1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transaction groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 157 158 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 159 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 160 } 161 162 static void 163 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 164 uint64_t size, zio_done_func_t *done, void *private) 165 { 166 ASSERT(vd->vdev_children == 0); 167 168 zio_nowait(zio_read_phys(zio, vd, 169 vdev_label_offset(vd->vdev_psize, l, offset), 170 size, buf, ZIO_CHECKSUM_LABEL, done, private, 171 ZIO_PRIORITY_SYNC_READ, 172 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE, 173 B_TRUE)); 174 } 175 176 static void 177 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(vd->vdev_children == 0); 181 182 zio_nowait(zio_write_phys(zio, vd, 183 vdev_label_offset(vd->vdev_psize, l, offset), 184 size, buf, ZIO_CHECKSUM_LABEL, done, private, 185 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 186 } 187 188 /* 189 * Generate the nvlist representing this vdev's config. 190 */ 191 nvlist_t * 192 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 193 boolean_t isspare, boolean_t isl2cache) 194 { 195 nvlist_t *nv = NULL; 196 197 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 198 199 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 200 vd->vdev_ops->vdev_op_type) == 0); 201 if (!isspare && !isl2cache) 202 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 203 == 0); 204 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 205 206 if (vd->vdev_path != NULL) 207 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 208 vd->vdev_path) == 0); 209 210 if (vd->vdev_devid != NULL) 211 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 212 vd->vdev_devid) == 0); 213 214 if (vd->vdev_physpath != NULL) 215 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 216 vd->vdev_physpath) == 0); 217 218 if (vd->vdev_nparity != 0) { 219 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 220 VDEV_TYPE_RAIDZ) == 0); 221 222 /* 223 * Make sure someone hasn't managed to sneak a fancy new vdev 224 * into a crufty old storage pool. 225 */ 226 ASSERT(vd->vdev_nparity == 1 || 227 (vd->vdev_nparity == 2 && 228 spa_version(spa) >= SPA_VERSION_RAID6)); 229 230 /* 231 * Note that we'll add the nparity tag even on storage pools 232 * that only support a single parity device -- older software 233 * will just ignore it. 234 */ 235 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 236 vd->vdev_nparity) == 0); 237 } 238 239 if (vd->vdev_wholedisk != -1ULL) 240 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 241 vd->vdev_wholedisk) == 0); 242 243 if (vd->vdev_not_present) 244 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 245 246 if (vd->vdev_isspare) 247 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 248 249 if (!isspare && !isl2cache && vd == vd->vdev_top) { 250 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 251 vd->vdev_ms_array) == 0); 252 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 253 vd->vdev_ms_shift) == 0); 254 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 255 vd->vdev_ashift) == 0); 256 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 257 vd->vdev_asize) == 0); 258 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 259 vd->vdev_islog) == 0); 260 } 261 262 if (vd->vdev_dtl.smo_object != 0) 263 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 264 vd->vdev_dtl.smo_object) == 0); 265 266 if (getstats) { 267 vdev_stat_t vs; 268 vdev_get_stats(vd, &vs); 269 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 270 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 271 } 272 273 if (!vd->vdev_ops->vdev_op_leaf) { 274 nvlist_t **child; 275 int c; 276 277 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 278 KM_SLEEP); 279 280 for (c = 0; c < vd->vdev_children; c++) 281 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 282 getstats, isspare, isl2cache); 283 284 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 285 child, vd->vdev_children) == 0); 286 287 for (c = 0; c < vd->vdev_children; c++) 288 nvlist_free(child[c]); 289 290 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 291 292 } else { 293 if (vd->vdev_offline && !vd->vdev_tmpoffline) 294 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 295 B_TRUE) == 0); 296 if (vd->vdev_faulted) 297 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 298 B_TRUE) == 