xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev_label.c (revision d61c759d7e296bb673b1d010970c16872c9ef561)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2010 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_fru != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 		    vd->vdev_fru) == 0);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity <= 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 		    (vd->vdev_nparity <= 3 &&
252 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253 
254 		/*
255 		 * Note that we'll add the nparity tag even on storage pools
256 		 * that only support a single parity device -- older software
257 		 * will just ignore it.
258 		 */
259 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260 		    vd->vdev_nparity) == 0);
261 	}
262 
263 	if (vd->vdev_wholedisk != -1ULL)
264 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265 		    vd->vdev_wholedisk) == 0);
266 
267 	if (vd->vdev_not_present)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269 
270 	if (vd->vdev_isspare)
271 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272 
273 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 		    vd->vdev_ms_array) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 		    vd->vdev_ms_shift) == 0);
278 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
279 		    vd->vdev_ashift) == 0);
280 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
281 		    vd->vdev_asize) == 0);
282 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
283 		    vd->vdev_islog) == 0);
284 	}
285 
286 	if (vd->vdev_dtl_smo.smo_object != 0)
287 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    vd->vdev_dtl_smo.smo_object) == 0);
289 
290 	if (vd->vdev_crtxg)
291 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
292 		    vd->vdev_crtxg) == 0);
293 
294 	if (getstats) {
295 		vdev_stat_t vs;
296 		vdev_get_stats(vd, &vs);
297 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
298 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
299 	}
300 
301 	if (!vd->vdev_ops->vdev_op_leaf) {
302 		nvlist_t **child;
303 		int c;
304 
305 		ASSERT(!vd->vdev_ishole);
306 
307 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
308 		    KM_SLEEP);
309 
310 		for (c = 0; c < vd->vdev_children; c++)
311 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
312 			    getstats, isspare, isl2cache);
313 
314 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
315 		    child, vd->vdev_children) == 0);
316 
317 		for (c = 0; c < vd->vdev_children; c++)
318 			nvlist_free(child[c]);
319 
320 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
321 
322 	} else {
323 		const char *aux = NULL;
324 
325 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
326 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
327 			    B_TRUE) == 0);
328 		if (vd->vdev_faulted)
329 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
330 			    B_TRUE) == 0);
331 		if (vd->vdev_degraded)
332 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
333 			    B_TRUE) == 0);
334 		if (vd->vdev_removed)
335 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
336 			    B_TRUE) == 0);
337 		if (vd->vdev_unspare)
338 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
339 			    B_TRUE) == 0);
340 		if (vd->vdev_ishole)
341 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE,
342 			    B_TRUE) == 0);
343 
344 		switch (vd->vdev_stat.vs_aux) {
345 		case VDEV_AUX_ERR_EXCEEDED:
346 			aux = "err_exceeded";
347 			break;
348 
349 		case VDEV_AUX_EXTERNAL:
350 			aux = "external";
351 			break;
352 		}
353 
354 		if (aux != NULL)
355 			VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE,
356 			    aux) == 0);
357 
358 		if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) {
359 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID,
360 			    vd->vdev_orig_guid) == 0);
361 		}
362 	}
363 
364 	return (nv);
365 }
366 
367 /*
368  * Generate a view of the top-level vdevs.  If we currently have holes
369  * in the namespace, then generate an array which contains a list of holey
370  * vdevs.  Additionally, add the number of top-level children that currently
371  * exist.
