1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * The 512-byte leaf is broken into 32 16-byte chunks. 28 * chunk number n means l_chunk[n], even though the header precedes it. 29 * the names are stored null-terminated. 30 */ 31 32 #include <sys/zio.h> 33 #include <sys/spa.h> 34 #include <sys/dmu.h> 35 #include <sys/zfs_context.h> 36 #include <sys/fs/zfs.h> 37 #include <sys/zap.h> 38 #include <sys/zap_impl.h> 39 #include <sys/zap_leaf.h> 40 41 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 42 43 #define CHAIN_END 0xffff /* end of the chunk chain */ 44 45 /* half the (current) minimum block size */ 46 #define MAX_ARRAY_BYTES (8<<10) 47 48 #define LEAF_HASH(l, h) \ 49 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 50 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 51 52 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 53 54 55 static void 56 zap_memset(void *a, int c, size_t n) 57 { 58 char *cp = a; 59 char *cpend = cp + n; 60 61 while (cp < cpend) 62 *cp++ = c; 63 } 64 65 static void 66 stv(int len, void *addr, uint64_t value) 67 { 68 switch (len) { 69 case 1: 70 *(uint8_t *)addr = value; 71 return; 72 case 2: 73 *(uint16_t *)addr = value; 74 return; 75 case 4: 76 *(uint32_t *)addr = value; 77 return; 78 case 8: 79 *(uint64_t *)addr = value; 80 return; 81 } 82 ASSERT(!"bad int len"); 83 } 84 85 static uint64_t 86 ldv(int len, const void *addr) 87 { 88 switch (len) { 89 case 1: 90 return (*(uint8_t *)addr); 91 case 2: 92 return (*(uint16_t *)addr); 93 case 4: 94 return (*(uint32_t *)addr); 95 case 8: 96 return (*(uint64_t *)addr); 97 } 98 ASSERT(!"bad int len"); 99 return (0xFEEDFACEDEADBEEFULL); 100 } 101 102 void 103 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 104 { 105 int i; 106 zap_leaf_t l; 107 l.l_bs = highbit(size)-1; 108 l.l_phys = buf; 109 110 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 111 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 112 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 113 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 114 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 115 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 116 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 117 118 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 119 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 120 121 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 122 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 123 struct zap_leaf_entry *le; 124 125 switch (lc->l_free.lf_type) { 126 case ZAP_CHUNK_ENTRY: 127 le = &lc->l_entry; 128 129 le->le_type = BSWAP_8(le->le_type); 130 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 131 le->le_next = BSWAP_16(le->le_next); 132 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 133 le->le_name_numints = BSWAP_16(le->le_name_numints); 134 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 135 le->le_value_numints = BSWAP_16(le->le_value_numints); 136 le->le_cd = BSWAP_32(le->le_cd); 137 le->le_hash = BSWAP_64(le->le_hash); 138 break; 139 case ZAP_CHUNK_FREE: 140 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 141 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 142 break; 143 case ZAP_CHUNK_ARRAY: 144 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 145 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 146 /* la_array doesn't need swapping */ 147 break; 148 default: 149 ASSERT(!"bad leaf type"); 150 } 151 } 152 } 153 154 void 155 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 156 { 157 int i; 158 159 l->l_bs = highbit(l->l_dbuf->db_size)-1; 160 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 161 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 162 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 163 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 164 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 165 } 166 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 167 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 168 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 169 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 170 if (sort) 171 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 172 } 173 174 /* 175 * Routines which manipulate leaf chunks (l_chunk[]). 