1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * The 512-byte leaf is broken into 32 16-byte chunks. 30 * chunk number n means l_chunk[n], even though the header precedes it. 31 * the names are stored null-terminated. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/zap.h> 36 #include <sys/zap_impl.h> 37 #include <sys/zap_leaf.h> 38 #include <sys/spa.h> 39 #include <sys/dmu.h> 40 41 #define CHAIN_END 0xffff /* end of the chunk chain */ 42 43 /* half the (current) minimum block size */ 44 #define MAX_ARRAY_BYTES (8<<10) 45 46 #define LEAF_HASH(l, h) \ 47 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 48 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 49 50 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 51 52 53 static void 54 zap_memset(void *a, int c, size_t n) 55 { 56 char *cp = a; 57 char *cpend = cp + n; 58 59 while (cp < cpend) 60 *cp++ = c; 61 } 62 63 static void 64 stv(int len, void *addr, uint64_t value) 65 { 66 switch (len) { 67 case 1: 68 *(uint8_t *)addr = value; 69 return; 70 case 2: 71 *(uint16_t *)addr = value; 72 return; 73 case 4: 74 *(uint32_t *)addr = value; 75 return; 76 case 8: 77 *(uint64_t *)addr = value; 78 return; 79 } 80 ASSERT(!"bad int len"); 81 } 82 83 static uint64_t 84 ldv(int len, const void *addr) 85 { 86 switch (len) { 87 case 1: 88 return (*(uint8_t *)addr); 89 case 2: 90 return (*(uint16_t *)addr); 91 case 4: 92 return (*(uint32_t *)addr); 93 case 8: 94 return (*(uint64_t *)addr); 95 } 96 ASSERT(!"bad int len"); 97 return (0xFEEDFACEDEADBEEF); 98 } 99 100 void 101 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 102 { 103 int i; 104 zap_leaf_t l; 105 l.l_bs = highbit(size)-1; 106 l.l_phys = buf; 107 108 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 109 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 110 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 111 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 112 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 113 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 114 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 115 116 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 117 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 118 119 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 120 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 121 struct zap_leaf_entry *le; 122 123 switch (lc->l_free.lf_type) { 124 case ZAP_CHUNK_ENTRY: 125 le = &lc->l_entry; 126 127 le->le_type = BSWAP_8(le->le_type); 128 le->le_int_size = BSWAP_8(le->le_int_size); 129 le->le_next = BSWAP_16(le->le_next); 130 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 131 le->le_name_length = BSWAP_16(le->le_name_length); 132 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 133 le->le_value_length = BSWAP_16(le->le_value_length); 134 le->le_cd = BSWAP_32(le->le_cd); 135 le->le_hash = BSWAP_64(le->le_hash); 136 break; 137 case ZAP_CHUNK_FREE: 138 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 139 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 140 break; 141 case ZAP_CHUNK_ARRAY: 142 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 143 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 144 /* la_array doesn't need swapping */ 145 break; 146 default: 147 ASSERT(!"bad leaf type"); 148 } 149 } 150 } 151 152 void 153 zap_leaf_init(zap_leaf_t *l) 154 { 155 int i; 156 157 l->l_bs = highbit(l->l_dbuf->db_size)-1; 158 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 159 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 160 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 161 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 162 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 163 } 164 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 165 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 166 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 167 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 168 } 169 170 /* 171 * Routines which manipulate leaf chunks (l_chunk[]). 172 */ 173 174 static uint16_t 175 zap_leaf_chunk_alloc(zap_leaf_t *l) 176 { 177 int chunk; 178 179 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 180 181 chunk = l->l_phys->l_hdr.lh_freelist; 182 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 183 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 184 185 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 186 187 l->l_phys->l_hdr.lh_nfree--; 188 189 return (chunk); 190 } 191 192 static void 193 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 194 { 195 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 196 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 197 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 198 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 199 200 zlf->lf_type = ZAP_CHUNK_FREE; 201 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 202 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 203 l->l_phys->l_hdr.lh_freelist = chunk; 204 205 l->l_phys->l_hdr.lh_nfree++; 