372  */
373 void
374 vdev_top_config_generate(spa_t *spa, nvlist_t *config)
375 {
376 	vdev_t *rvd = spa->spa_root_vdev;
377 	uint64_t *array;
378 	uint_t idx;
379 
380 	array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP);
381 
382 	idx = 0;
383 	for (int c = 0; c < rvd->vdev_children; c++) {
384 		vdev_t *tvd = rvd->vdev_child[c];
385 
386 		if (tvd->vdev_ishole)
387 			array[idx++] = c;
388 	}
389 
390 	if (idx) {
391 		VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY,
392 		    array, idx) == 0);
393 	}
394 
395 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
396 	    rvd->vdev_children) == 0);
397 
398 	kmem_free(array, rvd->vdev_children * sizeof (uint64_t));
399 }
400 
401 nvlist_t *
402 vdev_label_read_config(vdev_t *vd)
403 {
404 	spa_t *spa = vd->vdev_spa;
405 	nvlist_t *config = NULL;
406 	vdev_phys_t *vp;
407 	zio_t *zio;
408 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
409 	    ZIO_FLAG_SPECULATIVE;
410 
411 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
412 
413 	if (!vdev_readable(vd))
414 		return (NULL);
415 
416 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
417 
418 retry:
419 	for (int l = 0; l < VDEV_LABELS; l++) {
420 
421 		zio = zio_root(spa, NULL, NULL, flags);
422 
423 		vdev_label_read(zio, vd, l, vp,
424 		    offsetof(vdev_label_t, vl_vdev_phys),
425 		    sizeof (vdev_phys_t), NULL, NULL, flags);
426 
427 		if (zio_wait(zio) == 0 &&
428 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
429 		    &config, 0) == 0)
430 			break;
431 
432 		if (config != NULL) {
433 			nvlist_free(config);
434 			config = NULL;
435 		}
436 	}
437 
438 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
439 		flags |= ZIO_FLAG_TRYHARD;
440 		goto retry;
441 	}
442 
443 	zio_buf_free(vp, sizeof (vdev_phys_t));
444 
445 	return (config);
446 }
447 
448 /*
449  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
450  * in with the device guid if this spare is active elsewhere on the system.
451  */
452 static boolean_t
453 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
454     uint64_t *spare_guid, uint64_t *l2cache_guid)
455 {
456 	spa_t *spa = vd->vdev_spa;
457 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
458 	uint64_t vdtxg = 0;
459 	nvlist_t *label;
460 
461 	if (spare_guid)
462 		*spare_guid = 0ULL;
463 	if (l2cache_guid)
464 		*l2cache_guid = 0ULL;
465 
466 	/*
467 	 * Read the label, if any, and perform some basic sanity checks.
468 	 */
469 	if ((label = vdev_label_read_config(vd)) == NULL)
470 		return (B_FALSE);
471 
472 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
473 	    &vdtxg);
474 
475 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
476 	    &state) != 0 ||
477 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
478 	    &device_guid) != 0) {
479 		nvlist_free(label);
480 		return (B_FALSE);
481 	}
482 
483 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
484 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
485 	    &pool_guid) != 0 ||
486 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
487 	    &txg) != 0)) {
488 		nvlist_free(label);
489 		return (B_FALSE);
490 	}
491 
492 	nvlist_free(label);
493 
494 	/*
495 	 * Check to see if this device indeed belongs to the pool it claims to
496 	 * be a part of.  The only way this is allowed is if the device is a hot
497 	 * spare (which we check for later on).
498 	 */
499 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
500 	    !spa_guid_exists(pool_guid, device_guid) &&
501 	    !spa_spare_exists(device_guid, NULL, NULL) &&
502 	    !spa_l2cache_exists(device_guid, NULL))
503 		return (B_FALSE);
504 
505 	/*
506 	 * If the transaction group is zero, then this an initialized (but
507 	 * unused) label.  This is only an error if the create transaction
508 	 * on-disk is the same as the one we're using now, in which case the
509 	 * user has attempted to add the same vdev multiple times in the same
510 	 * transaction.
511 	 */
512 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
513 	    txg == 0 && vdtxg == crtxg)
514 		return (B_TRUE);
515 
516 	/*
517 	 * Check to see if this is a spare device.  We do an explicit check for
518 	 * spa_has_spare() here because it may be on our pending list of spares
519 	 * to add.  We also check if it is an l2cache device.
520 	 */
521 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
522 	    spa_has_spare(spa, device_guid)) {
523 		if (spare_guid)
524 			*spare_guid = device_guid;
525 
526 		switch (reason) {
527 		case VDEV_LABEL_CREATE:
528 		case VDEV_LABEL_L2CACHE:
529 			return (B_TRUE);
530 
531 		case VDEV_LABEL_REPLACE:
532 			return (!spa_has_spare(spa, device_guid) ||
533 			    spare_pool != 0ULL);
534 
535 		case VDEV_LABEL_SPARE:
536 			return (spa_has_spare(spa, device_guid));
537 		}
538 	}
539 
540 	/*
541 	 * Check to see if this is an l2cache device.