176 */ 177 178 static uint16_t 179 zap_leaf_chunk_alloc(zap_leaf_t *l) 180 { 181 int chunk; 182 183 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 184 185 chunk = l->l_phys->l_hdr.lh_freelist; 186 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 187 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 188 189 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 190 191 l->l_phys->l_hdr.lh_nfree--; 192 193 return (chunk); 194 } 195 196 static void 197 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 198 { 199 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 200 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 201 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 202 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 203 204 zlf->lf_type = ZAP_CHUNK_FREE; 205 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 206 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 207 l->l_phys->l_hdr.lh_freelist = chunk; 208 209 l->l_phys->l_hdr.lh_nfree++; 210 } 211 212 /* 213 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 214 */ 215 216 static uint16_t 217 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 218 int integer_size, int num_integers) 219 { 220 uint16_t chunk_head; 221 uint16_t *chunkp = &chunk_head; 222 int byten = 0; 223 uint64_t value; 224 int shift = (integer_size-1)*8; 225 int len = num_integers; 226 227 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 228 229 while (len > 0) { 230 uint16_t chunk = zap_leaf_chunk_alloc(l); 231 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 232 int i; 233 234 la->la_type = ZAP_CHUNK_ARRAY; 235 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 236 if (byten == 0) 237 value = ldv(integer_size, buf); 238 la->la_array[i] = value >> shift; 239 value <<= 8; 240 if (++byten == integer_size) { 241 byten = 0; 242 buf += integer_size; 243 if (--len == 0) 244 break; 245 } 246 } 247 248 *chunkp = chunk; 249 chunkp = &la->la_next; 250 } 251 *chunkp = CHAIN_END; 252 253 return (chunk_head); 254 } 255 256 static void 257 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 258 { 259 uint16_t chunk = *chunkp; 260 261 *chunkp = CHAIN_END; 262 263 while (chunk != CHAIN_END) { 264 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 265 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 266 ZAP_CHUNK_ARRAY); 267 zap_leaf_chunk_free(l, chunk); 268 chunk = nextchunk; 269 } 270 } 271 272 /* array_len and buf_len are in integers, not bytes */ 273 static void 274 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 275 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 276 void *buf) 277 { 278 int len = MIN(array_len, buf_len); 279 int byten = 0; 280 uint64_t value = 0; 281 char *p = buf; 282 283 ASSERT3U(array_int_len, <=, buf_int_len); 284 285 /* Fast path for one 8-byte integer */ 286 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 287 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 288 uint8_t *ip = la->la_array; 289 uint64_t *buf64 = buf; 290 291 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 292 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 293 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 294 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 295 return; 296 } 297 298 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 299 if (array_int_len == 1 && buf_int_len == 1 && 300 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 301 while (chunk != CHAIN_END) { 302 struct zap_leaf_array *la = 303 &ZAP_LEAF_CHUNK(l, chunk).l_array; 304 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 305 p += ZAP_LEAF_ARRAY_BYTES; 306 chunk = la->la_next; 307 } 308 return; 309 } 310 311 while (len > 0) { 312 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 313 int i; 314 315 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 316 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 317 value = (value << 8) | la->la_array[i]; 318 byten++; 319 if (byten == array_int_len) { 320 stv(buf_int_len, p, value); 321 byten = 0; 322 len--; 323 if (len == 0) 324 return; 325 p += buf_int_len; 326 } 327 } 328 chunk = la->la_next; 329 } 330 } 331 332 static boolean_t 333 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 334 int chunk, int array_numints) 335 { 336 int bseen = 0; 337 338 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 339 uint64_t *thiskey; 340 boolean_t match; 341 342 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 343 thiskey = kmem_alloc(array_numints * sizeof (*thiskey), 344 KM_SLEEP); 345 346 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 347 sizeof (*thiskey), array_numints, thiskey); 348 match = bcmp(thiskey, zn->zn_key_orig, 349 array_numints * sizeof (*thiskey)) == 0; 350 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 351 return (match); 352 } 353 354 ASSERT(zn->zn_key_intlen == 1); 355 if (zn->zn_matchtype == MT_FIRST) { 356 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 357 boolean_t match; 358 359 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 360 sizeof (char), array_numints, thisname); 361 match = zap_match(zn, thisname); 362 kmem_free(thisname, array_numints); 363 return (match); 364 } 365 366 /* 367 * Fast path for exact matching. 368 * First check that the lengths match, so that we don't read 369 * past the end of the zn_key_orig array. 