1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 */ 25 26 /* 27 * The 512-byte leaf is broken into 32 16-byte chunks. 28 * chunk number n means l_chunk[n], even though the header precedes it. 29 * the names are stored null-terminated. 30 */ 31 32 #include <sys/zio.h> 33 #include <sys/spa.h> 34 #include <sys/dmu.h> 35 #include <sys/zfs_context.h> 36 #include <sys/fs/zfs.h> 37 #include <sys/zap.h> 38 #include <sys/zap_impl.h> 39 #include <sys/zap_leaf.h> 40 #include <sys/arc.h> 41 42 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry); 43 44 #define CHAIN_END 0xffff /* end of the chunk chain */ 45 46 /* half the (current) minimum block size */ 47 #define MAX_ARRAY_BYTES (8<<10) 48 49 #define LEAF_HASH(l, h) \ 50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \ 51 ((h) >> (64 - ZAP_LEAF_HASH_SHIFT(l)-(l)->l_phys->l_hdr.lh_prefix_len))) 52 53 #define LEAF_HASH_ENTPTR(l, h) (&(l)->l_phys->l_hash[LEAF_HASH(l, h)]) 54 55 56 static void 57 zap_memset(void *a, int c, size_t n) 58 { 59 char *cp = a; 60 char *cpend = cp + n; 61 62 while (cp < cpend) 63 *cp++ = c; 64 } 65 66 static void 67 stv(int len, void *addr, uint64_t value) 68 { 69 switch (len) { 70 case 1: 71 *(uint8_t *)addr = value; 72 return; 73 case 2: 74 *(uint16_t *)addr = value; 75 return; 76 case 4: 77 *(uint32_t *)addr = value; 78 return; 79 case 8: 80 *(uint64_t *)addr = value; 81 return; 82 } 83 ASSERT(!"bad int len"); 84 } 85 86 static uint64_t 87 ldv(int len, const void *addr) 88 { 89 switch (len) { 90 case 1: 91 return (*(uint8_t *)addr); 92 case 2: 93 return (*(uint16_t *)addr); 94 case 4: 95 return (*(uint32_t *)addr); 96 case 8: 97 return (*(uint64_t *)addr); 98 } 99 ASSERT(!"bad int len"); 100 return (0xFEEDFACEDEADBEEFULL); 101 } 102 103 void 104 zap_leaf_byteswap(zap_leaf_phys_t *buf, int size) 105 { 106 int i; 107 zap_leaf_t l; 108 l.l_bs = highbit(size)-1; 109 l.l_phys = buf; 110 111 buf->l_hdr.lh_block_type = BSWAP_64(buf->l_hdr.lh_block_type); 112 buf->l_hdr.lh_prefix = BSWAP_64(buf->l_hdr.lh_prefix); 113 buf->l_hdr.lh_magic = BSWAP_32(buf->l_hdr.lh_magic); 114 buf->l_hdr.lh_nfree = BSWAP_16(buf->l_hdr.lh_nfree); 115 buf->l_hdr.lh_nentries = BSWAP_16(buf->l_hdr.lh_nentries); 116 buf->l_hdr.lh_prefix_len = BSWAP_16(buf->l_hdr.lh_prefix_len); 117 buf->l_hdr.lh_freelist = BSWAP_16(buf->l_hdr.lh_freelist); 118 119 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(&l); i++) 120 buf->l_hash[i] = BSWAP_16(buf->l_hash[i]); 121 122 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(&l); i++) { 123 zap_leaf_chunk_t *lc = &ZAP_LEAF_CHUNK(&l, i); 124 struct zap_leaf_entry *le; 125 126 switch (lc->l_free.lf_type) { 127 case ZAP_CHUNK_ENTRY: 128 le = &lc->l_entry; 129 130 le->le_type = BSWAP_8(le->le_type); 131 le->le_value_intlen = BSWAP_8(le->le_value_intlen); 132 le->le_next = BSWAP_16(le->le_next); 133 le->le_name_chunk = BSWAP_16(le->le_name_chunk); 134 le->le_name_numints = BSWAP_16(le->le_name_numints); 135 le->le_value_chunk = BSWAP_16(le->le_value_chunk); 136 le->le_value_numints = BSWAP_16(le->le_value_numints); 137 