542 	 */
543 	if (spa_l2cache_exists(device_guid, NULL))
544 		return (B_TRUE);
545 
546 	/*
547 	 * If the device is marked ACTIVE, then this device is in use by another
548 	 * pool on the system.
549 	 */
550 	return (state == POOL_STATE_ACTIVE);
551 }
552 
553 /*
554  * Initialize a vdev label.  We check to make sure each leaf device is not in
555  * use, and writable.  We put down an initial label which we will later
556  * overwrite with a complete label.  Note that it's important to do this
557  * sequentially, not in parallel, so that we catch cases of multiple use of the
558  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
559  * itself.
560  */
561 int
562 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
563 {
564 	spa_t *spa = vd->vdev_spa;
565 	nvlist_t *label;
566 	vdev_phys_t *vp;
567 	char *pad2;
568 	uberblock_t *ub;
569 	zio_t *zio;
570 	char *buf;
571 	size_t buflen;
572 	int error;
573 	uint64_t spare_guid, l2cache_guid;
574 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
575 
576 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
577 
578 	for (int c = 0; c < vd->vdev_children; c++)
579 		if ((error = vdev_label_init(vd->vdev_child[c],
580 		    crtxg, reason)) != 0)
581 			return (error);
582 
583 	/* Track the creation time for this vdev */
584 	vd->vdev_crtxg = crtxg;
585 
586 	if (!vd->vdev_ops->vdev_op_leaf)
587 		return (0);
588 
589 	/*
590 	 * Dead vdevs cannot be initialized.
591 	 */
592 	if (vdev_is_dead(vd))
593 		return (EIO);
594 
595 	/*
596 	 * Determine if the vdev is in use.
597 	 */
598 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT &&
599 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
600 		return (EBUSY);
601 
602 	/*
603 	 * If this is a request to add or replace a spare or l2cache device
604 	 * that is in use elsewhere on the system, then we must update the
605 	 * guid (which was initialized to a random value) to reflect the
606 	 * actual GUID (which is shared between multiple pools).
607 	 */
608 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
609 	    spare_guid != 0ULL) {
610 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
611 
612 		vd->vdev_guid += guid_delta;
613 
614 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
615 			pvd->vdev_guid_sum += guid_delta;
616 
617 		/*
618 		 * If this is a replacement, then we want to fallthrough to the
619 		 * rest of the code.  If we're adding a spare, then it's already
620 		 * labeled appropriately and we can just return.
621 		 */
622 		if (reason == VDEV_LABEL_SPARE)
623 			return (0);
624 		ASSERT(reason == VDEV_LABEL_REPLACE ||
625 		    reason == VDEV_LABEL_SPLIT);
626 	}
627 
628 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
629 	    l2cache_guid != 0ULL) {
630 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
631 
632 		vd->vdev_guid += guid_delta;
633 
634 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
635 			pvd->vdev_guid_sum += guid_delta;
636 
637 		/*
638 		 * If this is a replacement, then we want to fallthrough to the
639 		 * rest of the code.  If we're adding an l2cache, then it's
640 		 * already labeled appropriately and we can just return.
641 		 */
642 		if (reason == VDEV_LABEL_L2CACHE)
643 			return (0);
644 		ASSERT(reason == VDEV_LABEL_REPLACE);
645 	}
646 
647 	/*
648 	 * Initialize its label.
649 	 */
650 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
651 	bzero(vp, sizeof (vdev_phys_t));
652 
653 	/*
654 	 * Generate a label describing the pool and our top-level vdev.
655 	 * We mark it as being from txg 0 to indicate that it's not
656 	 * really part of an active pool just yet.  The labels will
657 	 * be written again with a meaningful txg by spa_sync().
658 	 */
659 	if (reason == VDEV_LABEL_SPARE ||
660 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
661 		/*
662 		 * For inactive hot spares, we generate a special label that
663 		 * identifies as a mutually shared hot spare.  We write the
664 		 * label if we are adding a hot spare, or if we are removing an
665 		 * active hot spare (in which case we want to revert the
666 		 * labels).