0); 299 if (vd->vdev_degraded) 300 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 301 B_TRUE) == 0); 302 if (vd->vdev_removed) 303 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 304 B_TRUE) == 0); 305 if (vd->vdev_unspare) 306 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 307 B_TRUE) == 0); 308 } 309 310 return (nv); 311 } 312 313 nvlist_t * 314 vdev_label_read_config(vdev_t *vd) 315 { 316 spa_t *spa = vd->vdev_spa; 317 nvlist_t *config = NULL; 318 vdev_phys_t *vp; 319 zio_t *zio; 320 int l; 321 322 ASSERT(spa_config_held(spa, RW_READER) || 323 spa_config_held(spa, RW_WRITER)); 324 325 if (!vdev_readable(vd)) 326 return (NULL); 327 328 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 329 330 for (l = 0; l < VDEV_LABELS; l++) { 331 332 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 333 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 334 335 vdev_label_read(zio, vd, l, vp, 336 offsetof(vdev_label_t, vl_vdev_phys), 337 sizeof (vdev_phys_t), NULL, NULL); 338 339 if (zio_wait(zio) == 0 && 340 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 341 &config, 0) == 0) 342 break; 343 344 if (config != NULL) { 345 nvlist_free(config); 346 config = NULL; 347 } 348 } 349 350 zio_buf_free(vp, sizeof (vdev_phys_t)); 351 352 return (config); 353 } 354 355 /* 356 * Determine if a device is in use. The 'spare_guid' parameter will be filled 357 * in with the device guid if this spare is active elsewhere on the system. 358 */ 359 static boolean_t 360 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 361 uint64_t *spare_guid, uint64_t *l2cache_guid) 362 { 363 spa_t *spa = vd->vdev_spa; 364 uint64_t state, pool_guid, device_guid, txg, spare_pool; 365 uint64_t vdtxg = 0; 366 nvlist_t *label; 367 368 if (spare_guid) 369 *spare_guid = 0ULL; 370 if (l2cache_guid) 371 *l2cache_guid = 0ULL; 372 373 /* 374 * Read the label, if any, and perform some basic sanity checks. 375 */ 376 if ((label = vdev_label_read_config(vd)) == NULL) 377 return (B_FALSE); 378 379 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 380 &vdtxg); 381 382 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 383 &state) != 0 || 384 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 385 &device_guid) != 0) { 386 nvlist_free(label); 387 return (B_FALSE); 388 } 389 390 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 391 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 392 &pool_guid) != 0 || 393 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 394 &txg) != 0)) { 395 nvlist_free(label); 396 return (B_FALSE); 397 } 398 399 nvlist_free(label); 400 401 /* 402 * Check to see if this device indeed belongs to the pool it claims to 403 * be a part of. The only way this is allowed is if the device is a hot 404 * spare (which we check for later on). 405 */ 406 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 407 !spa_guid_exists(pool_guid, device_guid) && 408 !spa_spare_exists(device_guid, NULL) && 409 !spa_l2cache_exists(device_guid, NULL)) 410 return (B_FALSE); 411 412 /* 413 * If the transaction group is zero, then this an initialized (but 414 * unused) label. This is only an error if the create transaction 415 * on-disk is the same as the one we're using now, in which case the 416 * user has attempted to add the same vdev multiple times in the same 417 * transaction. 418 */ 419 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 420 txg == 0 && vdtxg == crtxg) 421 return (B_TRUE); 422 423 /* 424 * Check to see if this is a spare device. We do an explicit check for 425 * spa_has_spare() here because it may be on our pending list of spares 426 * to add. We also check if it is an l2cache device. 427 */ 428 if (spa_spare_exists(device_guid, &spare_pool) || 429 spa_has_spare(spa, device_guid)) { 430 if (spare_guid) 431 *spare_guid = device_guid; 432 433 switch (reason) { 434 case VDEV_LABEL_CREATE: 435 case VDEV_LABEL_L2CACHE: 436 return (B_TRUE); 437 438 case VDEV_LABEL_REPLACE: 439 return (!spa_has_spare(spa, device_guid) || 440 spare_pool != 0ULL); 441 442 case VDEV_LABEL_SPARE: 443 return (spa_has_spare(spa, device_guid)); 444 } 445 } 446 447 /* 448 * Check to see if this is an l2cache device. 449 */ 450 if (spa_l2cache_exists(device_guid, NULL)) 451 return (B_TRUE); 452 453 /* 454 * If the device is marked ACTIVE, then this device is in use by another 455 * pool on the system. 