le->le_cd = BSWAP_32(le->le_cd); 138 le->le_hash = BSWAP_64(le->le_hash); 139 break; 140 case ZAP_CHUNK_FREE: 141 lc->l_free.lf_type = BSWAP_8(lc->l_free.lf_type); 142 lc->l_free.lf_next = BSWAP_16(lc->l_free.lf_next); 143 break; 144 case ZAP_CHUNK_ARRAY: 145 lc->l_array.la_type = BSWAP_8(lc->l_array.la_type); 146 lc->l_array.la_next = BSWAP_16(lc->l_array.la_next); 147 /* la_array doesn't need swapping */ 148 break; 149 default: 150 ASSERT(!"bad leaf type"); 151 } 152 } 153 } 154 155 void 156 zap_leaf_init(zap_leaf_t *l, boolean_t sort) 157 { 158 int i; 159 160 l->l_bs = highbit(l->l_dbuf->db_size)-1; 161 zap_memset(&l->l_phys->l_hdr, 0, sizeof (struct zap_leaf_header)); 162 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 163 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 164 ZAP_LEAF_CHUNK(l, i).l_free.lf_type = ZAP_CHUNK_FREE; 165 ZAP_LEAF_CHUNK(l, i).l_free.lf_next = i+1; 166 } 167 ZAP_LEAF_CHUNK(l, ZAP_LEAF_NUMCHUNKS(l)-1).l_free.lf_next = CHAIN_END; 168 l->l_phys->l_hdr.lh_block_type = ZBT_LEAF; 169 l->l_phys->l_hdr.lh_magic = ZAP_LEAF_MAGIC; 170 l->l_phys->l_hdr.lh_nfree = ZAP_LEAF_NUMCHUNKS(l); 171 if (sort) 172 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 173 } 174 175 /* 176 * Routines which manipulate leaf chunks (l_chunk[]). 177 */ 178 179 static uint16_t 180 zap_leaf_chunk_alloc(zap_leaf_t *l) 181 { 182 int chunk; 183 184 ASSERT(l->l_phys->l_hdr.lh_nfree > 0); 185 186 chunk = l->l_phys->l_hdr.lh_freelist; 187 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 188 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_free.lf_type, ==, ZAP_CHUNK_FREE); 189 190 l->l_phys->l_hdr.lh_freelist = ZAP_LEAF_CHUNK(l, chunk).l_free.lf_next; 191 192 l->l_phys->l_hdr.lh_nfree--; 193 194 return (chunk); 195 } 196 197 static void 198 zap_leaf_chunk_free(zap_leaf_t *l, uint16_t chunk) 199 { 200 struct zap_leaf_free *zlf = &ZAP_LEAF_CHUNK(l, chunk).l_free; 201 ASSERT3U(l->l_phys->l_hdr.lh_nfree, <, ZAP_LEAF_NUMCHUNKS(l)); 202 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 203 ASSERT(zlf->lf_type != ZAP_CHUNK_FREE); 204 205 zlf->lf_type = ZAP_CHUNK_FREE; 206 zlf->lf_next = l->l_phys->l_hdr.lh_freelist; 207 bzero(zlf->lf_pad, sizeof (zlf->lf_pad)); /* help it to compress */ 208 l->l_phys->l_hdr.lh_freelist = chunk; 209 210 l->l_phys->l_hdr.lh_nfree++; 211 } 212 213 /* 214 * Routines which manipulate leaf arrays (zap_leaf_array type chunks). 215 */ 216 217 static uint16_t 218 zap_leaf_array_create(zap_leaf_t *l, const char *buf, 219 int integer_size, int num_integers) 220 { 221 uint16_t chunk_head; 222 uint16_t *chunkp = &chunk_head; 223 int byten = 0; 224 uint64_t value = 0; 225 int shift = (integer_size-1)*8; 226 int len = num_integers; 227 228 ASSERT3U(num_integers * integer_size, <, MAX_ARRAY_BYTES); 229 230 while (len > 0) { 231 uint16_t chunk = zap_leaf_chunk_alloc(l); 232 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 233 int i; 234 235 la->la_type = ZAP_CHUNK_ARRAY; 236 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES; i++) { 237 if (byten == 0) 238 value = ldv(integer_size, buf); 239 la->la_array[i] = value >> shift; 240 value <<= 8; 241 if (++byten == integer_size) { 242 byten = 0; 243 buf += integer_size; 244 if (--len == 0) 245 break; 246 } 247 } 248 249 *chunkp = chunk; 250 chunkp = &la->la_next; 251 } 252 *chunkp = CHAIN_END; 253 254 return (chunk_head); 255 } 256 257 static void 258 zap_leaf_array_free(zap_leaf_t *l, uint16_t *chunkp) 259 { 260 uint16_t chunk = *chunkp; 261 262 *chunkp = CHAIN_END; 263 264 while (chunk != CHAIN_END) { 265 int nextchunk = ZAP_LEAF_CHUNK(l, chunk).l_array.la_next; 266 ASSERT3U(ZAP_LEAF_CHUNK(l, chunk).l_array.la_type, ==, 267 ZAP_CHUNK_ARRAY); 268 zap_leaf_chunk_free(l, chunk); 269 chunk = nextchunk; 270 } 271 } 272 273 /* array_len and buf_len are in integers, not bytes */ 274 static void 275 zap_leaf_array_read(zap_leaf_t *l, uint16_t chunk, 276 int array_int_len, int array_len, int buf_int_len, uint64_t buf_len, 277 void *buf) 278 { 279 int len = MIN(array_len, buf_len); 280 int byten = 0; 281 uint64_t value = 0; 282 char *p = buf; 283 284 ASSERT3U(array_int_len, <=, buf_int_len); 285 286 /* Fast path for one 8-byte integer */ 287 if (array_int_len == 8 && buf_int_len == 8 && len == 1) { 288 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 289 uint8_t *ip = la->la_array; 290 uint64_t *buf64 = buf; 291 292 *buf64 = (uint64_t)ip[0] << 56 | (uint64_t)ip[1] << 48 | 293 (uint64_t)ip[2] << 40 | (uint64_t)ip[3] << 32 | 294 (uint64_t)ip[4] << 24 | (uint64_t)ip[5] << 16 | 295 (uint64_t)ip[6] << 8 | (uint64_t)ip[7]; 296 return; 297 } 298 299 /* Fast path for an array of 1-byte integers (eg. the entry name) */ 300 if (array_int_len == 1 && buf_int_len == 1 && 301 buf_len > array_len + ZAP_LEAF_ARRAY_BYTES) { 302 while (chunk != CHAIN_END) { 303 struct zap_leaf_array *la = 304 &ZAP_LEAF_CHUNK(l, chunk).l_array; 305 bcopy(la->la_array, p, ZAP_LEAF_ARRAY_BYTES); 306 p += ZAP_LEAF_ARRAY_BYTES; 307 chunk = la->la_next; 308 } 309 return; 310 } 311 312 while (len > 0) { 313 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 314 int i; 315 316 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 317 for (i = 0; i < ZAP_LEAF_ARRAY_BYTES && len > 0; i++) { 318 value = (value << 8) | la->la_array[i]; 319 byten++; 320 if (byten == array_int_len) { 321 stv(buf_int_len, p, value); 322 byten = 0; 323 len--; 324 if (len == 0) 325 return; 326 p += buf_int_len; 327 } 328 } 329 chunk = la->la_next; 330 } 331 } 332 333 static boolean_t 334 zap_leaf_array_match(zap_leaf_t *l, zap_name_t *zn, 335 int chunk, int array_numints) 336 { 337 int bseen = 0; 338 339 if (zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY) { 340 uint64_t *thiskey; 341 boolean_t match; 342 343 ASSERT(zn->zn_key_intlen == sizeof (*thiskey)); 344 thiskey = kmem_alloc(array_numints * sizeof (*thiskey), 345 KM_SLEEP); 346 347 zap_leaf_array_read(l, chunk, sizeof (*thiskey), array_numints, 348 sizeof (*thiskey), array_numints, thiskey); 349 match = bcmp(thiskey, zn->zn_key_orig, 350 array_numints * sizeof (*thiskey)) == 0; 351 kmem_free(thiskey, array_numints * sizeof (*thiskey)); 352 return (match); 353 } 354 355 ASSERT(zn->zn_key_intlen == 1); 356 if (zn->zn_matchtype == MT_FIRST) { 357 char *thisname = kmem_alloc(array_numints, KM_SLEEP); 358 boolean_t match; 359 360 zap_leaf_array_read(l, chunk, sizeof (char), array_numints, 361 sizeof (char), array_numints, thisname); 362 match = zap_match(zn, thisname); 363 kmem_free(thisname, array_numints); 364 return (match); 365 } 366 367 /* 368 * Fast path for exact matching. 