667 		 */
668 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
669 
670 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
671 		    spa_version(spa)) == 0);
672 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
673 		    POOL_STATE_SPARE) == 0);
674 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
675 		    vd->vdev_guid) == 0);
676 	} else if (reason == VDEV_LABEL_L2CACHE ||
677 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
678 		/*
679 		 * For level 2 ARC devices, add a special label.
680 		 */
681 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
682 
683 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
684 		    spa_version(spa)) == 0);
685 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
686 		    POOL_STATE_L2CACHE) == 0);
687 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
688 		    vd->vdev_guid) == 0);
689 	} else {
690 		uint64_t txg = 0ULL;
691 
692 		if (reason == VDEV_LABEL_SPLIT)
693 			txg = spa->spa_uberblock.ub_txg;
694 		label = spa_config_generate(spa, vd, txg, B_FALSE);
695 
696 		/*
697 		 * Add our creation time.  This allows us to detect multiple
698 		 * vdev uses as described above, and automatically expires if we
699 		 * fail.
700 		 */
701 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
702 		    crtxg) == 0);
703 	}
704 
705 	buf = vp->vp_nvlist;
706 	buflen = sizeof (vp->vp_nvlist);
707 
708 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
709 	if (error != 0) {
710 		nvlist_free(label);
711 		zio_buf_free(vp, sizeof (vdev_phys_t));
712 		/* EFAULT means nvlist_pack ran out of room */
713 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
714 	}
715 
716 	/*
717 	 * Initialize uberblock template.
718 	 */
719 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
720 	bzero(ub, VDEV_UBERBLOCK_RING);
721 	*ub = spa->spa_uberblock;
722 	ub->ub_txg = 0;
723 
724 	/* Initialize the 2nd padding area. */
725 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
726 	bzero(pad2, VDEV_PAD_SIZE);
727 
728 	/*
729 	 * Write everything in parallel.
730 	 */
731 retry:
732 	zio = zio_root(spa, NULL, NULL, flags);
733 
734 	for (int l = 0; l < VDEV_LABELS; l++) {
735 
736 		vdev_label_write(zio, vd, l, vp,
737 		    offsetof(vdev_label_t, vl_vdev_phys),
738 		    sizeof (vdev_phys_t), NULL, NULL, flags);
739 
740 		/*
741 		 * Skip the 1st padding area.
742 		 * Zero out the 2nd padding area where it might have
743 		 * left over data from previous filesystem format.
744 		 */
745 		vdev_label_write(zio, vd, l, pad2,
746 		    offsetof(vdev_label_t, vl_pad2),
747 		    VDEV_PAD_SIZE, NULL, NULL, flags);
748 
749 		vdev_label_write(zio, vd, l, ub,
750 		    offsetof(vdev_label_t, vl_uberblock),
751 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
752 	}
753 
754 	error = zio_wait(zio);
755 
756 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
757 		flags |= ZIO_FLAG_TRYHARD;
758 		goto retry;
759 	}
760 
761 	nvlist_free(label);
762 	zio_buf_free(pad2, VDEV_PAD_SIZE);
763 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
764 	zio_buf_free(vp, sizeof (vdev_phys_t));
765 
766 	/*
767 	 * If this vdev hasn't been previously identified as a spare, then we
768 	 * mark it as such only if a) we are labeling it as a spare, or b) it
769 	 * exists as a spare elsewhere in the system.  Do the same for
770 	 * level 2 ARC devices.
771 	 */
772 	if (error == 0 && !vd->vdev_isspare &&
773 	    (reason == VDEV_LABEL_SPARE ||
774 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
775 		spa_spare_add(vd);
776 
777 	if (error == 0 && !vd->vdev_isl2cache &&
778 	    (reason == VDEV_LABEL_L2CACHE ||
779 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
780 		spa_l2cache_add(vd);
781 
782 	return (error);
783 }
784 
785 /*
786  * ==========================================================================
787  * uberblock load/sync
788  * ==========================================================================
789  */
790 
791 /*
792  * Consider the following situation: txg is safely synced to disk.  We've
793  * written the first uberblock for txg + 1, and then we lose power.  When we
794  * come back up, we fail to see the uberblock for txg + 1 because, say,
795  * it was on a mirrored device and the replica to which we wrote txg + 1
796  * is now offline.  If we then make some changes and sync txg + 1, and then
797  * the missing replica comes back, then for a new seconds we'll have two
798  * conflicting uberblocks on disk with the same txg.  The solution is simple:
799  * among uberblocks with equal txg, choose the one with the latest timestamp.