370 */ 371 if (array_numints != zn->zn_key_orig_numints) 372 return (B_FALSE); 373 while (bseen < array_numints) { 374 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 375 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 376 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 377 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 378 break; 379 chunk = la->la_next; 380 bseen += toread; 381 } 382 return (bseen == array_numints); 383 } 384 385 /* 386 * Routines which manipulate leaf entries. 387 */ 388 389 int 390 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 391 { 392 uint16_t *chunkp; 393 struct zap_leaf_entry *le; 394 395 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 396 397 again: 398 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 399 *chunkp != CHAIN_END; chunkp = &le->le_next) { 400 uint16_t chunk = *chunkp; 401 le = ZAP_LEAF_ENTRY(l, chunk); 402 403 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 404 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 405 406 if (le->le_hash != zn->zn_hash) 407 continue; 408 409 /* 410 * NB: the entry chain is always sorted by cd on 411 * normalized zap objects, so this will find the 412 * lowest-cd match for MT_FIRST. 413 */ 414 ASSERT(zn->zn_matchtype == MT_EXACT || 415 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 416 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 417 le->le_name_numints)) { 418 zeh->zeh_num_integers = le->le_value_numints; 419 zeh->zeh_integer_size = le->le_value_intlen; 420 zeh->zeh_cd = le->le_cd; 421 zeh->zeh_hash = le->le_hash; 422 zeh->zeh_chunkp = chunkp; 423 zeh->zeh_leaf = l; 424 return (0); 425 } 426 } 427 428 /* 429 * NB: we could of course do this in one pass, but that would be 430 * a pain. We'll see if MT_BEST is even used much. 431 */ 432 if (zn->zn_matchtype == MT_BEST) { 433 zn->zn_matchtype = MT_FIRST; 434 goto again; 435 } 436 437 return (ENOENT); 438 } 439 440 /* Return (h1,cd1 >= h2,cd2) */ 441 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 442 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 443 444 int 445 zap_leaf_lookup_closest(zap_leaf_t *l, 446 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 447 { 448 uint16_t chunk; 449 uint64_t besth = -1ULL; 450 uint32_t bestcd = -1U; 451 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 452 uint16_t lh; 453 struct zap_leaf_entry *le; 454 455 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 456 457 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 458 for (chunk = l->l_phys->l_hash[lh]; 459 chunk != CHAIN_END; chunk = le->le_next) { 460 le = ZAP_LEAF_ENTRY(l, chunk); 461 462 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 463 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 464 465 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 466 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 467 ASSERT3U(bestlh, >=, lh); 468 bestlh = lh; 469 besth = le->le_hash; 470 bestcd = le->le_cd; 471 472 zeh->zeh_num_integers = le->le_value_numints; 473 zeh->zeh_integer_size = le->le_value_intlen; 474 zeh->zeh_cd = le->le_cd; 475 zeh->zeh_hash = le->le_hash; 476 zeh->zeh_fakechunk = chunk; 477 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 478 zeh->zeh_leaf = l; 479 } 480 } 481 } 482 483 return (bestcd == -1U ? ENOENT : 0); 484 } 485 486 int 487 zap_entry_read(const zap_entry_handle_t *zeh, 488 uint8_t integer_size, uint64_t num_integers, void *buf) 489 { 490 struct zap_leaf_entry *le = 491 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 492 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 493 494 if (le->le_value_intlen > integer_size) 495 return (EINVAL); 496 497 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 498 le->le_value_intlen, le->le_value_numints, 499 integer_size, num_integers, buf); 500 501 if (zeh->zeh_num_integers > num_integers) 502 return (EOVERFLOW); 503 return (0); 504 505 } 506 507 int 508 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 509 char *buf) 510 { 511 struct zap_leaf_entry *le = 512 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 513 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 514 515 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 516 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 517 le->le_name_numints, 8, buflen / 8, buf); 518 } else { 519 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 520 le->le_name_numints, 1, buflen, buf); 521 } 522 if (le->le_name_numints > buflen) 523 return (EOVERFLOW); 524 return (0); 525 } 526 527 int 528 zap_entry_update(zap_entry_handle_t *zeh, 529 uint8_t integer_size, uint64_t num_integers, const void *buf) 530 { 531 int delta_chunks; 532 zap_leaf_t *l = zeh->zeh_leaf; 533 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 534 535 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 536 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 537 538 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 539 return (EAGAIN); 540 541 /* 542 * We should search other chained leaves (via 543 * zap_entry_remove,create?) otherwise returning EAGAIN will 544 * just send us into an infinite loop if we have to chain 545 * another leaf block, rather than being able to split this 546 * block. 