456 */ 457 return (state == POOL_STATE_ACTIVE); 458 } 459 460 /* 461 * Initialize a vdev label. We check to make sure each leaf device is not in 462 * use, and writable. We put down an initial label which we will later 463 * overwrite with a complete label. Note that it's important to do this 464 * sequentially, not in parallel, so that we catch cases of multiple use of the 465 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 466 * itself. 467 */ 468 int 469 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 470 { 471 spa_t *spa = vd->vdev_spa; 472 nvlist_t *label; 473 vdev_phys_t *vp; 474 vdev_boot_header_t *vb; 475 uberblock_t *ub; 476 zio_t *zio; 477 int l, c, n; 478 char *buf; 479 size_t buflen; 480 int error; 481 uint64_t spare_guid, l2cache_guid; 482 int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL; 483 484 ASSERT(spa_config_held(spa, RW_WRITER)); 485 486 for (c = 0; c < vd->vdev_children; c++) 487 if ((error = vdev_label_init(vd->vdev_child[c], 488 crtxg, reason)) != 0) 489 return (error); 490 491 if (!vd->vdev_ops->vdev_op_leaf) 492 return (0); 493 494 /* 495 * Dead vdevs cannot be initialized. 496 */ 497 if (vdev_is_dead(vd)) 498 return (EIO); 499 500 /* 501 * Determine if the vdev is in use. 502 */ 503 if (reason != VDEV_LABEL_REMOVE && 504 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 505 return (EBUSY); 506 507 ASSERT(reason != VDEV_LABEL_REMOVE || 508 vdev_inuse(vd, crtxg, reason, NULL, NULL)); 509 510 /* 511 * If this is a request to add or replace a spare or l2cache device 512 * that is in use elsewhere on the system, then we must update the 513 * guid (which was initialized to a random value) to reflect the 514 * actual GUID (which is shared between multiple pools). 515 */ 516 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 517 spare_guid != 0ULL) { 518 vdev_t *pvd = vd->vdev_parent; 519 520 for (; pvd != NULL; pvd = pvd->vdev_parent) { 521 pvd->vdev_guid_sum -= vd->vdev_guid; 522 pvd->vdev_guid_sum += spare_guid; 523 } 524 525 vd->vdev_guid = vd->vdev_guid_sum = spare_guid; 526 527 /* 528 * If this is a replacement, then we want to fallthrough to the 529 * rest of the code. If we're adding a spare, then it's already 530 * labeled appropriately and we can just return. 531 */ 532 if (reason == VDEV_LABEL_SPARE) 533 return (0); 534 ASSERT(reason == VDEV_LABEL_REPLACE); 535 } 536 537 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 538 l2cache_guid != 0ULL) { 539 vdev_t *pvd = vd->vdev_parent; 540 541 for (; pvd != NULL; pvd = pvd->vdev_parent) { 542 pvd->vdev_guid_sum -= vd->vdev_guid; 543 pvd->vdev_guid_sum += l2cache_guid; 544 } 545 546 vd->vdev_guid = vd->vdev_guid_sum = l2cache_guid; 547 548 /* 549 * If this is a replacement, then we want to fallthrough to the 550 * rest of the code. If we're adding an l2cache, then it's 551 * already labeled appropriately and we can just return. 552 */ 553 if (reason == VDEV_LABEL_L2CACHE) 554 return (0); 555 ASSERT(reason == VDEV_LABEL_REPLACE); 556 } 557 558 /* 559 * Initialize its label. 560 */ 561 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 562 bzero(vp, sizeof (vdev_phys_t)); 563 564 /* 565 * Generate a label describing the pool and our top-level vdev. 566 * We mark it as being from txg 0 to indicate that it's not 567 * really part of an active pool just yet. The labels will 568 * be written again with a meaningful txg by spa_sync(). 569 */ 570 if (reason == VDEV_LABEL_SPARE || 571 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 572 /* 573 * For inactive hot spares, we generate a special label that 574 * identifies as a mutually shared hot spare. We write the 575 * label if we are adding a hot spare, or if we are removing an 576 * active hot spare (in which case we want to revert the 577 * labels). 578 */ 579 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 580 581 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 582 spa_version(spa)) == 0); 583 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 584 POOL_STATE_SPARE) == 0); 585 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 586 vd->vdev_guid) == 0); 587 } else if (reason == VDEV_LABEL_L2CACHE || 588 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 589 /* 590 * For level 2 ARC devices, add a special label. 