1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual Device Labels 31 * --------------------- 32 * 33 * The vdev label serves several distinct purposes: 34 * 35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 36 * identity within the pool. 37 * 38 * 2. Verify that all the devices given in a configuration are present 39 * within the pool. 40 * 41 * 3. Determine the uberblock for the pool. 42 * 43 * 4. In case of an import operation, determine the configuration of the 44 * toplevel vdev of which it is a part. 45 * 46 * 5. If an import operation cannot find all the devices in the pool, 47 * provide enough information to the administrator to determine which 48 * devices are missing. 49 * 50 * It is important to note that while the kernel is responsible for writing the 51 * label, it only consumes the information in the first three cases. The 52 * latter information is only consumed in userland when determining the 53 * configuration to import a pool. 54 * 55 * 56 * Label Organization 57 * ------------------ 58 * 59 * Before describing the contents of the label, it's important to understand how 60 * the labels are written and updated with respect to the uberblock. 61 * 62 * When the pool configuration is altered, either because it was newly created 63 * or a device was added, we want to update all the labels such that we can deal 64 * with fatal failure at any point. To this end, each disk has two labels which 65 * are updated before and after the uberblock is synced. Assuming we have 66 * labels and an uberblock with the following transacation groups: 67 * 68 * L1 UB L2 69 * +------+ +------+ +------+ 70 * | | | | | | 71 * | t10 | | t10 | | t10 | 72 * | | | | | | 73 * +------+ +------+ +------+ 74 * 75 * In this stable state, the labels and the uberblock were all updated within 76 * the same transaction group (10). Each label is mirrored and checksummed, so 77 * that we can detect when we fail partway through writing the label. 78 * 79 * In order to identify which labels are valid, the labels are written in the 80 * following manner: 81 * 82 * 1. For each vdev, update 'L1' to the new label 83 * 2. Update the uberblock 84 * 3. For each vdev, update 'L2' to the new label 85 * 86 * Given arbitrary failure, we can determine the correct label to use based on 87 * the transaction group. If we fail after updating L1 but before updating the 88 * UB, we will notice that L1's transaction group is greater than the uberblock, 89 * so L2 must be valid. If we fail after writing the uberblock but before 90 * writing L2, we will notice that L2's transaction group is less than L1, and 91 * therefore L1 is valid. 92 * 93 * Another added complexity is that not every label is updated when the config 94 * is synced. If we add a single device, we do not want to have to re-write 95 * every label for every device in the pool. This means that both L1 and L2 may 96 * be older than the pool uberblock, because the necessary information is stored 97 * on another vdev. 98 * 99 * 100 * On-disk Format 101 * -------------- 102 * 103 * The vdev label consists of two distinct parts, and is wrapped within the 104 * vdev_label_t structure. The label includes 8k of padding to permit legacy 105 * VTOC disk labels, but is otherwise ignored. 106 * 107 * The first half of the label is a packed nvlist which contains pool wide 108 * properties, per-vdev properties, and configuration information. It is 109 * described in more detail below. 110 * 111 * The latter half of the label consists of a redundant array of uberblocks. 112 * These uberblocks are updated whenever a transaction group is committed, 113 * or when the configuration is updated. When a pool is loaded, we scan each 114 * vdev for the 'best' uberblock. 115 * 116 * 117 * Configuration Information 118 * ------------------------- 119 * 120 * The nvlist describing the pool and vdev contains the following elements: 121 * 122 * version ZFS on-disk version 123 * name Pool name 124 * state Pool state 125 * txg Transaction group in which this label was written 126 * pool_guid Unique identifier for this pool 127 * vdev_tree An nvlist describing vdev tree. