1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 #include <sys/dsl_pool.h> 36 37 /* 38 * ZFS I/O Scheduler 39 * --------------- 40 * 41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 42 * I/O scheduler determines when and in what order those operations are 43 * issued. The I/O scheduler divides operations into five I/O classes 44 * prioritized in the following order: sync read, sync write, async read, 45 * async write, and scrub/resilver. Each queue defines the minimum and 46 * maximum number of concurrent operations that may be issued to the device. 47 * In addition, the device has an aggregate maximum. Note that the sum of the 48 * per-queue minimums must not exceed the aggregate maximum, and if the 49 * aggregate maximum is equal to or greater than the sum of the per-queue 50 * maximums, the per-queue minimum has no effect. 51 * 52 * For many physical devices, throughput increases with the number of 53 * concurrent operations, but latency typically suffers. Further, physical 54 * devices typically have a limit at which more concurrent operations have no 55 * effect on throughput or can actually cause it to decrease. 56 * 57 * The scheduler selects the next operation to issue by first looking for an 58 * I/O class whose minimum has not been satisfied. Once all are satisfied and 59 * the aggregate maximum has not been hit, the scheduler looks for classes 60 * whose maximum has not been satisfied. Iteration through the I/O classes is 61 * done in the order specified above. No further operations are issued if the 62 * aggregate maximum number of concurrent operations has been hit or if there 63 * are no operations queued for an I/O class that has not hit its maximum. 64 * Every time an i/o is queued or an operation completes, the I/O scheduler 65 * looks for new operations to issue. 66 * 67 * All I/O classes have a fixed maximum number of outstanding operations 68 * except for the async write class. Asynchronous writes represent the data 69 * that is committed to stable storage during the syncing stage for 70 * transaction groups (see txg.c). Transaction groups enter the syncing state 71 * periodically so the number of queued async writes will quickly burst up and 72 * then bleed down to zero. Rather than servicing them as quickly as possible, 73 * the I/O scheduler changes the maximum number of active async write i/os 74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 75 * both throughput and latency typically increase with the number of 76 * concurrent operations issued to physical devices, reducing the burstiness 77 * in the number of concurrent operations also stabilizes the response time of 78 * operations from other -- and in particular synchronous -- queues. In broad 79 * strokes, the I/O scheduler will issue more concurrent operations from the 80 * async write queue as there's more dirty data in the pool. 81 * 82 * Async Writes 83 * 84 * The number of concurrent operations issued for the async write I/O class 85 * follows a piece-wise linear function defined by a few adjustable points. 86 * 87 * | o---------| <-- zfs_vdev_async_write_max_active 88 * ^ | /^ | 89 * | | / | | 90 * active | / | | 91 * I/O | / | | 92 * count | / | | 93 * | / | | 94 * |------------o | | <-- zfs_vdev_async_write_min_active 95 * 0|____________^______|_________| 96 * 0% | | 100% of zfs_dirty_data_max 97 * | | 98 * | `-- zfs_vdev_async_write_active_max_dirty_percent 99 * `--------- zfs_vdev_async_write_active_min_dirty_percent 100 * 101 * Until the amount of dirty data exceeds a minimum percentage of the dirty 102 * data allowed in the pool, the I/O scheduler will limit the number of 103 * concurrent operations to the minimum. As that threshold is crossed, the 104 * number of concurrent operations issued increases linearly to the maximum at 105 * the specified maximum percentage of the dirty data allowed in the pool. 106 * 107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 110 * maximum percentage, this indicates that the rate of incoming data is 111 * greater than the rate that the backend storage can handle. In this case, we 112 * must further throttle incoming writes (see dmu_tx_delay() for details). 