547 */ 548 549 zap_leaf_array_free(l, &le->le_value_chunk); 550 le->le_value_chunk = 551 zap_leaf_array_create(l, buf, integer_size, num_integers); 552 le->le_value_numints = num_integers; 553 le->le_value_intlen = integer_size; 554 return (0); 555 } 556 557 void 558 zap_entry_remove(zap_entry_handle_t *zeh) 559 { 560 uint16_t entry_chunk; 561 struct zap_leaf_entry *le; 562 zap_leaf_t *l = zeh->zeh_leaf; 563 564 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 565 566 entry_chunk = *zeh->zeh_chunkp; 567 le = ZAP_LEAF_ENTRY(l, entry_chunk); 568 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 569 570 zap_leaf_array_free(l, &le->le_name_chunk); 571 zap_leaf_array_free(l, &le->le_value_chunk); 572 573 *zeh->zeh_chunkp = le->le_next; 574 zap_leaf_chunk_free(l, entry_chunk); 575 576 l->l_phys->l_hdr.lh_nentries--; 577 } 578 579 int 580 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 581 uint8_t integer_size, uint64_t num_integers, const void *buf, 582 zap_entry_handle_t *zeh) 583 { 584 uint16_t chunk; 585 uint16_t *chunkp; 586 struct zap_leaf_entry *le; 587 uint64_t valuelen; 588 int numchunks; 589 uint64_t h = zn->zn_hash; 590 591 valuelen = integer_size * num_integers; 592 593 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 594 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 595 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 596 return (E2BIG); 597 598 if (cd == ZAP_NEED_CD) { 599 /* find the lowest unused cd */ 600 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 601 cd = 0; 602 603 for (chunk = *LEAF_HASH_ENTPTR(l, h); 604 chunk != CHAIN_END; chunk = le->le_next) { 605 le = ZAP_LEAF_ENTRY(l, chunk); 606 if (le->le_cd > cd) 607 break; 608 if (le->le_hash == h) { 609 ASSERT3U(cd, ==, le->le_cd); 610 cd++; 611 } 612 } 613 } else { 614 /* old unsorted format; do it the O(n^2) way */ 615 for (cd = 0; ; cd++) { 616 for (chunk = *LEAF_HASH_ENTPTR(l, h); 617 chunk != CHAIN_END; chunk = le->le_next) { 618 le = ZAP_LEAF_ENTRY(l, chunk); 619 if (le->le_hash == h && 620 le->le_cd == cd) { 621 break; 622 } 623 } 624 /* If this cd is not in use, we are good. */ 625 if (chunk == CHAIN_END) 626 break; 627 } 628 } 629 /* 630 * We would run out of space in a block before we could 631 * store enough entries to run out of CD values. 632 */ 633 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 634 } 635 636 if (l->l_phys->l_hdr.lh_nfree < numchunks) 637 return (EAGAIN); 638 639 /* make the entry */ 640 chunk = zap_leaf_chunk_alloc(l); 641 le = ZAP_LEAF_ENTRY(l, chunk); 642 le->le_type = ZAP_CHUNK_ENTRY; 643 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 644 zn->zn_key_intlen, zn->zn_key_orig_numints); 645 le->le_name_numints = zn->zn_key_orig_numints; 646 le->le_value_chunk = 647 zap_leaf_array_create(l, buf, integer_size, num_integers); 648 le->le_value_numints = num_integers; 649 le->le_value_intlen = integer_size; 650 le->le_hash = h; 651 le->le_cd = cd; 652 653 /* link it into the hash chain */ 654 /* XXX if we did the search above, we could just use that */ 655 chunkp = zap_leaf_rehash_entry(l, chunk); 656 657 l->l_phys->l_hdr.lh_nentries++; 658 659 zeh->zeh_leaf = l; 660 zeh->zeh_num_integers = num_integers; 661 zeh->zeh_integer_size = le->le_value_intlen; 662 zeh->zeh_cd = le->le_cd; 663 zeh->zeh_hash = le->le_hash; 664 zeh->zeh_chunkp = chunkp; 665 666 return (0); 667 } 668 669 /* 670 * Determine if there is another entry with the same normalized form. 671 * For performance purposes, either zn or name must be provided (the 672 * other can be NULL). Note, there usually won't be any hash 673 * conflicts, in which case we don't need the concatenated/normalized 674 * form of the name. But all callers have one of these on hand anyway, 675 * so might as well take advantage. A cleaner but slower interface 676 * would accept neither argument, and compute the normalized name as 677 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 678 */ 679 boolean_t 680 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 681 const char *name, zap_t *zap) 682 { 683 uint64_t chunk; 684 struct zap_leaf_entry *le; 685 boolean_t allocdzn = B_FALSE; 686 687 if (zap->zap_normflags == 0) 688 return (B_FALSE); 689 690 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 691 chunk != CHAIN_END; chunk = le->le_next) { 692 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 693 if (le->le_hash != zeh->zeh_hash) 694 continue; 695 if (le->le_cd == zeh->zeh_cd) 696 continue; 697 698 if (zn == NULL) { 699 zn = zap_name_alloc(zap, name, MT_FIRST); 700 allocdzn = B_TRUE; 701 } 702 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 703 le->le_name_chunk, le->le_name_numints)) { 704 if (allocdzn) 705 zap_name_free(zn); 706 return (B_TRUE); 707 } 708 } 709 if (allocdzn) 710 zap_name_free(zn); 711 return (B_FALSE); 712 } 713 714 /* 715 * Routines for transferring entries between leafs. 