369 * First check that the lengths match, so that we don't read 370 * past the end of the zn_key_orig array. 371 */ 372 if (array_numints != zn->zn_key_orig_numints) 373 return (B_FALSE); 374 while (bseen < array_numints) { 375 struct zap_leaf_array *la = &ZAP_LEAF_CHUNK(l, chunk).l_array; 376 int toread = MIN(array_numints - bseen, ZAP_LEAF_ARRAY_BYTES); 377 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 378 if (bcmp(la->la_array, (char *)zn->zn_key_orig + bseen, toread)) 379 break; 380 chunk = la->la_next; 381 bseen += toread; 382 } 383 return (bseen == array_numints); 384 } 385 386 /* 387 * Routines which manipulate leaf entries. 388 */ 389 390 int 391 zap_leaf_lookup(zap_leaf_t *l, zap_name_t *zn, zap_entry_handle_t *zeh) 392 { 393 uint16_t *chunkp; 394 struct zap_leaf_entry *le; 395 396 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 397 398 again: 399 for (chunkp = LEAF_HASH_ENTPTR(l, zn->zn_hash); 400 *chunkp != CHAIN_END; chunkp = &le->le_next) { 401 uint16_t chunk = *chunkp; 402 le = ZAP_LEAF_ENTRY(l, chunk); 403 404 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 405 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 406 407 if (le->le_hash != zn->zn_hash) 408 continue; 409 410 /* 411 * NB: the entry chain is always sorted by cd on 412 * normalized zap objects, so this will find the 413 * lowest-cd match for MT_FIRST. 414 */ 415 ASSERT(zn->zn_matchtype == MT_EXACT || 416 (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED)); 417 if (zap_leaf_array_match(l, zn, le->le_name_chunk, 418 le->le_name_numints)) { 419 zeh->zeh_num_integers = le->le_value_numints; 420 zeh->zeh_integer_size = le->le_value_intlen; 421 zeh->zeh_cd = le->le_cd; 422 zeh->zeh_hash = le->le_hash; 423 zeh->zeh_chunkp = chunkp; 424 zeh->zeh_leaf = l; 425 return (0); 426 } 427 } 428 429 /* 430 * NB: we could of course do this in one pass, but that would be 431 * a pain. We'll see if MT_BEST is even used much. 432 */ 433 if (zn->zn_matchtype == MT_BEST) { 434 zn->zn_matchtype = MT_FIRST; 435 goto again; 436 } 437 438 return (SET_ERROR(ENOENT)); 439 } 440 441 /* Return (h1,cd1 >= h2,cd2) */ 442 #define HCD_GTEQ(h1, cd1, h2, cd2) \ 443 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE)) 444 445 int 446 zap_leaf_lookup_closest(zap_leaf_t *l, 447 uint64_t h, uint32_t cd, zap_entry_handle_t *zeh) 448 { 449 uint16_t chunk; 450 uint64_t besth = -1ULL; 451 uint32_t bestcd = -1U; 452 uint16_t bestlh = ZAP_LEAF_HASH_NUMENTRIES(l)-1; 453 uint16_t lh; 454 struct zap_leaf_entry *le; 455 456 ASSERT3U(l->l_phys->l_hdr.lh_magic, ==, ZAP_LEAF_MAGIC); 457 458 for (lh = LEAF_HASH(l, h); lh <= bestlh; lh++) { 459 for (chunk = l->l_phys->l_hash[lh]; 460 chunk != CHAIN_END; chunk = le->le_next) { 461 le = ZAP_LEAF_ENTRY(l, chunk); 462 463 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 464 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 465 466 if (HCD_GTEQ(le->le_hash, le->le_cd, h, cd) && 467 HCD_GTEQ(besth, bestcd, le->le_hash, le->le_cd)) { 468 ASSERT3U(bestlh, >=, lh); 469 bestlh = lh; 470 besth = le->le_hash; 471 bestcd = le->le_cd; 472 473 zeh->zeh_num_integers = le->le_value_numints; 474 zeh->zeh_integer_size = le->le_value_intlen; 475 zeh->zeh_cd = le->le_cd; 476 zeh->zeh_hash = le->le_hash; 477 zeh->zeh_fakechunk = chunk; 478 zeh->zeh_chunkp = &zeh->zeh_fakechunk; 479 zeh->zeh_leaf = l; 480 } 481 } 482 } 483 484 return (bestcd == -1U ? ENOENT : 0); 485 } 486 487 int 488 zap_entry_read(const zap_entry_handle_t *zeh, 489 uint8_t integer_size, uint64_t num_integers, void *buf) 490 { 491 struct zap_leaf_entry *le = 492 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 493 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 494 495 if (le->le_value_intlen > integer_size) 496 return (SET_ERROR(EINVAL)); 497 498 zap_leaf_array_read(zeh->zeh_leaf, le->le_value_chunk, 499 le->le_value_intlen, le->le_value_numints, 500 integer_size, num_integers, buf); 501 502 if (zeh->zeh_num_integers > num_integers) 503 return (SET_ERROR(EOVERFLOW)); 504 return (0); 505 506 } 507 508 int 509 zap_entry_read_name(zap_t *zap, const zap_entry_handle_t *zeh, uint16_t buflen, 510 char *buf) 511 { 512 struct zap_leaf_entry *le = 513 ZAP_LEAF_ENTRY(zeh->zeh_leaf, *zeh->zeh_chunkp); 514 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 515 516 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) { 517 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 8, 518 le->le_name_numints, 8, buflen / 8, buf); 519 } else { 520 zap_leaf_array_read(zeh->zeh_leaf, le->le_name_chunk, 1, 521 le->le_name_numints, 1, buflen, buf); 522 } 523 if (le->le_name_numints > buflen) 524 return (SET_ERROR(EOVERFLOW)); 525 return (0); 526 } 527 528 int 529 zap_entry_update(zap_entry_handle_t *zeh, 530 uint8_t integer_size, uint64_t num_integers, const void *buf) 531 { 532 int delta_chunks; 533 zap_leaf_t *l = zeh->zeh_leaf; 534 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, *zeh->zeh_chunkp); 535 536 delta_chunks = ZAP_LEAF_ARRAY_NCHUNKS(num_integers * integer_size) - 537 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * le->le_value_intlen); 538 539 if ((int)l->l_phys->l_hdr.lh_nfree < delta_chunks) 540 return (SET_ERROR(EAGAIN)); 541 542 zap_leaf_array_free(l, &le->le_value_chunk); 543 le->le_value_chunk = 544 zap_leaf_array_create(l, buf, integer_size, num_integers); 545 le->le_value_numints = num_integers; 546 le->le_value_intlen = integer_size; 547 return (0); 548 } 549 550 void 551 zap_entry_remove(zap_entry_handle_t *zeh) 552 { 553 uint16_t entry_chunk; 554 struct zap_leaf_entry *le; 555 zap_leaf_t *l = zeh->zeh_leaf; 556 557 ASSERT3P(zeh->zeh_chunkp, !