1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/zap.h> 36 #include <sys/zap_impl.h> 37 #include <sys/zap_leaf.h> 38 #include <sys/spa.h> 39 #include <sys/dmu.h> 40 41 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 42 43 #define CHAIN_END 0xffff /* end of the chunk chain */ 44 45 /* half the (current) minimum block size */ 46 #define MAX_ARRAY_BYTES (8<<10) 47 48 #define LEAF_HASH(l, h) \ 49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 50 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 51 52 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 53 54 55 static void 56 zap_memset(void *a, int c, size_t n) 57 { 58 char *cp = a; 59 char *cpend = cp + n; 60 61 while (cp < cpend) 62 *cp++ = c; 63 } 64 65 static void 66 stv(int len, void *addr, uint64_t value) 67 { 68 switch (len) { 69 case 1: 70 *(uint8_t *)addr = value; 71 return; 72 case 2: 73 *(uint16_t *)addr = value; 74 return; 75 case 4: 76 *(uint32_t *)addr = value; 77 return; 78 case 8: 79 *(uint64_t *)addr = value; 80 return; 81 } 82 ASSERT(!"bad int len"); 83 } 84 85 static uint64_t 86 ldv(int len, const void *addr) 87 { 88 switch (len) { 89 case 1: 90 return (*(uint8_t *)addr); 91 case 2: 92 return (*(uint16_t *)addr); 93 case 4: 94 return (*(uint32_t *)addr); 95 case 8: 96 return (*(uint64_t *)addr); 97 } 98 ASSERT(!"bad int len"); 99 return (0xFEEDFACEDEADBEEFULL); 100 } 101 102 void 103 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 104 { 105 int i; 106 zap_leaf_t l; 107 l.l_bs = highbit(size)-1; 108 l.l_phys = buf; 109 110 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 111 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 112 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 113 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 114 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 115 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 116 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 117 118 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 119 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 120 121 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 122 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 123 struct zap_leaf_entry *le; 124 125 switch (lc->l_free.lf_type) { 126 case ZAP_CHUNK_ENTRY: 127 le = &lc->l_entry; 128 129 le->le_type = BSWAP_8(le->le_type); 130 le->le_int_size = BSWAP_8(le->le_int_size); 131 le->le_next = BSWAP_16(le->le_next); 132 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 133 le->le_name_length = BSWAP_16(le->le_name_length); 134 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 135 le->le_value_length = BSWAP_16(le->le_value_length); 136 le->le_cd = BSWAP_32(le->le_cd); 137 le->le_hash = BSWAP_64(le->le_hash); 138 break; 139 case ZAP_CHUNK_FREE: 140 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 141 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 142 break; 143 case ZAP_CHUNK_ARRAY: 144 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 145 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 146 /* la_array doesn't need swapping */ 147 break; 148 default: 149 ASSERT(!"bad leaf type"); 150 } 151 } 152 } 153 154 void 155 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 156 { 157 int i; 158 159 l->l_bs = highbit(l->l_dbuf->db_size)-1; 160 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 161 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 162 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 163 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 164 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 165 } 166 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 167 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 168 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 169 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 170 if (sort) 171 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 172 } 173 174 /* 175 * Routines which manipulate leaf chunks (l_chunk[]). 