206 } 207 208 /* 209 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 210 */ 211 212 static uint16_t 213 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 214 int integer_size, int num_integers) 215 { 216 uint16_t chunk_head; 217 uint16_t *chunkp = &chunk_head; 218 int byten = 0; 219 uint64_t value; 220 int shift = (integer_size-1)*8; 221 int len = num_integers; 222 223 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 224 225 while (len > 0) { 226 uint16_t chunk = zap_leaf_chunk_alloc(l); 227 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 228 int i; 229 230 la->la_type = ZAP_CHUNK_ARRAY; 231 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 232 if (byten == 0) 233 value = ldv(integer_size, buf); 234 la->la_array[i] = (value & (0xff << shift)) >> shift; 235 value <<= 8; 236 if (++byten == integer_size) { 237 byten = 0; 238 buf += integer_size; 239 if (--len == 0) 240 break; 241 } 242 } 243 244 *chunkp = chunk; 245 chunkp = &la->la_next; 246 } 247 *chunkp = CHAIN_END; 248 249 return (chunk_head); 250 } 251 252 static void 253 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 254 { 255 uint16_t chunk = *chunkp; 256 257 *chunkp = CHAIN_END; 258 259 while (chunk != CHAIN_END) { 260 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 261 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 262 ZAP_CHUNK_ARRAY); 263 zap_leaf_chunk_free(l, chunk); 264 chunk = nextchunk; 265 } 266 } 267 268 /* array_len and buf_len are in integers, not bytes */ 269 static void 270 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 271 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 272 char *buf) 273 { 274 int len = MIN(array_len, buf_len); 275 int byten = 0; 276 uint64_t value = 0; 277 278 ASSERT3U(array_int_len, <=, buf_int_len); 279 280 /* Fast path for one 8-byte integer */ 281 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 282 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 283 uint8_t *ip = la->la_array; 284 uint64_t *buf64 = (uint64_t *)buf; 285 286 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 287 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 288 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 289 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 290 return; 291 } 292 293 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 294 if (array_int_len == 1 && buf_int_len == 1 && 295 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 296 while (chunk != CHAIN_END) { 297 struct zap_leaf_array *la = 298 &ZAP_LEAF_CHUNK(l, chunk).l_array; 299 bcopy(la->la_array, buf, ZAP_LEAF_ARRAY_BYTES); 300 buf += ZAP_LEAF_ARRAY_BYTES; 301 chunk = la->la_next; 302 } 303 return; 304 } 305 306 while (len > 0) { 307 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 308 int i; 309 310 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 311 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 312 value = (value << 8) | la->la_array[i]; 313 byten++; 314 if (byten == array_int_len) { 315 stv(buf_int_len, buf, value); 316 byten = 0; 317 len--; 318 if (len == 0) 319 return; 320 buf += buf_int_len; 321 } 322 } 323 chunk = la->la_next; 324 } 325 } 326 327 /* 328 * Only to be used on 8-bit arrays. 329 * array_len is actual len in bytes (not encoded le_value_length). 330 * buf is null-terminated. 331 */ 332 static int 333 zap_leaf_array_equal(zap_leaf_t *l, int chunk, 334 int array_len, const char *buf) 335 { 336 int bseen = 0; 337 338 while (bseen < array_len) { 339 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 340 int toread = MIN(array_len - bseen, ZAP_LEAF_ARRAY_BYTES); 341 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 342 if (bcmp(la->la_array, buf + bseen, toread)) 343 break; 344 chunk = la->la_next; 345 bseen += toread; 346 } 347 return (bseen == array_len); 348 } 349 350 /* 351 * Routines which manipulate leaf entries. 352 */ 353 354 int 355 zap_leaf_lookup(zap_leaf_t *l, 356 const char *name, uint64_t h, zap_entry_handle_t *zeh) 357 { 358 uint16_t *chunkp; 359 struct zap_leaf_entry *le; 360 361 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 362 363 for (chunkp = LEAF_HASH_ENTPTR(l, h); 364 *chunkp != CHAIN_END; chunkp = &le->le_next) { 365 uint16_t chunk = *chunkp; 366 le = ZAP_LEAF_ENTRY(l, chunk); 367 368 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 369 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 370 371 if (le->le_hash != h) 372 continue; 373 374 if (zap_leaf_array_equal(l, le->le_name_chunk, 375 le->le_name_length, name)) { 376 zeh->zeh_num_integers = le->le_value_length; 377 zeh->zeh_integer_size = le->le_int_size; 378 zeh->zeh_cd = le->le_cd; 379 zeh->zeh_hash = le->le_hash; 380 zeh->zeh_chunkp = chunkp; 381 zeh->zeh_leaf = l; 382 return (0); 383 } 384 } 385 386 return (ENOENT); 387 } 388 389 /* Return (h1,cd1 >= h2,cd2) */ 390 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 391 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 392 393 int 394 zap_leaf_lookup_closest(zap_leaf_t *l, 395 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 