zc->zc_hash = mze->mze_hash;
1300 			zc->zc_cd = mze->mze_cd;
1301 			err = 0;
1302 		} else {
1303 			zc->zc_hash = -1ULL;
1304 			err = SET_ERROR(ENOENT);
1305 		}
1306 	}
1307 	rw_exit(&zc->zc_zap->zap_rwlock);
1308 	return (err);
1309 }
1310 
1311 void
1312 zap_cursor_advance(zap_cursor_t *zc)
1313 {
1314 	if (zc->zc_hash == -1ULL)
1315 		return;
1316 	zc->zc_cd++;
1317 }
1318 
1319 int
1320 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1321 {
1322 	int err;
1323 	zap_t *zap;
1324 
1325 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1326 	if (err)
1327 		return (err);
1328 
1329 	bzero(zs, sizeof (zap_stats_t));
1330 
1331 	if (zap->zap_ismicro) {
1332 		zs->zs_blocksize = zap->zap_dbuf->db_size;
1333 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
1334 		zs->zs_num_blocks = 1;
1335 	} else {
1336 		fzap_get_stats(zap, zs);
1337 	}
1338 	zap_unlockdir(zap);
1339 	return (0);
1340 }
1341 
1342 int
1343 zap_count_write(objset_t *os, uint64_t zapobj, const char *name, int add,
1344     uint64_t *towrite, uint64_t *tooverwrite)
1345 {
1346 	zap_t *zap;
1347 	int err = 0;
1348 
1349 	/*
1350 	 * Since, we don't have a name, we cannot figure out which blocks will
1351 	 * be affected in this operation. So, account for the worst case :
1352 	 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
1353 	 * - 4 new blocks written if adding:
1354 	 * 	- 2 blocks for possibly split leaves,
1355 	 * 	- 2 grown ptrtbl blocks
1356 	 *
1357 	 * This also accomodates the case where an add operation to a fairly
1358 	 * large microzap results in a promotion to fatzap.
1359 	 */
1360 	if (name == NULL) {
1361 		*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1362 		return (err);
1363 	}
1364 
1365 	/*
1366 	 * We lock the zap with adding == FALSE. Because, if we pass
1367 	 * the actual value of add, it could trigger a mzap_upgrade().
1368 	 * At present we are just evaluating the possibility of this operation
1369 	 * and hence we donot want to trigger an upgrade.
1370 	 */
1371 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, &zap);
1372 	if (err)
1373 		return (err);
1374 
1375 	if (!zap->zap_ismicro) {
1376 		zap_name_t *zn = zap_name_alloc(zap, name, MT_EXACT);
1377 		if (zn) {
1378 			err = fzap_count_write(zn, add, towrite,
1379 			    tooverwrite);
1380 			zap_name_free(zn);
1381 		} else {
1382 			/*
1383 			 * We treat this case as similar to (name == NULL)
1384 			 */
1385 			*towrite += (3 + (add ? 4 : 0)) * SPA_OLD_MAXBLOCKSIZE;
1386 		}
1387 	} else {
1388 		/*
1389 		 * We are here if (name != NULL) and this is a micro-zap.
1390 		 * We account for the header block depending on whether it
1391 		 * is freeable.
1392 		 *
1393 		 * Incase of an add-operation it is hard to find out
1394 		 * if this add will promote this microzap to fatzap.
1395 		 * Hence, we consider the worst case and account for the
1396 		 * blocks assuming this microzap would be promoted to a
1397 		 * fatzap.
1398 		 *
1399 		 * 1 block overwritten  : header block
1400 		 * 4 new blocks written : 2 new split leaf, 2 grown
1401 		 *			ptrtbl blocks
1402 		 */
1403 		if (dmu_buf_freeable(zap->zap_dbuf))
1404 			*tooverwrite += MZAP_MAX_BLKSZ;
1405 		else
1406 			*towrite += MZAP_MAX_BLKSZ;
1407 
1408 		if (add) {
1409 			*towrite += 4 * MZAP_MAX_BLKSZ;
1410 		}
1411 	}
1412 
1413 	zap_unlockdir(zap);
1414 	return (err);
1415 }
1416