176 */ 177 178 static uint16_t 179 zap_leaf_chunk_alloc(zap_leaf_t *l) 180 { 181 int chunk; 182 183 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 184 185 chunk = l->l_phys->l_hdr.lh_freelist; 186 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 187 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 188 189 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 190 191 l->l_phys->l_hdr.lh_nfree--; 192 193 return (chunk); 194 } 195 196 static void 197 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 198 { 199 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 200 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 201 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 202 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 203 204 zlf->lf_type = ZAP_CHUNK_FREE; 205 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 206 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 207 l->l_phys->l_hdr.lh_freelist = chunk; 208 209 l->l_phys->l_hdr.lh_nfree++; 210 } 211 212 /* 213 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 214 */ 215 216 static uint16_t 217 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 218 int integer_size, int num_integers) 219 { 220 uint16_t chunk_head; 221 uint16_t *chunkp = &chunk_head; 222 int byten = 0; 223 uint64_t value; 224 int shift = (integer_size-1)*8; 225 int len = num_integers; 226 227 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 228 229 while (len > 0) { 230 uint16_t chunk = zap_leaf_chunk_alloc(l); 231 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 232 int i; 233 234 la->la_type = ZAP_CHUNK_ARRAY; 235 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 236 if (byten == 0) 237 value = ldv(integer_size, buf); 238 la->la_array[i] = value >> shift; 239 value <<= 8; 240 if (++byten == integer_size) { 241 byten = 0; 242 buf += integer_size; 243 if (--len == 0) 244 break; 245 } 246 } 247 248 *chunkp = chunk; 249 chunkp = &la->la_next; 250 } 251 *chunkp = CHAIN_END; 252 253 return (chunk_head); 254 } 255 256 static void 257 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 258 { 259 uint16_t chunk = *chunkp; 260 261 *chunkp = CHAIN_END; 262 263 while (chunk != CHAIN_END) { 264 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 265 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 266 ZAP_CHUNK_ARRAY); 267 zap_leaf_chunk_free(l, chunk); 268 chunk = nextchunk; 269 } 270 } 271 272 /* array_len and buf_len are in integers, not bytes */ 273 static void 274 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 275 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 276 char *buf) 277 { 278 int len = MIN(array_len, buf_len); 279 int byten = 0; 280 uint64_t value = 0; 281 282 ASSERT3U(array_int_len, <=, buf_int_len); 283 284 /* Fast path for one 8-byte integer */ 285 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 286 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 287 uint8_t *ip = la->la_array; 288 uint64_t *buf64 = (uint64_t *)buf; 289 290 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 291 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 292 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 293 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 294 return; 295 } 296 297 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 298 if (array_int_len == 1 && buf_int_len == 1 && 299 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 300 while (chunk != CHAIN_END) { 301 struct zap_leaf_array *la = 302 &ZAP_LEAF_CHUNK(l, chunk).l_array; 303 bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES); 304 buf += ZAP_LEAF_ARRAY_BYTES; 305 chunk = la->la_next; 306 } 307 return; 308 } 309 310 while (len > 0) { 311 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 312 int i; 313 314 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 315 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 316 value = (value << 8) | la->la_array[i]; 317 byten++; 318 if (byten == array_int_len) { 319 stv(buf_int_len, buf, value); 320 byten = 0; 321 len--; 322 if (len == 0) 323 return; 324 buf += buf_int_len; 325 } 326 } 327 chunk = la->la_next; 328 } 329 } 330 331 /* 332 * Only to be used on 8-bit arrays. 333 * array_len is actual len in bytes (not encoded le_value_length). 334 * namenorm is null-terminated. 335 */ 336 static boolean_t 337 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, int chunk, int array_len) 338 { 339 int bseen = 0; 340 341 if (zn->zn_matchtype == MT_FIRST) { 342 char *thisname = kmem_alloc(array_len, KM_SLEEP); 343 boolean_t match; 344 345 zap_leaf_array_read(l, chunk, 1, array_len, 1, 346 array_len, thisname); 347 match = zap_match(zn, thisname); 348 kmem_free(thisname, array_len); 349 return (match); 350 } 351 352 /* Fast path for exact matching */ 353 while (bseen < array_len) { 354 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 355 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 356 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 357 if (bcmp(la->la_array, zn->zn_name_orij + bseen, toread)) 358 break; 359 chunk = la->la_next; 360 bseen += toread; 361 } 362 return (bseen == array_len); 363 } 364 365 /* 366 * Routines which manipulate leaf entries. 