113 */ 114 115 /* 116 * The maximum number of i/os active to each device. Ideally, this will be >= 117 * the sum of each queue's max_active. It must be at least the sum of each 118 * queue's min_active. 119 */ 120 uint32_t zfs_vdev_max_active = 1000; 121 122 /* 123 * Per-queue limits on the number of i/os active to each device. If the 124 * sum of the queue's max_active is < zfs_vdev_max_active, then the 125 * min_active comes into play. We will send min_active from each queue, 126 * and then select from queues in the order defined by zio_priority_t. 127 * 128 * In general, smaller max_active's will lead to lower latency of synchronous 129 * operations. Larger max_active's may lead to higher overall throughput, 130 * depending on underlying storage. 131 * 132 * The ratio of the queues' max_actives determines the balance of performance 133 * between reads, writes, and scrubs. E.g., increasing 134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 135 * more quickly, but reads and writes to have higher latency and lower 136 * throughput. 137 */ 138 uint32_t zfs_vdev_sync_read_min_active = 10; 139 uint32_t zfs_vdev_sync_read_max_active = 10; 140 uint32_t zfs_vdev_sync_write_min_active = 10; 141 uint32_t zfs_vdev_sync_write_max_active = 10; 142 uint32_t zfs_vdev_async_read_min_active = 1; 143 uint32_t zfs_vdev_async_read_max_active = 3; 144 uint32_t zfs_vdev_async_write_min_active = 1; 145 uint32_t zfs_vdev_async_write_max_active = 10; 146 uint32_t zfs_vdev_scrub_min_active = 1; 147 uint32_t zfs_vdev_scrub_max_active = 2; 148 149 /* 150 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 151 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 152 * zfs_vdev_async_write_active_max_dirty_percent, use 153 * zfs_vdev_async_write_max_active. The value is linearly interpolated 154 * between min and max. 155 */ 156 int zfs_vdev_async_write_active_min_dirty_percent = 30; 157 int zfs_vdev_async_write_active_max_dirty_percent = 60; 158 159 /* 160 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 161 * For read I/Os, we also aggregate across small adjacency gaps; for writes 162 * we include spans of optional I/Os to aid aggregation at the disk even when 163 * they aren't able to help us aggregate at this level. 164 */ 165 int zfs_vdev_aggregation_limit = SPA_OLD_MAXBLOCKSIZE; 166 int zfs_vdev_read_gap_limit = 32 << 10; 167 int zfs_vdev_write_gap_limit = 4 << 10; 168 169 int 170 vdev_queue_offset_compare(const void *x1, const void *x2) 171 { 172 const zio_t *z1 = x1; 173 const zio_t *z2 = x2; 174 175 if (z1->io_offset < z2->io_offset) 176 return (-1); 177 if (z1->io_offset > z2->io_offset) 178 return (1); 179 180 if (z1 < z2) 181 return (-1); 182 if (z1 > z2) 183 return (1); 184 185 return (0); 186 } 187 188 int 189 vdev_queue_timestamp_compare(const void *x1, const void *x2) 190 { 191 const zio_t *z1 = x1; 192 const zio_t *z2 = x2; 193 194 if (z1->io_timestamp < z2->io_timestamp) 195 return (-1); 196 if (z1->io_timestamp > z2->io_timestamp) 197 return (1); 198 199 if (z1 < z2) 200 return (-1); 201 if (z1 > z2) 202 return (1); 203 204 return (0); 205 } 206 207 void 208 vdev_queue_init(vdev_t *vd) 209 { 210 vdev_queue_t *vq = &vd->vdev_queue; 211 212 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 213 vq->vq_vdev = vd; 214 215 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 216 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 217 218 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 219 /* 220 * The synchronous i/o queues are FIFO rather than LBA ordered. 