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/fs/zfs.h> 148 149 /* 150 * Basic routines to read and write from a vdev label. 151 * Used throughout the rest of this file. 152 */ 153 uint64_t 154 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 155 { 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 static void 161 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 162 uint64_t size, zio_done_func_t *done, void *private) 163 { 164 ASSERT(vd->vdev_children == 0); 165 166 zio_nowait(zio_read_phys(zio, vd, 167 vdev_label_offset(vd->vdev_psize, l, offset), 168 size, buf, ZIO_CHECKSUM_LABEL, done, private, 169 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_SPECULATIVE | 170 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 171 } 172 173 static void 174 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 175 uint64_t size, zio_done_func_t *done, void *private) 176 { 177 ASSERT(vd->vdev_children == 0); 178 179 zio_nowait(zio_write_phys(zio, vd, 180 vdev_label_offset(vd->vdev_psize, l, offset), 181 size, buf, ZIO_CHECKSUM_LABEL, done, private, 182 ZIO_PRIORITY_SYNC_WRITE, 183 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 184 } 185 186 /* 187 * Generate the nvlist representing this vdev's config. 188 */ 189 nvlist_t * 190 vdev_config_generate(vdev_t *vd, int getstats) 191 { 192 nvlist_t *nv = NULL; 193 194 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0); 195 196 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 197 vd->vdev_ops->vdev_op_type) == 0); 198 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0); 199 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 200 201 if (vd->vdev_path != NULL) 202 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 203 vd->vdev_path) == 0); 204 205 if (vd->vdev_devid != NULL) 206 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 207 vd->vdev_devid) == 0); 208 209 if (vd == vd->vdev_top) { 210 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 211 vd->vdev_ms_array) == 0); 212 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 213 vd->vdev_ms_shift) == 0); 214 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 215 vd->vdev_ashift) == 0); 216 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 217 vd->vdev_asize) == 0); 218 } 219 220 if (vd->vdev_dtl.smo_object != 0) 221 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 222 vd->vdev_dtl.smo_object) == 0); 223 224 if (getstats) { 225 vdev_stat_t vs; 226 vdev_get_stats(vd, &vs); 227 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 228 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 229 } 230 231 if (!vd->vdev_ops->vdev_op_leaf) { 232 nvlist_t **child; 233 int c; 234 235 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 236 KM_SLEEP); 237 238 for (c = 0; c < vd->vdev_children; c++) 239 child[c] = vdev_config_generate(vd->vdev_child[c], 240 getstats); 241 242 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 243 child, vd->vdev_children) == 0); 244 245 for (c = 0; c < vd->vdev_children; c++) 246 nvlist_free(child[c]); 247 248 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 249 } 250 251 return (nv); 252 } 253 254 nvlist_t * 255 vdev_label_read_config(vdev_t *vd) 256 { 257 nvlist_t *config = NULL; 258 vdev_phys_t *vp; 259 uint64_t version; 260 zio_t *zio; 261 int l; 262 263 if (vdev_is_dead(vd)) 264 return (NULL); 265 266 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 267 268 for (l = 0; l < VDEV_LABELS; l++) { 269 270 zio = zio_root(vd->vdev_spa, NULL, NULL, 271 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD); 272 273 vdev_label_read(zio, vd, l, vp, 274 offsetof(vdev_label_t, vl_vdev_phys), 275 sizeof (vdev_phys_t), NULL, NULL); 276 277 if (zio_wait(zio) == 0 && 278 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 279 &config, 0) == 0 && 280 nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 281 &version) == 0 && 282 version == UBERBLOCK_VERSION) 283 break; 284 285 if (config != NULL) { 286 nvlist_free(config); 287 config = NULL; 288 } 289 } 290 291 zio_buf_free(vp, sizeof (vdev_phys_t)); 292 293 return (config); 294 } 295 296 int 297 vdev_label_init(vdev_t *vd, uint64_t crtxg) 298 { 299 spa_t *spa = vd->vdev_spa; 300 nvlist_t *label; 301 vdev_phys_t *vp; 302 vdev_boot_header_t *vb; 303 uberblock_phys_t *ubphys; 304 zio_t *zio; 305 int l, c, n; 306 char *buf; 307 size_t buflen; 308 int error; 309 310 for (c = 0; c < vd->vdev_children; c++) 311 if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0) 312 return (error); 313 314 if (!vd->vdev_ops->vdev_op_leaf) 315 return (0); 316 317 /* 318 * Make sure each leaf device is writable, and zero its initial content. 