=, &zeh->zeh_fakechunk); 558 559 entry_chunk = *zeh->zeh_chunkp; 560 le = ZAP_LEAF_ENTRY(l, entry_chunk); 561 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 562 563 zap_leaf_array_free(l, &le->le_name_chunk); 564 zap_leaf_array_free(l, &le->le_value_chunk); 565 566 *zeh->zeh_chunkp = le->le_next; 567 zap_leaf_chunk_free(l, entry_chunk); 568 569 l->l_phys->l_hdr.lh_nentries--; 570 } 571 572 int 573 zap_entry_create(zap_leaf_t *l, zap_name_t *zn, uint32_t cd, 574 uint8_t integer_size, uint64_t num_integers, const void *buf, 575 zap_entry_handle_t *zeh) 576 { 577 uint16_t chunk; 578 uint16_t *chunkp; 579 struct zap_leaf_entry *le; 580 uint64_t valuelen; 581 int numchunks; 582 uint64_t h = zn->zn_hash; 583 584 valuelen = integer_size * num_integers; 585 586 numchunks = 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn->zn_key_orig_numints * 587 zn->zn_key_intlen) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen); 588 if (numchunks > ZAP_LEAF_NUMCHUNKS(l)) 589 return (E2BIG); 590 591 if (cd == ZAP_NEED_CD) { 592 /* find the lowest unused cd */ 593 if (l->l_phys->l_hdr.lh_flags & ZLF_ENTRIES_CDSORTED) { 594 cd = 0; 595 596 for (chunk = *LEAF_HASH_ENTPTR(l, h); 597 chunk != CHAIN_END; chunk = le->le_next) { 598 le = ZAP_LEAF_ENTRY(l, chunk); 599 if (le->le_cd > cd) 600 break; 601 if (le->le_hash == h) { 602 ASSERT3U(cd, ==, le->le_cd); 603 cd++; 604 } 605 } 606 } else { 607 /* old unsorted format; do it the O(n^2) way */ 608 for (cd = 0; ; cd++) { 609 for (chunk = *LEAF_HASH_ENTPTR(l, h); 610 chunk != CHAIN_END; chunk = le->le_next) { 611 le = ZAP_LEAF_ENTRY(l, chunk); 612 if (le->le_hash == h && 613 le->le_cd == cd) { 614 break; 615 } 616 } 617 /* If this cd is not in use, we are good. */ 618 if (chunk == CHAIN_END) 619 break; 620 } 621 } 622 /* 623 * We would run out of space in a block before we could 624 * store enough entries to run out of CD values. 625 */ 626 ASSERT3U(cd, <, zap_maxcd(zn->zn_zap)); 627 } 628 629 if (l->l_phys->l_hdr.lh_nfree < numchunks) 630 return (SET_ERROR(EAGAIN)); 631 632 /* make the entry */ 633 chunk = zap_leaf_chunk_alloc(l); 634 le = ZAP_LEAF_ENTRY(l, chunk); 635 le->le_type = ZAP_CHUNK_ENTRY; 636 le->le_name_chunk = zap_leaf_array_create(l, zn->zn_key_orig, 637 zn->zn_key_intlen, zn->zn_key_orig_numints); 638 le->le_name_numints = zn->zn_key_orig_numints; 639 le->le_value_chunk = 640 zap_leaf_array_create(l, buf, integer_size, num_integers); 641 le->le_value_numints = num_integers; 642 le->le_value_intlen = integer_size; 643 le->le_hash = h; 644 le->le_cd = cd; 645 646 /* link it into the hash chain */ 647 /* XXX if we did the search above, we could just use that */ 648 chunkp = zap_leaf_rehash_entry(l, chunk); 649 650 l->l_phys->l_hdr.lh_nentries++; 651 652 zeh->zeh_leaf = l; 653 zeh->zeh_num_integers = num_integers; 654 zeh->zeh_integer_size = le->le_value_intlen; 655 zeh->zeh_cd = le->le_cd; 656 zeh->zeh_hash = le->le_hash; 657 zeh->zeh_chunkp = chunkp; 658 659 return (0); 660 } 661 662 /* 663 * Determine if there is another entry with the same normalized form. 664 * For performance purposes, either zn or name must be provided (the 665 * other can be NULL). Note, there usually won't be any hash 666 * conflicts, in which case we don't need the concatenated/normalized 667 * form of the name. But all callers have one of these on hand anyway, 668 * so might as well take advantage. A cleaner but slower interface 669 * would accept neither argument, and compute the normalized name as 670 * needed (using zap_name_alloc(zap_entry_read_name(zeh))). 