591 */ 592 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 593 594 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 595 spa_version(spa)) == 0); 596 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 597 POOL_STATE_L2CACHE) == 0); 598 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 599 vd->vdev_guid) == 0); 600 } else { 601 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 602 603 /* 604 * Add our creation time. This allows us to detect multiple 605 * vdev uses as described above, and automatically expires if we 606 * fail. 607 */ 608 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 609 crtxg) == 0); 610 } 611 612 buf = vp->vp_nvlist; 613 buflen = sizeof (vp->vp_nvlist); 614 615 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 616 if (error != 0) { 617 nvlist_free(label); 618 zio_buf_free(vp, sizeof (vdev_phys_t)); 619 /* EFAULT means nvlist_pack ran out of room */ 620 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 621 } 622 623 /* 624 * Initialize boot block header. 625 */ 626 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 627 bzero(vb, sizeof (vdev_boot_header_t)); 628 vb->vb_magic = VDEV_BOOT_MAGIC; 629 vb->vb_version = VDEV_BOOT_VERSION; 630 vb->vb_offset = VDEV_BOOT_OFFSET; 631 vb->vb_size = VDEV_BOOT_SIZE; 632 633 /* 634 * Initialize uberblock template. 635 */ 636 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 637 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 638 *ub = spa->spa_uberblock; 639 ub->ub_txg = 0; 640 641 /* 642 * Write everything in parallel. 643 */ 644 zio = zio_root(spa, NULL, NULL, flags); 645 646 for (l = 0; l < VDEV_LABELS; l++) { 647 648 vdev_label_write(zio, vd, l, vp, 649 offsetof(vdev_label_t, vl_vdev_phys), 650 sizeof (vdev_phys_t), NULL, NULL, flags); 651 652 vdev_label_write(zio, vd, l, vb, 653 offsetof(vdev_label_t, vl_boot_header), 654 sizeof (vdev_boot_header_t), NULL, NULL, flags); 655 656 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 657 vdev_label_write(zio, vd, l, ub, 658 VDEV_UBERBLOCK_OFFSET(vd, n), 659 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags); 660 } 661 } 662 663 error = zio_wait(zio); 664 665 nvlist_free(label); 666 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 667 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 668 zio_buf_free(vp, sizeof (vdev_phys_t)); 669 670 /* 671 * If this vdev hasn't been previously identified as a spare, then we 672 * mark it as such only if a) we are labeling it as a spare, or b) it 673 * exists as a spare elsewhere in the system. Do the same for 674 * level 2 ARC devices. 675 */ 676 if (error == 0 && !vd->vdev_isspare && 677 (reason == VDEV_LABEL_SPARE || 678 spa_spare_exists(vd->vdev_guid, NULL))) 679 spa_spare_add(vd); 680 681 if (error == 0 && !vd->vdev_isl2cache && 682 (reason == VDEV_LABEL_L2CACHE || 683 spa_l2cache_exists(vd->vdev_guid, NULL))) 684 spa_l2cache_add(vd); 685 686 return (error); 687 } 688 689 /* 690 * ========================================================================== 691 * uberblock load/sync 692 * ========================================================================== 693 */ 694 695 /* 696 * Consider the following situation: txg is safely synced to disk. We've 697 * written the first uberblock for txg + 1, and then we lose power. When we 698 * come back up, we fail to see the uberblock for txg + 1 because, say, 699 * it was on a mirrored device and the replica to which we wrote txg + 1 700 * is now offline. If we then make some changes and sync txg + 1, and then 701 * the missing replica comes back, then for a new seconds we'll have two 702 * conflicting uberblocks on disk with the same txg. The solution is simple: 703 * among uberblocks with equal txg, choose the one with the latest timestamp. 704 */ 705 static int 706 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 707 { 708 if (ub1->ub_txg < ub2->ub_txg) 709 return (-1); 710 if (ub1->ub_txg > ub2->ub_txg) 711 return (1); 712 713 if (ub1->ub_timestamp < ub2->ub_timestamp) 714 return (-1); 715 if (ub1->ub_timestamp > ub2->ub_timestamp) 716 return (1); 717 718 return (0); 719 } 720 721 static void 722 vdev_uberblock_load_done(zio_t *zio) 723 { 724 uberblock_t *ub = zio->io_data; 725 uberblock_t *ubbest = zio->io_private; 726 spa_t *spa = zio->io_spa; 727 728 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 729 730 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 731 mutex_enter(&spa->spa_uberblock_lock); 732 if (vdev_uberblock_compare(ub, ubbest) > 0) 733 *ubbest = *ub; 734 mutex_exit(&spa->spa_uberblock_lock); 735 } 736 737 zio_buf_free(zio->io_data, zio->io_size); 738 } 739 740 void 741 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 742 { 743 int l, c, n; 744 745 for (c = 0; c < vd->vdev_children; c++) 746 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 747 748 if (!vd->vdev_ops->vdev_op_leaf) 749 return; 750 751 if (vdev_is_dead(vd)) 752 return; 753 754 for (l = 0; l < VDEV_LABELS; l++) { 755 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 756 vdev_label_read(zio, vd, l, 757 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 758 VDEV_UBERBLOCK_OFFSET(vd, n), 759 VDEV_UBERBLOCK_SIZE(vd), 760 vdev_uberblock_load_done, ubbest); 761 } 762 } 763 } 764 765 /* 766 * On success, increment root zio's count of good writes. 