367 */ 368 369 int 370 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 371 { 372 uint16_t *chunkp; 373 struct zap_leaf_entry *le; 374 375 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 376 377 again: 378 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 379 *chunkp != CHAIN_END; chunkp = &le->le_next) { 380 uint16_t chunk = *chunkp; 381 le = ZAP_LEAF_ENTRY(l, chunk); 382 383 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 384 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 385 386 if (le->le_hash != zn->zn_hash) 387 continue; 388 389 /* 390 * NB: the entry chain is always sorted by cd on 391 * normalized zap objects, so this will find the 392 * lowest-cd match for MT_FIRST. 393 */ 394 ASSERT(zn->zn_matchtype == MT_EXACT || 395 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 396 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 397 le->le_name_length)) { 398 zeh->zeh_num_integers = le->le_value_length; 399 zeh->zeh_integer_size = le->le_int_size; 400 zeh->zeh_cd = le->le_cd; 401 zeh->zeh_hash = le->le_hash; 402 zeh->zeh_chunkp = chunkp; 403 zeh->zeh_leaf = l; 404 return (0); 405 } 406 } 407 408 /* 409 * NB: we could of course do this in one pass, but that would be 410 * a pain. We'll see if MT_BEST is even used much. 411 */ 412 if (zn->zn_matchtype == MT_BEST) { 413 zn->zn_matchtype = MT_FIRST; 414 goto again; 415 } 416 417 return (ENOENT); 418 } 419 420 /* Return (h1,cd1 >= h2,cd2) */ 421 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 422 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 423 424 int 425 zap_leaf_lookup_closest(zap_leaf_t *l, 426 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 427 { 428 uint16_t chunk; 429 uint64_t besth = -1ULL; 430 uint32_t bestcd = ZAP_MAXCD; 431 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 432 uint16_t lh; 433 struct zap_leaf_entry *le; 434 435 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 436 437 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 438 for (chunk = l->l_phys->l_hash[lh]; 439 chunk != CHAIN_END; chunk = le->le_next) { 440 le = ZAP_LEAF_ENTRY(l, chunk); 441 442 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 443 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 444 445 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 446 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 447 ASSERT3U(bestlh, >=, lh); 448 bestlh = lh; 449 besth = le->le_hash; 450 bestcd = le->le_cd; 451 452 zeh->zeh_num_integers = le->le_value_length; 453 zeh->zeh_integer_size = le->le_int_size; 454 zeh->zeh_cd = le->le_cd; 455 zeh->zeh_hash = le->le_hash; 456 zeh->zeh_fakechunk = chunk; 457 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 458 zeh->zeh_leaf = l; 459 } 460 } 461 } 462 463 return (bestcd == ZAP_MAXCD ? ENOENT : 0); 464 } 465 466 int 467 zap_entry_read(const zap_entry_handle_t *zeh, 468 uint8_t integer_size, uint64_t num_integers, void *buf) 469 { 470 struct zap_leaf_entry *le = 471 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 472 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 473 474 if (le->le_int_size > integer_size) 475 return (EINVAL); 476 477 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size, 478 le->le_value_length, integer_size, num_integers, buf); 479 480 if (zeh->zeh_num_integers > num_integers) 481 return (EOVERFLOW); 482 return (0); 483 484 } 485 486 int 487 zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) 488 { 489 struct zap_leaf_entry *le = 490 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 491 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 492 493 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 494 le->le_name_length, 1, buflen, buf); 495 if (le->le_name_length > buflen) 496 return (EOVERFLOW); 497 return (0); 498 } 499 500 int 501 zap_entry_update(zap_entry_handle_t *zeh, 502 uint8_t integer_size, uint64_t num_integers, const void *buf) 503 { 504 int delta_chunks; 505 zap_leaf_t *l = zeh->zeh_leaf; 506 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 507 508 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 509 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); 510 511 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 512 return (EAGAIN); 513 514 /* 515 * We should search other chained leaves (via 516 * zap_entry_remove,create?) otherwise returning EAGAIN will 517 * just send us into an infinite loop if we have to chain 518 * another leaf block, rather than being able to split this 519 * block. 