319 * Along the way, also make sure that no leaf is already in use. 320 * Note that it's important to do this sequentially, not in parallel, 321 * so that we catch cases of multiple use of the same leaf vdev in 322 * the vdev we're creating -- e.g. mirroring a disk with itself. 323 */ 324 if (vdev_is_dead(vd)) 325 return (EIO); 326 327 /* 328 * Check whether this device is already in use. 329 * Ignore the check if crtxg == 0, which we use for device removal. 330 */ 331 if (crtxg != 0 && (label = vdev_label_read_config(vd)) != NULL) { 332 uint64_t version, state, pool_guid, device_guid, txg; 333 uint64_t mycrtxg = 0; 334 335 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 336 &mycrtxg); 337 338 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, 339 &version) == 0 && version == UBERBLOCK_VERSION && 340 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 341 &state) == 0 && state == POOL_STATE_ACTIVE && 342 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 343 &pool_guid) == 0 && 344 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 345 &device_guid) == 0 && 346 spa_guid_exists(pool_guid, device_guid) && 347 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 348 &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) { 349 dprintf("vdev %s in use, pool_state %d\n", 350 vdev_description(vd), state); 351 nvlist_free(label); 352 return (EBUSY); 353 } 354 nvlist_free(label); 355 } 356 357 /* 358 * The device isn't in use, so initialize its label. 359 */ 360 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 361 bzero(vp, sizeof (vdev_phys_t)); 362 363 /* 364 * Generate a label describing the pool and our top-level vdev. 365 * We mark it as being from txg 0 to indicate that it's not 366 * really part of an active pool just yet. The labels will 367 * be written again with a meaningful txg by spa_sync(). 368 */ 369 label = spa_config_generate(spa, vd, 0ULL, 0); 370 371 /* 372 * Add our creation time. This allows us to detect multiple vdev 373 * uses as described above, and automatically expires if we fail. 374 */ 375 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0); 376 377 buf = vp->vp_nvlist; 378 buflen = sizeof (vp->vp_nvlist); 379 380 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) != 0) { 381 nvlist_free(label); 382 zio_buf_free(vp, sizeof (vdev_phys_t)); 383 return (EINVAL); 384 } 385 386 /* 387 * Initialize boot block header. 388 */ 389 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 390 bzero(vb, sizeof (vdev_boot_header_t)); 391 vb->vb_magic = VDEV_BOOT_MAGIC; 392 vb->vb_version = VDEV_BOOT_VERSION; 393 vb->vb_offset = VDEV_BOOT_OFFSET; 394 vb->vb_size = VDEV_BOOT_SIZE; 395 396 /* 397 * Initialize uberblock template. 398 */ 399 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 400 bzero(ubphys, sizeof (uberblock_phys_t)); 401 ubphys->ubp_uberblock = spa->spa_uberblock; 402 ubphys->ubp_uberblock.ub_txg = 0; 403 404 /* 405 * Write everything in parallel. 406 */ 407 zio = zio_root(spa, NULL, NULL, 408 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 409 410 for (l = 0; l < VDEV_LABELS; l++) { 411 412 vdev_label_write(zio, vd, l, vp, 413 offsetof(vdev_label_t, vl_vdev_phys), 414 sizeof (vdev_phys_t), NULL, NULL); 415 416 vdev_label_write(zio, vd, l, vb, 417 offsetof(vdev_label_t, vl_boot_header), 418 sizeof (vdev_boot_header_t), NULL, NULL); 419 420 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 421 422 vdev_label_write(zio, vd, l, ubphys, 423 offsetof(vdev_label_t, vl_uberblock[n]), 424 sizeof (uberblock_phys_t), NULL, NULL); 425 426 } 427 } 428 429 error = zio_wait(zio); 430 431 nvlist_free(label); 432 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 