716 */ 717 718 static uint16_t * 719 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 720 { 721 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 722 struct zap_leaf_entry *le2; 723 uint16_t *chunkp; 724 725 /* 726 * keep the entry chain sorted by cd 727 * NB: this will not cause problems for unsorted leafs, though 728 * it is unnecessary there. 729 */ 730 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 731 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 732 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 733 if (le2->le_cd > le->le_cd) 734 break; 735 } 736 737 le->le_next = *chunkp; 738 *chunkp = entry; 739 return (chunkp); 740 } 741 742 static uint16_t 743 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 744 { 745 uint16_t new_chunk; 746 uint16_t *nchunkp = &new_chunk; 747 748 while (chunk != CHAIN_END) { 749 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 750 struct zap_leaf_array *nla = 751 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 752 struct zap_leaf_array *la = 753 &ZAP_LEAF_CHUNK(l, chunk).l_array; 754 int nextchunk = la->la_next; 755 756 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 757 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 758 759 *nla = *la; /* structure assignment */ 760 761 zap_leaf_chunk_free(l, chunk); 762 chunk = nextchunk; 763 *nchunkp = nchunk; 764 nchunkp = &nla->la_next; 765 } 766 *nchunkp = CHAIN_END; 767 return (new_chunk); 768 } 769 770 static void 771 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 772 { 773 struct zap_leaf_entry *le, *nle; 774 uint16_t chunk; 775 776 le = ZAP_LEAF_ENTRY(l, entry); 777 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 778 779 chunk = zap_leaf_chunk_alloc(nl); 780 nle = ZAP_LEAF_ENTRY(nl, chunk); 781 *nle = *le; /* structure assignment */ 782 783 (void) zap_leaf_rehash_entry(nl, chunk); 784 785 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 786 nle->le_value_chunk = 787 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 788 789 zap_leaf_chunk_free(l, entry); 790 791 l->l_phys->l_hdr.lh_nentries--; 792 nl->l_phys->l_hdr.lh_nentries++; 793 } 794 795 /* 796 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 797 */ 798 void 799 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 800 { 801 int i; 802 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 803 804 /* set new prefix and prefix_len */ 805 l->l_phys->l_hdr.lh_prefix <<= 1; 806 l->l_phys->l_hdr.lh_prefix_len++; 807 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 808 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 809 810 /* break existing hash chains */ 811 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 812 813 if (sort) 814 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 815 816 /* 817 * Transfer entries whose hash bit 'bit' is set to nl; rehash 818 * the remaining entries 819 * 820 * NB: We could find entries via the hashtable instead. That 821 * would be O(hashents+numents) rather than O(numblks+numents), 822 * but this accesses memory more sequentially, and when we're 823 * called, the block is usually pretty full. 824 */ 825 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 826 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 827 if (le->le_type != ZAP_CHUNK_ENTRY) 828 continue; 829 830 if (le->le_hash & (1ULL << bit)) 831 zap_leaf_transfer_entry(l, i, nl); 832 else 833 (void) zap_leaf_rehash_entry(l, i); 834 } 835 } 836 837 void 838 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 839 { 840 int i, n; 841 842 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 843 l->l_phys->l_hdr.lh_prefix_len; 844 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 845 zs->zs_leafs_with_2n_pointers[n]++; 846 847 848 n = l->l_phys->l_hdr.lh_nentries/5; 849 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 850 zs->zs_blocks_with_n5_entries[n]++; 851 852 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 853 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 854 (1<<FZAP_BLOCK_SHIFT(zap)); 855 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 856 zs->zs_blocks_n_tenths_full[n]++; 857 858 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 859 int nentries = 0; 860 int chunk = l->l_phys->l_hash[i]; 861 862 while (chunk != CHAIN_END) { 863 struct zap_leaf_entry *le = 864 ZAP_LEAF_ENTRY(l, chunk); 865 866 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 867 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 868 le->le_value_intlen); 869 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 870 zs->zs_entries_using_n_chunks[n]++; 871 872 chunk = le->le_next; 873 nentries++; 874 } 875 876 n = nentries; 877 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 878 zs->zs_buckets_with_n_entries[n]++; 879 } 880 } 881