221 * This provides more consistent latency for these i/os, and 222 * they tend to not be tightly clustered anyway so there is 223 * little to no throughput loss. 224 */ 225 boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || 226 p == ZIO_PRIORITY_SYNC_WRITE); 227 avl_create(&vq->vq_class[p].vqc_queued_tree, 228 fifo ? vdev_queue_timestamp_compare : 229 vdev_queue_offset_compare, 230 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 231 } 232 } 233 234 void 235 vdev_queue_fini(vdev_t *vd) 236 { 237 vdev_queue_t *vq = &vd->vdev_queue; 238 239 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 240 avl_destroy(&vq->vq_class[p].vqc_queued_tree); 241 avl_destroy(&vq->vq_active_tree); 242 243 mutex_destroy(&vq->vq_lock); 244 } 245 246 static void 247 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 248 { 249 spa_t *spa = zio->io_spa; 250 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 251 avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 252 253 mutex_enter(&spa->spa_iokstat_lock); 254 spa->spa_queue_stats[zio->io_priority].spa_queued++; 255 if (spa->spa_iokstat != NULL) 256 kstat_waitq_enter(spa->spa_iokstat->ks_data); 257 mutex_exit(&spa->spa_iokstat_lock); 258 } 259 260 static void 261 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 262 { 263 spa_t *spa = zio->io_spa; 264 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 265 avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 266 267 mutex_enter(&spa->spa_iokstat_lock); 268 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 269 spa->spa_queue_stats[zio->io_priority].spa_queued--; 270 if (spa->spa_iokstat != NULL) 271 kstat_waitq_exit(spa->spa_iokstat->ks_data); 272 mutex_exit(&spa->spa_iokstat_lock); 273 } 274 275 static void 276 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 277 { 278 spa_t *spa = zio->io_spa; 279 ASSERT(MUTEX_HELD(&vq->vq_lock)); 280 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 281 vq->vq_class[zio->io_priority].vqc_active++; 282 avl_add(&vq->vq_active_tree, zio); 283 284 mutex_enter(&spa->spa_iokstat_lock); 285 spa->spa_queue_stats[zio->io_priority].spa_active++; 286 if (spa->spa_iokstat != NULL) 287 kstat_runq_enter(spa->spa_iokstat->ks_data); 288 mutex_exit(&spa->spa_iokstat_lock); 289 } 290 291 static void 292 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 293 { 294 spa_t *spa = zio->io_spa; 295 ASSERT(MUTEX_HELD(&vq->vq_lock)); 296 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 297 vq->vq_class[zio->io_priority].vqc_active--; 298 avl_remove(&vq->vq_active_tree, zio); 299 300 mutex_enter(&spa->spa_iokstat_lock); 301 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 302 spa->spa_queue_stats[zio->io_priority].spa_active--; 303 if (spa->spa_iokstat != NULL) { 304 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 305 306 kstat_runq_exit(spa->spa_iokstat->ks_data); 307 if (zio->io_type == ZIO_TYPE_READ) { 308 ksio->reads++; 309 ksio->nread += zio->io_size; 310 } else if (zio->io_type == ZIO_TYPE_WRITE) { 311 ksio->writes++; 312 ksio->nwritten += zio->io_size; 313 } 314 } 315 mutex_exit(&spa->spa_iokstat_lock); 316 } 317 318 static void 319 vdev_queue_agg_io_done(zio_t *aio) 320 { 321 if (aio->io_type == ZIO_TYPE_READ) { 322 zio_t *pio; 323 while ((pio = zio_walk_parents(aio)) != NULL) { 324 bcopy((char *)aio->io_data + (pio->io_offset - 325 aio->io_offset), pio->io_data, pio->io_size); 326 } 327 } 328 329 zio_buf_free(aio->io_data, aio->io_size); 330 } 331 332 static int 333 vdev_queue_class_min_active(zio_priority_t p) 334 { 335 switch (p) { 336 case ZIO_PRIORITY_SYNC_READ: 337 return (zfs_vdev_sync_read_min_active); 338 case ZIO_PRIORITY_SYNC_WRITE: 339 return (zfs_vdev_sync_write_min_active); 340 case ZIO_PRIORITY_ASYNC_READ: 341 return (zfs_vdev_async_read_min_active); 342 case ZIO_PRIORITY_ASYNC_WRITE: 343 return (zfs_vdev_async_write_min_active); 344 case