433 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 434 zio_buf_free(vp, sizeof (vdev_phys_t)); 435 436 return (error); 437 } 438 439 /* 440 * ========================================================================== 441 * uberblock load/sync 442 * ========================================================================== 443 */ 444 445 /* 446 * Consider the following situation: txg is safely synced to disk. We've 447 * written the first uberblock for txg + 1, and then we lose power. When we 448 * come back up, we fail to see the uberblock for txg + 1 because, say, 449 * it was on a mirrored device and the replica to which we wrote txg + 1 450 * is now offline. If we then make some changes and sync txg + 1, and then 451 * the missing replica comes back, then for a new seconds we'll have two 452 * conflicting uberblocks on disk with the same txg. The solution is simple: 453 * among uberblocks with equal txg, choose the one with the latest timestamp. 454 */ 455 static int 456 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 457 { 458 if (ub1->ub_txg < ub2->ub_txg) 459 return (-1); 460 if (ub1->ub_txg > ub2->ub_txg) 461 return (1); 462 463 if (ub1->ub_timestamp < ub2->ub_timestamp) 464 return (-1); 465 if (ub1->ub_timestamp > ub2->ub_timestamp) 466 return (1); 467 468 return (0); 469 } 470 471 static void 472 vdev_uberblock_load_done(zio_t *zio) 473 { 474 uberblock_phys_t *ubphys = zio->io_data; 475 uberblock_t *ub = &ubphys->ubp_uberblock; 476 uberblock_t *ubbest = zio->io_private; 477 spa_t *spa = zio->io_spa; 478 479 ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t)); 480 481 if (uberblock_verify(ub) == 0) { 482 mutex_enter(&spa->spa_uberblock_lock); 483 if (vdev_uberblock_compare(ub, ubbest) > 0) 484 *ubbest = *ub; 485 mutex_exit(&spa->spa_uberblock_lock); 486 } 487 488 zio_buf_free(zio->io_data, zio->io_size); 489 } 490 491 void 492 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 493 { 494 int l, c, n; 495 496 for (c = 0; c < vd->vdev_children; c++) 497 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 498 499 if (!vd->vdev_ops->vdev_op_leaf) 500 return; 501 502 if (vdev_is_dead(vd)) 503 return; 504 505 for (l = 0; l < VDEV_LABELS; l++) { 506 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 507 vdev_label_read(zio, vd, l, 508 zio_buf_alloc(sizeof (uberblock_phys_t)), 509 offsetof(vdev_label_t, vl_uberblock[n]), 510 sizeof (uberblock_phys_t), 511 vdev_uberblock_load_done, ubbest); 512 } 513 } 514 } 515 516 /* 517 * Write the uberblock to both labels of all leaves of the specified vdev. 518 */ 519 static void 520 vdev_uberblock_sync_done(zio_t *zio) 521 { 522 uint64_t *good_writes = zio->io_root->io_private; 523 524 if (zio->io_error == 0) 525 atomic_add_64(good_writes, 1); 526 } 527 528 static void 529 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd, 530 uint64_t txg) 531 { 532 int l, c, n; 533 534 for (c = 0; c < vd->vdev_children; c++) 535 vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg); 536 537 if (!vd->vdev_ops->vdev_op_leaf) 538 return; 539 540 if (vdev_is_dead(vd)) 541 return; 542 543 n = txg & (VDEV_UBERBLOCKS - 1); 544 545 ASSERT(ubphys->ubp_uberblock.ub_txg == txg); 546 547 for (l = 0; l < VDEV_LABELS; l++) 548 vdev_label_write(zio, vd, l, ubphys, 549 offsetof(vdev_label_t, vl_uberblock[n]), 550 sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL); 551 552 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 553 } 554 555 static int 556 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg) 557 { 558 uberblock_phys_t *ubphys; 559 uint64_t *good_writes; 560 zio_t *zio; 561 int error; 562 563 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 564 bzero(ubphys, sizeof (uberblock_phys_t)); 565 ubphys->ubp_uberblock = *ub; 566 567 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 568 569 zio = zio_root(spa, NULL, good_writes, 570 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 571 572 vdev_uberblock_sync(zio, ubphys, uvd, txg); 573 574 error = zio_wait(zio); 575 576 if (error && *good_writes != 0) { 577 dprintf("partial success: good_writes = %llu\n", *good_writes); 578 error = 0; 579 } 580 581 /* 582 * It's possible to have no good writes and no error if every vdev is in 583 * the CANT_OPEN state. 