800  */
801 static int
802 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
803 {
804 	if (ub1->ub_txg < ub2->ub_txg)
805 		return (-1);
806 	if (ub1->ub_txg > ub2->ub_txg)
807 		return (1);
808 
809 	if (ub1->ub_timestamp < ub2->ub_timestamp)
810 		return (-1);
811 	if (ub1->ub_timestamp > ub2->ub_timestamp)
812 		return (1);
813 
814 	return (0);
815 }
816 
817 static void
818 vdev_uberblock_load_done(zio_t *zio)
819 {
820 	spa_t *spa = zio->io_spa;
821 	zio_t *rio = zio->io_private;
822 	uberblock_t *ub = zio->io_data;
823 	uberblock_t *ubbest = rio->io_private;
824 
825 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
826 
827 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
828 		mutex_enter(&rio->io_lock);
829 		if (ub->ub_txg <= spa->spa_load_max_txg &&
830 		    vdev_uberblock_compare(ub, ubbest) > 0)
831 			*ubbest = *ub;
832 		mutex_exit(&rio->io_lock);
833 	}
834 
835 	zio_buf_free(zio->io_data, zio->io_size);
836 }
837 
838 void
839 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
840 {
841 	spa_t *spa = vd->vdev_spa;
842 	vdev_t *rvd = spa->spa_root_vdev;
843 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
844 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
845 
846 	if (vd == rvd) {
847 		ASSERT(zio == NULL);
848 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
849 		zio = zio_root(spa, NULL, ubbest, flags);
850 		bzero(ubbest, sizeof (uberblock_t));
851 	}
852 
853 	ASSERT(zio != NULL);
854 
855 	for (int c = 0; c < vd->vdev_children; c++)
856 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
857 
858 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
859 		for (int l = 0; l < VDEV_LABELS; l++) {
860 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
861 				vdev_label_read(zio, vd, l,
862 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
863 				    VDEV_UBERBLOCK_OFFSET(vd, n),
864 				    VDEV_UBERBLOCK_SIZE(vd),
865 				    vdev_uberblock_load_done, zio, flags);
866 			}
867 		}
868 	}
869 
870 	if (vd == rvd) {
871 		(void) zio_wait(zio);
872 		spa_config_exit(spa, SCL_ALL, FTAG);
873 	}
874 }
875 
876 /*
877  * On success, increment root zio's count of good writes.
878  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
879  */
880 static void
881 vdev_uberblock_sync_done(zio_t *zio)
882 {
883 	uint64_t *good_writes = zio->io_private;
884 
885 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
886 		atomic_add_64(good_writes, 1);
887 }
888 
889 /*
890  * Write the uberblock to all labels of all leaves of the specified vdev.
891  */
892 static void
893 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
894 {
895 	uberblock_t *ubbuf;
896 	int n;
897 
898 	for (int c = 0; c < vd->vdev_children; c++)
899 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
900 
901 	if (!vd->vdev_ops->vdev_op_leaf)
902 		return;
903 
904 	if (!vdev_writeable(vd))
905 		return;
906 
907 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
908 
909 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
910 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
911 	*ubbuf = *ub;
912 
913 	for (int l = 0; l < VDEV_LABELS; l++)
914 		vdev_label_write(zio, vd, l, ubbuf,
915 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
916 		    vdev_uberblock_sync_done, zio->io_private,
917 		    flags | ZIO_FLAG_DONT_PROPAGATE);
918 
919 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
920 }
921 
922 int
923 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
924 {
925 	spa_t *spa = svd[0]->vdev_spa;
926 	zio_t *zio;
927 	uint64_t good_writes = 0;
928 
929 	zio = zio_root(spa, NULL, &good_writes, flags);
930 
931 	for (int v = 0; v < svdcount; v++)
932 		vdev_uberblock_sync(zio, ub, svd[v], flags);
933 
934 	(void) zio_wait(zio);
935 
936 	/*
937 	 * Flush the uberblocks to disk.  This ensures that the odd labels
938 	 * are no longer needed (because the new uberblocks and the even
939 	 * labels are safely on disk), so it is safe to overwrite them.