ZIO_PRIORITY_SCRUB: 345 return (zfs_vdev_scrub_min_active); 346 default: 347 panic("invalid priority %u", p); 348 return (0); 349 } 350 } 351 352 static int 353 vdev_queue_max_async_writes(spa_t *spa) 354 { 355 int writes; 356 uint64_t dirty = spa->spa_dsl_pool->dp_dirty_total; 357 uint64_t min_bytes = zfs_dirty_data_max * 358 zfs_vdev_async_write_active_min_dirty_percent / 100; 359 uint64_t max_bytes = zfs_dirty_data_max * 360 zfs_vdev_async_write_active_max_dirty_percent / 100; 361 362 /* 363 * Sync tasks correspond to interactive user actions. To reduce the 364 * execution time of those actions we push data out as fast as possible. 365 */ 366 if (spa_has_pending_synctask(spa)) { 367 return (zfs_vdev_async_write_max_active); 368 } 369 370 if (dirty < min_bytes) 371 return (zfs_vdev_async_write_min_active); 372 if (dirty > max_bytes) 373 return (zfs_vdev_async_write_max_active); 374 375 /* 376 * linear interpolation: 377 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 378 * move right by min_bytes 379 * move up by min_writes 380 */ 381 writes = (dirty - min_bytes) * 382 (zfs_vdev_async_write_max_active - 383 zfs_vdev_async_write_min_active) / 384 (max_bytes - min_bytes) + 385 zfs_vdev_async_write_min_active; 386 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 387 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 388 return (writes); 389 } 390 391 static int 392 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 393 { 394 switch (p) { 395 case ZIO_PRIORITY_SYNC_READ: 396 return (zfs_vdev_sync_read_max_active); 397 case ZIO_PRIORITY_SYNC_WRITE: 398 return (zfs_vdev_sync_write_max_active); 399 case ZIO_PRIORITY_ASYNC_READ: 400 return (zfs_vdev_async_read_max_active); 401 case ZIO_PRIORITY_ASYNC_WRITE: 402 return (vdev_queue_max_async_writes(spa)); 403 case ZIO_PRIORITY_SCRUB: 404 return (zfs_vdev_scrub_max_active); 405 default: 406 panic("invalid priority %u", p); 407 return (0); 408 } 409 } 410 411 /* 412 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 413 * there is no eligible class. 414 */ 415 static zio_priority_t 416 vdev_queue_class_to_issue(vdev_queue_t *vq) 417 { 418 spa_t *spa = vq->vq_vdev->vdev_spa; 419 zio_priority_t p; 420 421 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 422 return (ZIO_PRIORITY_NUM_QUEUEABLE); 423 424 /* find a queue that has not reached its minimum # outstanding i/os */ 425 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 426 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 427 vq->vq_class[p].vqc_active < 428 vdev_queue_class_min_active(p)) 429 return (p); 430 } 431 432 /* 433 * If we haven't found a queue, look for one that hasn't reached its 434 * maximum # outstanding i/os. 435 */ 436 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 437 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 438 vq->vq_class[p].vqc_active < 439 vdev_queue_class_max_active(spa, p)) 440 return (p); 441 } 442 443 /* No eligible queued i/os */ 444 return (ZIO_PRIORITY_NUM_QUEUEABLE); 445 } 446 447 /* 448 * Compute the range spanned by two i/os, which is the endpoint of the last 449 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 450 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 451 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 452 */ 453 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 454 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 455 456 static zio_t * 457 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 458 { 459 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 460 uint64_t maxgap = 0; 461 uint64_t size; 462 boolean_t stretch = B_FALSE; 463 vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; 464 avl_tree_t *t = &vqc->vqc_queued_tree; 465 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 466 467 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 468 return (NULL); 469 470 /* 471 * The synchronous i/o queues are not sorted by LBA, so we can't 472 * find adjacent i/os. These i/os tend to not be tightly clustered, 473 * or too large to aggregate, so this has little impact on performance. 