520 */ 521 522 zap_leaf_array_free(l, &le->le_value_chunk); 523 le->le_value_chunk = 524 zap_leaf_array_create(l, buf, integer_size, num_integers); 525 le->le_value_length = num_integers; 526 le->le_int_size = integer_size; 527 return (0); 528 } 529 530 void 531 zap_entry_remove(zap_entry_handle_t *zeh) 532 { 533 uint16_t entry_chunk; 534 struct zap_leaf_entry *le; 535 zap_leaf_t *l = zeh->zeh_leaf; 536 537 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 538 539 entry_chunk = *zeh->zeh_chunkp; 540 le = ZAP_LEAF_ENTRY(l, entry_chunk); 541 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 542 543 zap_leaf_array_free(l, &le->le_name_chunk); 544 zap_leaf_array_free(l, &le->le_value_chunk); 545 546 *zeh->zeh_chunkp = le->le_next; 547 zap_leaf_chunk_free(l, entry_chunk); 548 549 l->l_phys->l_hdr.lh_nentries--; 550 } 551 552 int 553 zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd, 554 uint8_t integer_size, uint64_t num_integers, const void *buf, 555 zap_entry_handle_t *zeh) 556 { 557 uint16_t chunk; 558 uint16_t *chunkp; 559 struct zap_leaf_entry *le; 560 uint64_t namelen, valuelen; 561 int numchunks; 562 563 valuelen = integer_size * num_integers; 564 namelen = strlen(name) + 1; 565 ASSERT(namelen >= 2); 566 567 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen) + 568 ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 569 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 570 return (E2BIG); 571 572 if (cd == ZAP_MAXCD) { 573 /* find the lowest unused cd */ 574 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 575 cd = 0; 576 577 for (chunk = *LEAF_HASH_ENTPTR(l, h); 578 chunk != CHAIN_END; chunk = le->le_next) { 579 le = ZAP_LEAF_ENTRY(l, chunk); 580 if (le->le_cd > cd) 581 break; 582 if (le->le_hash == h) { 583 ASSERT3U(cd, ==, le->le_cd); 584 cd++; 585 } 586 } 587 } else { 588 /* old unsorted format; do it the O(n^2) way */ 589 for (cd = 0; cd < ZAP_MAXCD; cd++) { 590 for (chunk = *LEAF_HASH_ENTPTR(l, h); 591 chunk != CHAIN_END; chunk = le->le_next) { 592 le = ZAP_LEAF_ENTRY(l, chunk); 593 if (le->le_hash == h && 594 le->le_cd == cd) { 595 break; 596 } 597 } 598 /* If this cd is not in use, we are good. */ 599 if (chunk == CHAIN_END) 600 break; 601 } 602 } 603 /* 604 * we would run out of space in a block before we could 605 * have ZAP_MAXCD entries 606 */ 607 ASSERT3U(cd, <, ZAP_MAXCD); 608 } 609 610 if (l->l_phys->l_hdr.lh_nfree < numchunks) 611 return (EAGAIN); 612 613 /* make the entry */ 614 chunk = zap_leaf_chunk_alloc(l); 615 le = ZAP_LEAF_ENTRY(l, chunk); 616 le->le_type = ZAP_CHUNK_ENTRY; 617 le->le_name_chunk = zap_leaf_array_create(l, name, 1, namelen); 618 le->le_name_length = namelen; 619 le->le_value_chunk = 620 zap_leaf_array_create(l, buf, integer_size, num_integers); 621 le->le_value_length = num_integers; 622 le->le_int_size = integer_size; 623 le->le_hash = h; 624 le->le_cd = cd; 625 626 /* link it into the hash chain */ 627 /* XXX if we did the search above, we could just use that */ 628 chunkp = zap_leaf_rehash_entry(l, chunk); 629 630 l->l_phys->l_hdr.lh_nentries++; 631 632 zeh->zeh_leaf = l; 633 zeh->zeh_num_integers = num_integers; 634 zeh->zeh_integer_size = le->le_int_size; 635 zeh->zeh_cd = le->le_cd; 636 zeh->zeh_hash = le->le_hash; 637 zeh->zeh_chunkp = chunkp; 638 639 return (0); 640 } 641 642 /* 643 * Determine if there is another entry with the same normalized form. 644 * For performance purposes, either zn or name must be provided (the 645 * other can be NULL). Note, there usually won't be any hash 646 * conflicts, in which case we don't need the concatenated/normalized 647 * form of the name. But all callers have one of these on hand anyway, 648 * so might as well take advantage. A cleaner but slower interface 649 * would accept neither argument, and compute the normalized name as 650 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 651 */ 652 boolean_t 653 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 654 const char *name, zap_t *zap) 655 { 656 uint64_t chunk; 657 struct zap_leaf_entry *le; 658 boolean_t allocdzn = B_FALSE; 659 660 if (zap->zap_normflags == 0) 661 return (B_FALSE); 662 663 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 664 chunk != CHAIN_END; chunk = le->le_next) { 665 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 666 if (le->le_hash != zeh->zeh_hash) 667 continue; 668 if (le->le_cd == zeh->zeh_cd) 669 continue; 670 671 if (zn == NULL) { 672 zn = zap_name_alloc(zap, name, MT_FIRST); 673 allocdzn = B_TRUE; 674 } 675 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 676 le->le_name_chunk, le->le_name_length)) { 677 if (allocdzn) 678 zap_name_free(zn); 679 return (B_TRUE); 680 } 681 } 682 if (allocdzn) 683 zap_name_free(zn); 684 return (B_FALSE); 685 } 686 687 /* 688 * Routines for transferring entries between leafs. 