940 	 */
941 	zio = zio_root(spa, NULL, NULL, flags);
942 
943 	for (int v = 0; v < svdcount; v++)
944 		zio_flush(zio, svd[v]);
945 
946 	(void) zio_wait(zio);
947 
948 	return (good_writes >= 1 ? 0 : EIO);
949 }
950 
951 /*
952  * On success, increment the count of good writes for our top-level vdev.
953  */
954 static void
955 vdev_label_sync_done(zio_t *zio)
956 {
957 	uint64_t *good_writes = zio->io_private;
958 
959 	if (zio->io_error == 0)
960 		atomic_add_64(good_writes, 1);
961 }
962 
963 /*
964  * If there weren't enough good writes, indicate failure to the parent.
965  */
966 static void
967 vdev_label_sync_top_done(zio_t *zio)
968 {
969 	uint64_t *good_writes = zio->io_private;
970 
971 	if (*good_writes == 0)
972 		zio->io_error = EIO;
973 
974 	kmem_free(good_writes, sizeof (uint64_t));
975 }
976 
977 /*
978  * We ignore errors for log and cache devices, simply free the private data.
979  */
980 static void
981 vdev_label_sync_ignore_done(zio_t *zio)
982 {
983 	kmem_free(zio->io_private, sizeof (uint64_t));
984 }
985 
986 /*
987  * Write all even or odd labels to all leaves of the specified vdev.
988  */
989 static void
990 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
991 {
992 	nvlist_t *label;
993 	vdev_phys_t *vp;
994 	char *buf;
995 	size_t buflen;
996 
997 	for (int c = 0; c < vd->vdev_children; c++)
998 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
999 
1000 	if (!vd->vdev_ops->vdev_op_leaf)
1001 		return;
1002 
1003 	if (!vdev_writeable(vd))
1004 		return;
1005 
1006 	/*
1007 	 * Generate a label describing the top-level config to which we belong.
1008 	 */
1009 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
1010 
1011 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
1012 	bzero(vp, sizeof (vdev_phys_t));
1013 
1014 	buf = vp->vp_nvlist;
1015 	buflen = sizeof (vp->vp_nvlist);
1016 
1017 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
1018 		for (; l < VDEV_LABELS; l += 2) {
1019 			vdev_label_write(zio, vd, l, vp,
1020 			    offsetof(vdev_label_t, vl_vdev_phys),
1021 			    sizeof (vdev_phys_t),
1022 			    vdev_label_sync_done, zio->io_private,
1023 			    flags | ZIO_FLAG_DONT_PROPAGATE);
1024 		}
1025 	}
1026 
1027 	zio_buf_free(vp, sizeof (vdev_phys_t));
1028 	nvlist_free(label);
1029 }
1030 
1031 int
1032 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
1033 {
1034 	list_t *dl = &spa->spa_config_dirty_list;
1035 	vdev_t *vd;
1036 	zio_t *zio;
1037 	int error;
1038 
1039 	/*
1040 	 * Write the new labels to disk.
1041 	 */
1042 	zio = zio_root(spa, NULL, NULL, flags);
1043 
1044 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
1045 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
1046 		    KM_SLEEP);
1047 
1048 		ASSERT(!vd->vdev_ishole);
1049 
1050 		zio_t *vio = zio_null(zio, spa, NULL,
1051 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
1052 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
1053 		    good_writes, flags);
1054 		vdev_label_sync(vio, vd, l, txg, flags);
1055 		zio_nowait(vio);
1056 	}
1057 
1058 	error = zio_wait(zio);
1059 
1060 	/*
1061 	 * Flush the new labels to disk.