474 */ 475 if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || 476 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) 477 return (NULL); 478 479 first = last = zio; 480 481 if (zio->io_type == ZIO_TYPE_READ) 482 maxgap = zfs_vdev_read_gap_limit; 483 484 /* 485 * We can aggregate I/Os that are sufficiently adjacent and of 486 * the same flavor, as expressed by the AGG_INHERIT flags. 487 * The latter requirement is necessary so that certain 488 * attributes of the I/O, such as whether it's a normal I/O 489 * or a scrub/resilver, can be preserved in the aggregate. 490 * We can include optional I/Os, but don't allow them 491 * to begin a range as they add no benefit in that situation. 492 */ 493 494 /* 495 * We keep track of the last non-optional I/O. 496 */ 497 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 498 499 /* 500 * Walk backwards through sufficiently contiguous I/Os 501 * recording the last non-option I/O. 502 */ 503 while ((dio = AVL_PREV(t, first)) != NULL && 504 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 505 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 506 IO_GAP(dio, first) <= maxgap) { 507 first = dio; 508 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 509 mandatory = first; 510 } 511 512 /* 513 * Skip any initial optional I/Os. 514 */ 515 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 516 first = AVL_NEXT(t, first); 517 ASSERT(first != NULL); 518 } 519 520 /* 521 * Walk forward through sufficiently contiguous I/Os. 522 */ 523 while ((dio = AVL_NEXT(t, last)) != NULL && 524 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 525 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && 526 IO_GAP(last, dio) <= maxgap) { 527 last = dio; 528 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 529 mandatory = last; 530 } 531 532 /* 533 * Now that we've established the range of the I/O aggregation 534 * we must decide what to do with trailing optional I/Os. 535 * For reads, there's nothing to do. While we are unable to 536 * aggregate further, it's possible that a trailing optional 537 * I/O would allow the underlying device to aggregate with 538 * subsequent I/Os. We must therefore determine if the next 539 * non-optional I/O is close enough to make aggregation 540 * worthwhile. 541 */ 542 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 543 zio_t *nio = last; 544 while ((dio = AVL_NEXT(t, nio)) != NULL && 545 IO_GAP(nio, dio) == 0 && 546 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 547 nio = dio; 548 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 549 stretch = B_TRUE; 550 break; 551 } 552 } 553 } 554 555 if (stretch) { 556 /* This may be a no-op. */ 557 dio = AVL_NEXT(t, last); 558 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 559 } else { 560 while (last != mandatory && last != first) { 561 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 562 last = AVL_PREV(t, last); 563 ASSERT(last != NULL); 564 } 565 } 566 567 if (first == last) 568 return (NULL); 569 570 size = IO_SPAN(first, last); 571 ASSERT3U(size, <=, zfs_vdev_aggregation_limit); 572 573 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 574 zio_buf_alloc(size), size, first->io_type, zio->io_priority, 575 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 576 vdev_queue_agg_io_done, NULL); 577 aio->io_timestamp = first->io_timestamp; 578 579 nio = first; 580 do { 581 dio = nio; 582 nio = AVL_NEXT(t, dio); 583 ASSERT3U(dio->io_type, ==, aio->io_type); 584 585 if (dio->io_flags & ZIO_FLAG_NODATA) { 586 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 587 bzero((char *)aio->io_data + (dio->io_offset - 588 aio->io_offset), dio->io_size); 