767 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 768 */ 769 static void 770 vdev_uberblock_sync_done(zio_t *zio) 771 { 772 uint64_t *good_writes = zio->io_private; 773 774 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 775 atomic_add_64(good_writes, 1); 776 } 777 778 /* 779 * Write the uberblock to all labels of all leaves of the specified vdev. 780 */ 781 static void 782 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd) 783 { 784 int l, c, n; 785 uberblock_t *ubbuf; 786 787 for (c = 0; c < vd->vdev_children; c++) 788 vdev_uberblock_sync(zio, ub, vd->vdev_child[c]); 789 790 if (!vd->vdev_ops->vdev_op_leaf) 791 return; 792 793 if (vdev_is_dead(vd)) 794 return; 795 796 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 797 798 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 799 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 800 *ubbuf = *ub; 801 802 for (l = 0; l < VDEV_LABELS; l++) 803 vdev_label_write(zio, vd, l, ubbuf, 804 VDEV_UBERBLOCK_OFFSET(vd, n), 805 VDEV_UBERBLOCK_SIZE(vd), 806 vdev_uberblock_sync_done, zio->io_private, 807 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE); 808 809 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 810 } 811 812 int 813 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 814 { 815 spa_t *spa = svd[0]->vdev_spa; 816 int v; 817 zio_t *zio; 818 uint64_t good_writes = 0; 819 820 zio = zio_root(spa, NULL, &good_writes, flags); 821 822 for (v = 0; v < svdcount; v++) 823 vdev_uberblock_sync(zio, ub, svd[v]); 824 825 (void) zio_wait(zio); 826 827 /* 828 * Flush the uberblocks to disk. This ensures that the odd labels 829 * are no longer needed (because the new uberblocks and the even 830 * labels are safely on disk), so it is safe to overwrite them. 831 */ 832 zio = zio_root(spa, NULL, NULL, flags); 833 834 for (v = 0; v < svdcount; v++) 835 zio_flush(zio, svd[v]); 836 837 (void) zio_wait(zio); 838 839 return (good_writes >= 1 ? 0 : EIO); 840 } 841 842 /* 843 * On success, increment the count of good writes for our top-level vdev. 844 */ 845 static void 846 vdev_label_sync_done(zio_t *zio) 847 { 848 uint64_t *good_writes = zio->io_private; 849 850 if (zio->io_error == 0) 851 atomic_add_64(good_writes, 1); 852 } 853 854 /* 855 * If there weren't enough good writes, indicate failure to the parent. 856 */ 857 static void 858 vdev_label_sync_top_done(zio_t *zio) 859 { 860 uint64_t *good_writes = zio->io_private; 861 862 if (*good_writes == 0) 863 zio->io_error = EIO; 864 865 kmem_free(good_writes, sizeof (uint64_t)); 866 } 867 868 /* 869 * Write all even or odd labels to all leaves of the specified vdev. 870 */ 871 static void 872 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 873 { 874 nvlist_t *label; 875 vdev_phys_t *vp; 876 char *buf; 877 size_t buflen; 878 int c; 879 880 for (c = 0; c < vd->vdev_children; c++) 881 vdev_label_sync(zio, vd->vdev_child[c], l, txg); 882 883 if (!vd->vdev_ops->vdev_op_leaf) 884 return; 885 886 if (vdev_is_dead(vd)) 887 return; 888 889 /* 890 * Generate a label describing the top-level config to which we belong. 891 */ 892 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 893 894 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 895 bzero(vp, sizeof (vdev_phys_t)); 896 897 buf = vp->vp_nvlist; 898 buflen = sizeof (vp->vp_nvlist); 899 900 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 901 for (; l < VDEV_LABELS; l += 2) { 902 vdev_label_write(zio, vd, l, vp, 903 offsetof(vdev_label_t, vl_vdev_phys), 904 sizeof (vdev_phys_t), 905 vdev_label_sync_done, zio->io_private, 906 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE); 907 } 908 } 909 910 zio_buf_free(vp, sizeof (vdev_phys_t)); 911 nvlist_free(label); 912 } 913 914 int 915 vdev_label_sync_list(spa_t *spa, int l, int flags, uint64_t txg) 