689 */ 690 691 static uint16_t * 692 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 693 { 694 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 695 struct zap_leaf_entry *le2; 696 uint16_t *chunkp; 697 698 /* 699 * keep the entry chain sorted by cd 700 * NB: this will not cause problems for unsorted leafs, though 701 * it is unnecessary there. 702 */ 703 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 704 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 705 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 706 if (le2->le_cd > le->le_cd) 707 break; 708 } 709 710 le->le_next = *chunkp; 711 *chunkp = entry; 712 return (chunkp); 713 } 714 715 static uint16_t 716 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 717 { 718 uint16_t new_chunk; 719 uint16_t *nchunkp = &new_chunk; 720 721 while (chunk != CHAIN_END) { 722 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 723 struct zap_leaf_array *nla = 724 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 725 struct zap_leaf_array *la = 726 &ZAP_LEAF_CHUNK(l, chunk).l_array; 727 int nextchunk = la->la_next; 728 729 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 730 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 731 732 *nla = *la; /* structure assignment */ 733 734 zap_leaf_chunk_free(l, chunk); 735 chunk = nextchunk; 736 *nchunkp = nchunk; 737 nchunkp = &nla->la_next; 738 } 739 *nchunkp = CHAIN_END; 740 return (new_chunk); 741 } 742 743 static void 744 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 745 { 746 struct zap_leaf_entry *le, *nle; 747 uint16_t chunk; 748 749 le = ZAP_LEAF_ENTRY(l, entry); 750 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 751 752 chunk = zap_leaf_chunk_alloc(nl); 753 nle = ZAP_LEAF_ENTRY(nl, chunk); 754 *nle = *le; /* structure assignment */ 755 756 (void) zap_leaf_rehash_entry(nl, chunk); 757 758 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 759 nle->le_value_chunk = 760 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 761 762 zap_leaf_chunk_free(l, entry); 763 764 l->l_phys->l_hdr.lh_nentries--; 765 nl->l_phys->l_hdr.lh_nentries++; 766 } 767 768 /* 769 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 770 */ 771 void 772 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 773 { 774 int i; 775 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 776 777 /* set new prefix and prefix_len */ 778 l->l_phys->l_hdr.lh_prefix <<= 1; 779 l->l_phys->l_hdr.lh_prefix_len++; 780 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 781 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 782 783 /* break existing hash chains */ 784 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 785 786 if (sort) 787 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 788 789 /* 790 * Transfer entries whose hash bit 'bit' is set to nl; rehash 791 * the remaining entries 792 * 793 * NB: We could find entries via the hashtable instead. That 794 * would be O(hashents+numents) rather than O(numblks+numents), 795 * but this accesses memory more sequentially, and when we're 796 * called, the block is usually pretty full. 797 */ 798 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 799 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 800 if (le->le_type != ZAP_CHUNK_ENTRY) 801 continue; 802 803 if (le->le_hash & (1ULL << bit)) 804 zap_leaf_transfer_entry(l, i, nl); 805 else 806 (void) zap_leaf_rehash_entry(l, i); 807 } 808 } 809 810 void 811 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 812 { 813 int i, n; 814 815 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 816 l->l_phys->l_hdr.lh_prefix_len; 817 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 818 zs->zs_leafs_with_2n_pointers[n]++; 819 820 821 n = l->l_phys->l_hdr.lh_nentries/5; 822 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 823 zs->zs_blocks_with_n5_entries[n]++; 824 825 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 826 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 827 (1<<FZAP_BLOCK_SHIFT(zap)); 828 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 829 zs->zs_blocks_n_tenths_full[n]++; 830 831 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 832 int nentries = 0; 833 int chunk = l->l_phys->l_hash[i]; 834 835 while (chunk != CHAIN_END) { 836 struct zap_leaf_entry *le = 837 ZAP_LEAF_ENTRY(l, chunk); 838 839 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) + 840 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * 841 le->le_int_size); 842 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 843 zs->zs_entries_using_n_chunks[n]++; 844 845 chunk = le->le_next; 846 nentries++; 847 } 848 849 n = nentries; 850 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 851 zs->zs_buckets_with_n_entries[n]++; 852 } 853 } 854