584 */ 585 if (*good_writes == 0 && error == 0) 586 error = EIO; 587 588 kmem_free(good_writes, sizeof (uint64_t)); 589 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 590 591 return (error); 592 } 593 594 /* 595 * Sync out an individual vdev. 596 */ 597 static void 598 vdev_sync_label_done(zio_t *zio) 599 { 600 uint64_t *good_writes = zio->io_root->io_private; 601 602 if (zio->io_error == 0) 603 atomic_add_64(good_writes, 1); 604 } 605 606 static void 607 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 608 { 609 nvlist_t *label; 610 vdev_phys_t *vp; 611 char *buf; 612 size_t buflen; 613 int c; 614 615 for (c = 0; c < vd->vdev_children; c++) 616 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 617 618 if (!vd->vdev_ops->vdev_op_leaf) 619 return; 620 621 if (vdev_is_dead(vd)) 622 return; 623 624 /* 625 * Generate a label describing the top-level config to which we belong. 626 */ 627 label = spa_config_generate(vd->vdev_spa, vd, txg, 0); 628 629 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 630 bzero(vp, sizeof (vdev_phys_t)); 631 632 buf = vp->vp_nvlist; 633 buflen = sizeof (vp->vp_nvlist); 634 635 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) == 0) 636 vdev_label_write(zio, vd, l, vp, 637 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 638 vdev_sync_label_done, NULL); 639 640 zio_buf_free(vp, sizeof (vdev_phys_t)); 641 nvlist_free(label); 642 643 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 644 } 645 646 static int 647 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 648 { 649 uint64_t *good_writes; 650 zio_t *zio; 651 int error; 652 653 ASSERT(vd == vd->vdev_top); 654 655 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 656 657 zio = zio_root(vd->vdev_spa, NULL, good_writes, 658 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 659 660 /* 661 * Recursively kick off writes to all labels. 662 */ 663 vdev_sync_label(zio, vd, l, txg); 664 665 error = zio_wait(zio); 666 667 if (error && *good_writes != 0) { 668 dprintf("partial success: good_writes = %llu\n", *good_writes); 669 error = 0; 670 } 671 672 if (*good_writes == 0 && error == 0) 673 error = ENODEV; 674 675 kmem_free(good_writes, sizeof (uint64_t)); 676 677 return (error); 678 } 679 680 /* 681 * Sync the entire vdev configuration. 682 * 683 * The order of operations is carefully crafted to ensure that 684 * if the system panics or loses power at any time, the state on disk 685 * is still transactionally consistent. The in-line comments below 686 * describe the failure semantics at each stage. 687 * 688 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 689 * at any time, you can just call it again, and it will resume its work. 690 */ 691 int 692 spa_sync_labels(spa_t *spa, uint64_t txg) 693 { 694 uberblock_t *ub = &spa->spa_uberblock; 695 vdev_t *rvd = spa->spa_root_vdev; 696 vdev_t *vd, *uvd; 697 zio_t *zio; 698 int c, l, error; 699 700 ASSERT(ub->ub_txg <= txg); 701 702 /* 703 * If this isn't a resync due to I/O errors, and nothing changed 704 * in this transaction group, and the vdev configuration hasn't changed, 705 * and this isn't an explicit sync-all, then there's nothing to do. 706 */ 707 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 708 list_is_empty(&spa->spa_dirty_list)) { 709 dprintf("nothing to sync in %s in txg %llu\n", 710 spa_name(spa), txg); 711 return (0); 712 } 713 714 if (txg > spa_freeze_txg(spa)) 715 return (0); 716 717 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 718 719 /* 720 * Flush the write cache of every disk that's been written to 721 * in this transaction group. This ensures that all blocks 722 * written in this txg will be committed to stable storage 723 * before any uberblock that references them. 724 */ 725 zio = zio_root(spa, NULL, NULL, 726 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 727 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 728 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 729 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 730 NULL, NULL, ZIO_PRIORITY_NOW, 731 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 732 } 733 (void) zio_wait(zio); 734 735 /* 736 * Sync out the even labels (L0, L2) for every dirty vdev. If the 737 * system dies in the middle of this process, that's OK: all of the 738 * even labels that made it to disk will be newer than any uberblock, 739 * and will therefore be considered invalid. The odd labels (L1, L3), 740 * which have not yet been touched, will still be valid. 