671 */ 672 boolean_t 673 zap_entry_normalization_conflict(zap_entry_handle_t *zeh, zap_name_t *zn, 674 const char *name, zap_t *zap) 675 { 676 uint64_t chunk; 677 struct zap_leaf_entry *le; 678 boolean_t allocdzn = B_FALSE; 679 680 if (zap->zap_normflags == 0) 681 return (B_FALSE); 682 683 for (chunk = *LEAF_HASH_ENTPTR(zeh->zeh_leaf, zeh->zeh_hash); 684 chunk != CHAIN_END; chunk = le->le_next) { 685 le = ZAP_LEAF_ENTRY(zeh->zeh_leaf, chunk); 686 if (le->le_hash != zeh->zeh_hash) 687 continue; 688 if (le->le_cd == zeh->zeh_cd) 689 continue; 690 691 if (zn == NULL) { 692 zn = zap_name_alloc(zap, name, MT_FIRST); 693 allocdzn = B_TRUE; 694 } 695 if (zap_leaf_array_match(zeh->zeh_leaf, zn, 696 le->le_name_chunk, le->le_name_numints)) { 697 if (allocdzn) 698 zap_name_free(zn); 699 return (B_TRUE); 700 } 701 } 702 if (allocdzn) 703 zap_name_free(zn); 704 return (B_FALSE); 705 } 706 707 /* 708 * Routines for transferring entries between leafs. 709 */ 710 711 static uint16_t * 712 zap_leaf_rehash_entry(zap_leaf_t *l, uint16_t entry) 713 { 714 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, entry); 715 struct zap_leaf_entry *le2; 716 uint16_t *chunkp; 717 718 /* 719 * keep the entry chain sorted by cd 720 * NB: this will not cause problems for unsorted leafs, though 721 * it is unnecessary there. 722 */ 723 for (chunkp = LEAF_HASH_ENTPTR(l, le->le_hash); 724 *chunkp != CHAIN_END; chunkp = &le2->le_next) { 725 le2 = ZAP_LEAF_ENTRY(l, *chunkp); 726 if (le2->le_cd > le->le_cd) 727 break; 728 } 729 730 le->le_next = *chunkp; 731 *chunkp = entry; 732 return (chunkp); 733 } 734 735 static uint16_t 736 zap_leaf_transfer_array(zap_leaf_t *l, uint16_t chunk, zap_leaf_t *nl) 737 { 738 uint16_t new_chunk; 739 uint16_t *nchunkp = &new_chunk; 740 741 while (chunk != CHAIN_END) { 742 uint16_t nchunk = zap_leaf_chunk_alloc(nl); 743 struct zap_leaf_array *nla = 744 &ZAP_LEAF_CHUNK(nl, nchunk).l_array; 745 struct zap_leaf_array *la = 746 &ZAP_LEAF_CHUNK(l, chunk).l_array; 747 int nextchunk = la->la_next; 748 749 ASSERT3U(chunk, <, ZAP_LEAF_NUMCHUNKS(l)); 750 ASSERT3U(nchunk, <, ZAP_LEAF_NUMCHUNKS(l)); 751 752 *nla = *la; /* structure assignment */ 753 754 zap_leaf_chunk_free(l, chunk); 755 chunk = nextchunk; 756 *nchunkp = nchunk; 757 nchunkp = &nla->la_next; 758 } 759 *nchunkp = CHAIN_END; 760 return (new_chunk); 761 } 762 763 static void 764 zap_leaf_transfer_entry(zap_leaf_t *l, int entry, zap_leaf_t *nl) 765 { 766 struct zap_leaf_entry *le, *nle; 767 uint16_t chunk; 768 769 le = ZAP_LEAF_ENTRY(l, entry); 770 ASSERT3U(le->le_type, ==, ZAP_CHUNK_ENTRY); 771 772 chunk = zap_leaf_chunk_alloc(nl); 773 nle = ZAP_LEAF_ENTRY(nl, chunk); 774 *nle = *le; /* structure assignment */ 775 776 (void) zap_leaf_rehash_entry(nl, chunk); 777 778 nle->le_name_chunk = zap_leaf_transfer_array(l, le->le_name_chunk, nl); 779 nle->le_value_chunk = 780 zap_leaf_transfer_array(l, le->le_value_chunk, nl); 781 782 zap_leaf_chunk_free(l, entry); 783 784 l->l_phys->l_hdr.lh_nentries--; 785 nl->l_phys->l_hdr.lh_nentries++; 786 } 787 788 /* 789 * Transfer the entries whose hash prefix ends in 1 to the new leaf. 790 */ 791 void 792 zap_leaf_split(zap_leaf_t *l, zap_leaf_t *nl, boolean_t sort) 793 { 794 int i; 795 int bit = 64 - 1 - l->l_phys->l_hdr.lh_prefix_len; 796 797 /* set new prefix and prefix_len */ 798 l->l_phys->l_hdr.lh_prefix <<= 1; 799 l->l_phys->l_hdr.lh_prefix_len++; 800 nl->l_phys->l_hdr.lh_prefix = l->l_phys->l_hdr.lh_prefix | 1; 801 nl->l_phys->l_hdr.lh_prefix_len = l->l_phys->l_hdr.lh_prefix_len; 802 803 /* break existing hash chains */ 804 zap_memset(l->l_phys->l_hash, CHAIN_END, 2*ZAP_LEAF_HASH_NUMENTRIES(l)); 805 806 if (sort) 807 l->l_phys->l_hdr.lh_flags |= ZLF_ENTRIES_CDSORTED; 808 809 /* 810 * Transfer entries whose hash bit 'bit' is set to nl; rehash 811 * the remaining entries 812 * 813 * NB: We could find entries via the hashtable instead. That 814 * would be O(hashents+numents) rather than O(numblks+numents), 815 * but this accesses memory more sequentially, and when we're 816 * called, the block is usually pretty full. 817 */ 818 for (i = 0; i < ZAP_LEAF_NUMCHUNKS(l); i++) { 819 struct zap_leaf_entry *le = ZAP_LEAF_ENTRY(l, i); 820 if (le->le_type != ZAP_CHUNK_ENTRY) 821 continue; 822 823 if (le->le_hash & (1ULL << bit)) 824 zap_leaf_transfer_entry(l, i, nl); 825 else 826 (void) zap_leaf_rehash_entry(l, i); 827 } 828 } 829 830 void 831 zap_leaf_stats(zap_t *zap, zap_leaf_t *l, zap_stats_t *zs) 832 { 833 int i, n; 834 835 n = zap->zap_f.zap_phys->zap_ptrtbl.zt_shift - 836 l->l_phys->l_hdr.lh_prefix_len; 837 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 838 zs->zs_leafs_with_2n_pointers[n]++; 839 840 841 n = l->l_phys->l_hdr.lh_nentries/5; 842 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 843 zs->zs_blocks_with_n5_entries[n]++; 844 845 n = ((1<<FZAP_BLOCK_SHIFT(zap)) - 846 l->l_phys->l_hdr.lh_nfree * (ZAP_LEAF_ARRAY_BYTES+1))*10 / 847 (1<<FZAP_BLOCK_SHIFT(zap)); 848 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 849 zs->zs_blocks_n_tenths_full[n]++; 850 851 for (i = 0; i < ZAP_LEAF_HASH_NUMENTRIES(l); i++) { 852 int nentries = 0; 853 int chunk = l->l_phys->l_hash[i]; 854 855 while (chunk != CHAIN_END) { 856 struct zap_leaf_entry *le = 857 ZAP_LEAF_ENTRY(l, chunk); 858 859 n = 1 + ZAP_LEAF_ARRAY_NCHUNKS(le->le_name_numints) + 860 ZAP_LEAF_ARRAY_NCHUNKS(le->le_value_numints * 861 le->le_value_intlen); 862 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 863 zs->zs_entries_using_n_chunks[n]++; 864 865 chunk = le->le_next; 866 nentries++; 867 } 868 869 n = nentries; 870 n = MIN(n, ZAP_HISTOGRAM_SIZE-1); 871 zs->zs_buckets_with_n_entries[n]++; 872 } 873 } 874