589 } else if (dio->io_type == ZIO_TYPE_WRITE) { 590 bcopy(dio->io_data, (char *)aio->io_data + 591 (dio->io_offset - aio->io_offset), 592 dio->io_size); 593 } 594 595 zio_add_child(dio, aio); 596 vdev_queue_io_remove(vq, dio); 597 zio_vdev_io_bypass(dio); 598 zio_execute(dio); 599 } while (dio != last); 600 601 return (aio); 602 } 603 604 static zio_t * 605 vdev_queue_io_to_issue(vdev_queue_t *vq) 606 { 607 zio_t *zio, *aio; 608 zio_priority_t p; 609 avl_index_t idx; 610 vdev_queue_class_t *vqc; 611 zio_t search; 612 613 again: 614 ASSERT(MUTEX_HELD(&vq->vq_lock)); 615 616 p = vdev_queue_class_to_issue(vq); 617 618 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 619 /* No eligible queued i/os */ 620 return (NULL); 621 } 622 623 /* 624 * For LBA-ordered queues (async / scrub), issue the i/o which follows 625 * the most recently issued i/o in LBA (offset) order. 626 * 627 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 628 */ 629 vqc = &vq->vq_class[p]; 630 search.io_timestamp = 0; 631 search.io_offset = vq->vq_last_offset + 1; 632 VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL); 633 zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); 634 if (zio == NULL) 635 zio = avl_first(&vqc->vqc_queued_tree); 636 ASSERT3U(zio->io_priority, ==, p); 637 638 aio = vdev_queue_aggregate(vq, zio); 639 if (aio != NULL) 640 zio = aio; 641 else 642 vdev_queue_io_remove(vq, zio); 643 644 /* 645 * If the I/O is or was optional and therefore has no data, we need to 646 * simply discard it. We need to drop the vdev queue's lock to avoid a 647 * deadlock that we could encounter since this I/O will complete 648 * immediately. 649 */ 650 if (zio->io_flags & ZIO_FLAG_NODATA) { 651 mutex_exit(&vq->vq_lock); 652 zio_vdev_io_bypass(zio); 653 zio_execute(zio); 654 mutex_enter(&vq->vq_lock); 655 goto again; 656 } 657 658 vdev_queue_pending_add(vq, zio); 659 vq->vq_last_offset = zio->io_offset; 660 661 return (zio); 662 } 663 664 zio_t * 665 vdev_queue_io(zio_t *zio) 666 { 667 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 668 zio_t *nio; 669 670 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 671 return (zio); 672 673 /* 674 * Children i/os inherent their parent's priority, which might 675 * not match the child's i/o type. Fix it up here. 676 */ 677 if (zio->io_type == ZIO_TYPE_READ) { 678 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 679 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 680 zio->io_priority != ZIO_PRIORITY_SCRUB) 681 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 682 } else { 683 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 684 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 685 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 686 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 687 } 688 689 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 690 691 mutex_enter(&vq->vq_lock); 692 zio->io_timestamp = gethrtime(); 693 vdev_queue_io_add(vq, zio); 694 nio = vdev_queue_io_to_issue(vq); 695 mutex_exit(&vq->vq_lock); 696 697 if (nio == NULL) 698 return (NULL); 699 700 if (nio->io_done == vdev_queue_agg_io_done) { 701 zio_nowait(nio); 702 return (NULL); 703 } 704 705 return (nio); 706 } 707 708 void 709 vdev_queue_io_done(zio_t *zio) 710 { 711 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 712 zio_t *nio; 713 714 if (zio_injection_enabled) 715 delay(SEC_TO_TICK(zio_handle_io_delay(zio))); 716 717 mutex_enter(&vq->vq_lock); 718 719 vdev_queue_pending_remove(vq, zio); 720 721 vq->vq_io_complete_ts = gethrtime(); 722 723 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 724 mutex_exit(&vq->vq_lock); 725 if (nio->io_done == vdev_queue_agg_io_done) { 726 zio_nowait(nio); 727 } else { 728 zio_vdev_io_reissue(nio); 729 zio_execute(nio); 730 } 731 mutex_enter(&vq->vq_lock); 732 } 733 734 mutex_exit(&vq->vq_lock); 735 } 736