916 { 917 list_t *dl = &spa->spa_dirty_list; 918 vdev_t *vd; 919 zio_t *zio; 920 int error; 921 922 /* 923 * Write the new labels to disk. 924 */ 925 zio = zio_root(spa, NULL, NULL, flags); 926 927 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 928 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 929 KM_SLEEP); 930 zio_t *vio = zio_null(zio, spa, vdev_label_sync_top_done, 931 good_writes, flags); 932 vdev_label_sync(vio, vd, l, txg); 933 zio_nowait(vio); 934 } 935 936 error = zio_wait(zio); 937 938 /* 939 * Flush the new labels to disk. 940 */ 941 zio = zio_root(spa, NULL, NULL, flags); 942 943 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 944 zio_flush(zio, vd); 945 946 (void) zio_wait(zio); 947 948 return (error); 949 } 950 951 /* 952 * Sync the uberblock and any changes to the vdev configuration. 953 * 954 * The order of operations is carefully crafted to ensure that 955 * if the system panics or loses power at any time, the state on disk 956 * is still transactionally consistent. The in-line comments below 957 * describe the failure semantics at each stage. 958 * 959 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 960 * at any time, you can just call it again, and it will resume its work. 961 */ 962 int 963 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg) 964 { 965 spa_t *spa = svd[0]->vdev_spa; 966 uberblock_t *ub = &spa->spa_uberblock; 967 vdev_t *vd; 968 zio_t *zio; 969 int error; 970 int flags = ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL; 971 972 ASSERT(ub->ub_txg <= txg); 973 974 /* 975 * If this isn't a resync due to I/O errors, 976 * and nothing changed in this transaction group, 977 * and the vdev configuration hasn't changed, 978 * then there's nothing to do. 979 */ 980 if (ub->ub_txg < txg && 981 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 982 list_is_empty(&spa->spa_dirty_list)) 983 return (0); 984 985 if (txg > spa_freeze_txg(spa)) 986 return (0); 987 988 ASSERT(txg <= spa->spa_final_txg); 989 990 /* 991 * Flush the write cache of every disk that's been written to 992 * in this transaction group. This ensures that all blocks 993 * written in this txg will be committed to stable storage 994 * before any uberblock that references them. 995 */ 996 zio = zio_root(spa, NULL, NULL, flags); 997 998 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 999 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1000 zio_flush(zio, vd); 1001 1002 (void) zio_wait(zio); 1003 1004 /* 1005 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1006 * system dies in the middle of this process, that's OK: all of the 1007 * even labels that made it to disk will be newer than any uberblock, 1008 * and will therefore be considered invalid. The odd labels (L1, L3), 1009 * which have not yet been touched, will still be valid. We flush 1010 * the new labels to disk to ensure that all even-label updates 1011 * are committed to stable storage before the uberblock update. 1012 */ 1013 if ((error = vdev_label_sync_list(spa, 0, flags, txg)) != 0) 1014 return (error); 1015 1016 /* 1017 * Sync the uberblocks to all vdevs in svd[]. 1018 * If the system dies in the middle of this step, there are two cases 1019 * to consider, and the on-disk state is consistent either way: 1020 * 1021 * (1) If none of the new uberblocks made it to disk, then the 1022 * previous uberblock will be the newest, and the odd labels 1023 * (which had not yet been touched) will be valid with respect 1024 * to that uberblock. 1025 * 1026 * (2) If one or more new uberblocks made it to disk, then they 1027 * will be the newest, and the even labels (which had all 1028 * been successfully committed) will be valid with respect 1029 * to the new uberblocks. 1030 */ 1031 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1032 return (error); 1033 1034 /* 1035 * Sync out odd labels for every dirty vdev. If the system dies 1036 * in the middle of this process, the even labels and the new 1037 * uberblocks will suffice to open the pool. The next time 1038 * the pool is opened, the first thing we'll do -- before any 1039 * user data is modified -- is mark every vdev dirty so that 1040 * all labels will be brought up to date. We flush the new labels 1041 * to disk to ensure that all odd-label updates are committed to 1042 * stable storage before the next transaction group begins. 1043 */ 1044 return (vdev_label_sync_list(spa, 1, flags, txg)); 1045 } 1046