396 { 397 uint16_t chunk; 398 uint64_t besth = -1ULL; 399 uint32_t bestcd = ZAP_MAXCD; 400 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 401 uint16_t lh; 402 struct zap_leaf_entry *le; 403 404 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 405 406 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 407 for (chunk = l->l_phys->l_hash[lh]; 408 chunk != CHAIN_END; chunk = le->le_next) { 409 le = ZAP_LEAF_ENTRY(l, chunk); 410 411 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 412 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 413 414 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 415 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 416 ASSERT3U(bestlh, >=, lh); 417 bestlh = lh; 418 besth = le->le_hash; 419 bestcd = le->le_cd; 420 421 zeh->zeh_num_integers = le->le_value_length; 422 zeh->zeh_integer_size = le->le_int_size; 423 zeh->zeh_cd = le->le_cd; 424 zeh->zeh_hash = le->le_hash; 425 zeh->zeh_fakechunk = chunk; 426 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 427 zeh->zeh_leaf = l; 428 } 429 } 430 } 431 432 return (bestcd == ZAP_MAXCD ? ENOENT : 0); 433 } 434 435 int 436 zap_entry_read(const zap_entry_handle_t *zeh, 437 uint8_t integer_size, uint64_t num_integers, void *buf) 438 { 439 struct zap_leaf_entry *le = 440 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 441 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 442 443 if (le->le_int_size > integer_size) 444 return (EINVAL); 445 446 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, le->le_int_size, 447 le->le_value_length, integer_size, num_integers, buf); 448 449 if (zeh->zeh_num_integers > num_integers) 450 return (EOVERFLOW); 451 return (0); 452 453 } 454 455 int 456 zap_entry_read_name(const zap_entry_handle_t *zeh, uint16_t buflen, char *buf) 457 { 458 struct zap_leaf_entry *le = 459 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 460 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 461 462 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 463 le->le_name_length, 1, buflen, buf); 464 if (le->le_name_length > buflen) 465 return (EOVERFLOW); 466 return (0); 467 } 468 469 int 470 zap_entry_update(zap_entry_handle_t *zeh, 471 uint8_t integer_size, uint64_t num_integers, const void *buf) 472 { 473 int delta_chunks; 474 zap_leaf_t *l = zeh->zeh_leaf; 475 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 476 477 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 478 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * le->le_int_size); 479 480 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 481 return (EAGAIN); 482 483 /* 484 * We should search other chained leaves (via 485 * zap_entry_remove,create?) otherwise returning EAGAIN will 486 * just send us into an infinite loop if we have to chain 487 * another leaf block, rather than being able to split this 488 * block. 489 */ 490 491 zap_leaf_array_free(l, &le->le_value_chunk); 492 le->le_value_chunk = 493 zap_leaf_array_create(l, buf, integer_size, num_integers); 494 le->le_value_length = num_integers; 495 le->le_int_size = integer_size; 496 return (0); 497 } 498 499 void 500 zap_entry_remove(zap_entry_handle_t *zeh) 501 { 502 uint16_t entry_chunk; 503 struct zap_leaf_entry *le; 504 zap_leaf_t *l = zeh->zeh_leaf; 505 506 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 507 508 entry_chunk = *zeh->zeh_chunkp; 509 le = ZAP_LEAF_ENTRY(l, entry_chunk); 510 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 511 512 zap_leaf_array_free(l, &le->le_name_chunk); 513 zap_leaf_array_free(l, &le->le_value_chunk); 514 515 *zeh->zeh_chunkp = le->le_next; 516 zap_leaf_chunk_free(l, entry_chunk); 517 518 l->l_phys->l_hdr.lh_nentries--; 519 } 520 521 int 522 zap_entry_create(zap_leaf_t *l, const char *name, uint64_t h, uint32_t cd, 523 uint8_t integer_size, uint64_t num_integers, const void *buf, 524 zap_entry_handle_t *zeh) 525 { 526 uint16_t chunk; 527 uint16_t *chunkp; 528 struct zap_leaf_entry *le; 529 uint64_t namelen, valuelen; 530 int numchunks; 531 532 valuelen = integer_size * num_integers; 533 namelen = strlen(name) + 1; 534 ASSERT(namelen >= 2); 535 536 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(namelen) + 537 ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 538 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 539 return (E2BIG); 540 541 if (cd == ZAP_MAXCD) { 542 for (cd = 0; cd < ZAP_MAXCD; cd++) { 543 for (chunk = *LEAF_HASH_ENTPTR(l, h); 544 chunk != CHAIN_END; chunk = le->le_next) { 545 le = ZAP_LEAF_ENTRY(l, chunk); 546 if (le->le_hash == h && 547 le->le_cd == cd) { 548 break; 549 } 550 } 551 /* If this cd is not in use, we are good. */ 552 if (chunk == CHAIN_END) 553 break; 554 } 555 /* If we tried all the cd's, we lose. */ 556 if (cd == ZAP_MAXCD) 557 return (ENOSPC); 558 } 559 560 if (l->l_phys->l_hdr.lh_nfree < numchunks) 561 return (EAGAIN); 562 563 /* make the entry */ 564 chunk = zap_leaf_chunk_alloc(l); 565 le = ZAP_LEAF_ENTRY(l, chunk); 566 le->le_type = ZAP_CHUNK_ENTRY; 567 le->le_name_chunk = zap_leaf_array_create(l, name, 1, namelen); 568 le->le_name_length = namelen; 569 le->le_value_chunk = 570 zap_leaf_array_create(l, buf, integer_size, num_integers); 571 le->le_value_length = num_integers; 572 le->le_int_size = integer_size; 573 le->le_hash = h; 574 le->le_cd = cd; 575 576 /* link it into the hash chain */ 577 chunkp = LEAF_HASH_ENTPTR(l, h); 578 le->le_next = *chunkp; 579 *chunkp = chunk; 580 581 l->l_phys->l_hdr.lh_nentries++; 582 583 zeh->zeh_leaf = l; 584 zeh->zeh_num_integers = num_integers; 585 zeh->zeh_integer_size = le->le_int_size; 586 zeh->zeh_cd = le->le_cd; 587 zeh->zeh_hash = le->le_hash; 588 zeh->zeh_chunkp = chunkp; 589 590 return (0); 591 } 592 593 /* 594 * Routines for transferring entries between leafs. 595 */ 596 597 static void 598 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 599 { 600 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 601 uint16_t *ptr = LEAF_HASH_ENTPTR(l, le->le_hash); 602 le->le_next = *ptr; 603 *ptr = entry; 604 } 605 606 static uint16_t 607 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 608 { 609 uint16_t new_chunk; 610 uint16_t *nchunkp = &new_chunk; 611 612 while (chunk != CHAIN_END) { 613 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 614 struct zap_leaf_array *nla = 615 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 616 struct zap_leaf_array *la = 617 &ZAP_LEAF_CHUNK(l, chunk).l_array; 618 int nextchunk = la->la_next; 619 620 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 621 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 622 623 *nla = *la; /* structure assignment */ 624 625 zap_leaf_chunk_free(l, chunk); 626 chunk = nextchunk; 627 *nchunkp = nchunk; 628 nchunkp = &nla->la_next; 629 } 630 *nchunkp = CHAIN_END; 631 return (new_chunk); 632 } 633 634 static void 635 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 636 { 637 struct zap_leaf_entry *le, *nle; 638 uint16_t chunk; 639 640 le = ZAP_LEAF_ENTRY(l, entry); 641 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 642 643 chunk = zap_leaf_chunk_alloc(nl); 644 nle = ZAP_LEAF_ENTRY(nl, chunk); 645 *nle = *le; /* structure assignment */ 646 647 zap_leaf_rehash_entry(nl, chunk); 648 649 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 650 nle->le_value_chunk = 651 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 652 653 zap_leaf_chunk_free(l, entry); 654 655 l->l_phys->l_hdr.lh_nentries--; 656 nl->l_phys->l_hdr.lh_nentries++; 657 } 658 659 /* 660 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 661 */ 662 void 663 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl) 664 { 665 int i; 666 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 667 668 /* set new prefix and prefix_len */ 669 l->l_phys->l_hdr.lh_prefix <<= 1; 670 l->l_phys->l_hdr.lh_prefix_len++; 671 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 672 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 673 674 /* break existing hash chains */ 675 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 676 677 /* 678 * Transfer entries whose hash bit 'bit' is set to nl; rehash 679 * the remaining entries 680 * 681 * NB: We could find entries via the hashtable instead. That 682 * would be O(hashents+numents) rather than O(numblks+numents), 683 * but this accesses memory more sequentially, and when we're 684 * called, the block is usually pretty full. 685 */ 686 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 687 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 688 if (le->le_type != ZAP_CHUNK_ENTRY) 689 continue; 690 691 if (le->le_hash & (1ULL << bit)) 692 zap_leaf_transfer_entry(l, i, nl); 693 else 694 zap_leaf_rehash_entry(l, i); 695 } 696 } 697 698 void 699 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 700 { 701 int i, n; 702 703 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 704 l->l_phys->l_hdr.lh_prefix_len; 705 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 706 zs->zs_leafs_with_2n_pointers[n]++; 707 708 709 n = l->l_phys->l_hdr.lh_nentries/5; 710 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 711 zs->zs_blocks_with_n5_entries[n]++; 712 713 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 714 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 715 (1<<FZAP_BLOCK_SHIFT(zap)); 716 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 717 zs->zs_blocks_n_tenths_full[n]++; 718 719 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 720 int nentries = 0; 721 int chunk = l->l_phys->l_hash[i]; 722 723 while (chunk != CHAIN_END) { 724 struct zap_leaf_entry *le = 725 ZAP_LEAF_ENTRY(l, chunk); 726 727 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_length) + 728 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_length * 729 le->le_int_size); 730 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 731 zs->zs_entries_using_n_chunks[n]++; 732 733 chunk = le->le_next; 734 nentries++; 735 } 736 737 n = nentries; 738 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 739 zs->zs_buckets_with_n_entries[n]++; 740 } 741 } 742