1062 	 */
1063 	zio = zio_root(spa, NULL, NULL, flags);
1064 
1065 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
1066 		zio_flush(zio, vd);
1067 
1068 	(void) zio_wait(zio);
1069 
1070 	return (error);
1071 }
1072 
1073 /*
1074  * Sync the uberblock and any changes to the vdev configuration.
1075  *
1076  * The order of operations is carefully crafted to ensure that
1077  * if the system panics or loses power at any time, the state on disk
1078  * is still transactionally consistent.  The in-line comments below
1079  * describe the failure semantics at each stage.
1080  *
1081  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1082  * at any time, you can just call it again, and it will resume its work.
1083  */
1084 int
1085 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1086 {
1087 	spa_t *spa = svd[0]->vdev_spa;
1088 	uberblock_t *ub = &spa->spa_uberblock;
1089 	vdev_t *vd;
1090 	zio_t *zio;
1091 	int error;
1092 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1093 
1094 	/*
1095 	 * Normally, we don't want to try too hard to write every label and
1096 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1097 	 * sync process to block while we retry.  But if we can't write a
1098 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1099 	 * bailing out and declaring the pool faulted.
1100 	 */
1101 	if (tryhard)
1102 		flags |= ZIO_FLAG_TRYHARD;
1103 
1104 	ASSERT(ub->ub_txg <= txg);
1105 
1106 	/*
1107 	 * If this isn't a resync due to I/O errors,
1108 	 * and nothing changed in this transaction group,
1109 	 * and the vdev configuration hasn't changed,
1110 	 * then there's nothing to do.
1111 	 */
1112 	if (ub->ub_txg < txg &&
1113 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1114 	    list_is_empty(&spa->spa_config_dirty_list))
1115 		return (0);
1116 
1117 	if (txg > spa_freeze_txg(spa))
1118 		return (0);
1119 
1120 	ASSERT(txg <= spa->spa_final_txg);
1121 
1122 	/*
1123 	 * Flush the write cache of every disk that's been written to
1124 	 * in this transaction group.  This ensures that all blocks
1125 	 * written in this txg will be committed to stable storage
1126 	 * before any uberblock that references them.
1127 	 */
1128 	zio = zio_root(spa, NULL, NULL, flags);
1129 
1130 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1131 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1132 		zio_flush(zio, vd);
1133 
1134 	(void) zio_wait(zio);
1135 
1136 	/*
1137 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1138 	 * system dies in the middle of this process, that's OK: all of the
1139 	 * even labels that made it to disk will be newer than any uberblock,
1140 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1141 	 * which have not yet been touched, will still be valid.  We flush
1142 	 * the new labels to disk to ensure that all even-label updates
1143 	 * are committed to stable storage before the uberblock update.
1144 	 */
1145 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1146 		return (error);
1147 
1148 	/*
1149 	 * Sync the uberblocks to all vdevs in svd[].
1150 	 * If the system dies in the middle of this step, there are two cases
1151 	 * to consider, and the on-disk state is consistent either way:
1152 	 *
1153 	 * (1)	If none of the new uberblocks made it to disk, then the
1154 	 *	previous uberblock will be the newest, and the odd labels
1155 	 *	(which had not yet been touched) will be valid with respect
1156 	 *	to that uberblock.
1157 	 *
1158 	 * (2)	If one or more new uberblocks made it to disk, then they
1159 	 *	will be the newest, and the even labels (which had all
1160 	 *	been successfully committed) will be valid with respect
1161 	 *	to the new uberblocks.
1162 	 */
1163 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1164 		return (error);
1165 
1166 	/*
1167 	 * Sync out odd labels for every dirty vdev.  If the system dies
1168 	 * in the middle of this process, the even labels and the new
1169 	 * uberblocks will suffice to open the pool.  The next time
1170 	 * the pool is opened, the first thing we'll do -- before any
1171 	 * user data is modified -- is mark every vdev dirty so that
1172 	 * all labels will be brought up to date.  We flush the new labels
1173 	 * to disk to ensure that all odd-label updates are committed to
1174 	 * stable storage before the next transaction group begins.
1175 	 */
1176 	return (vdev_label_sync_list(spa, 1, txg, flags));
1177 }
1178