741 */ 742 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 743 vd = list_next(&spa->spa_dirty_list, vd)) { 744 for (l = 0; l < VDEV_LABELS; l++) { 745 if (l & 1) 746 continue; 747 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 748 return (error); 749 } 750 } 751 752 /* 753 * Flush the new labels to disk. This ensures that all even-label 754 * updates are committed to stable storage before the uberblock update. 755 */ 756 zio = zio_root(spa, NULL, NULL, 757 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 758 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 759 vd = list_next(&spa->spa_dirty_list, vd)) { 760 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 761 NULL, NULL, ZIO_PRIORITY_NOW, 762 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 763 } 764 (void) zio_wait(zio); 765 766 /* 767 * If there are any dirty vdevs, sync the uberblock to all vdevs. 768 * Otherwise, pick one top-level vdev at random. 769 */ 770 if (!list_is_empty(&spa->spa_dirty_list)) 771 uvd = rvd; 772 else 773 uvd = rvd->vdev_child[spa_get_random(rvd->vdev_children)]; 774 775 /* 776 * Sync the uberblocks. If the system dies in the middle of this 777 * step, there are two cases to consider, and the on-disk state 778 * is consistent either way: 779 * 780 * (1) If none of the new uberblocks made it to disk, then the 781 * previous uberblock will be the newest, and the odd labels 782 * (which had not yet been touched) will be valid with respect 783 * to that uberblock. 784 * 785 * (2) If one or more new uberblocks made it to disk, then they 786 * will be the newest, and the even labels (which had all 787 * been successfully committed) will be valid with respect 788 * to the new uberblocks. 789 */ 790 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 791 return (error); 792 793 /* 794 * Flush the uberblocks to disk. This ensures that the odd labels 795 * are no longer needed (because the new uberblocks and the even 796 * labels are safely on disk), so it is safe to overwrite them. 797 */ 798 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 799 NULL, NULL, ZIO_PRIORITY_NOW, 800 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 801 802 /* 803 * Sync out odd labels for every dirty vdev. If the system dies 804 * in the middle of this process, the even labels and the new 805 * uberblocks will suffice to open the pool. The next time 806 * the pool is opened, the first thing we'll do -- before any 807 * user data is modified -- is mark every vdev dirty so that 808 * all labels will be brought up to date. 809 */ 810 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 811 vd = list_next(&spa->spa_dirty_list, vd)) { 812 for (l = 0; l < VDEV_LABELS; l++) { 813 if ((l & 1) == 0) 814 continue; 815 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 816 return (error); 817 } 818 } 819 820 /* 821 * Flush the new labels to disk. This ensures that all odd-label 822 * updates are committed to stable storage before the next 823 * transaction group begins. 824 */ 825 zio = zio_root(spa, NULL, NULL, 826 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 827 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 828 vd = list_next(&spa->spa_dirty_list, vd)) { 829 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 830 NULL, NULL, ZIO_PRIORITY_NOW, 831 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 832 } 833 (void) zio_wait(zio); 834 835 /* 836 * Clear the dirty list. 837 */ 838 while (!list_is_empty(&spa->spa_dirty_list)) 839 vdev_config_clean(list_head(&spa->spa_dirty_list)); 840 841 #ifdef DEBUG 842 for (c = 0; c < rvd->vdev_children; c++) { 843 ASSERT(rvd->vdev_child[c]->vdev_is_dirty == 0); 844 } 845 #endif 846 847 return (0); 848 } 849