1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Virtual Device Labels 28 * --------------------- 29 * 30 * The vdev label serves several distinct purposes: 31 * 32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 33 * identity within the pool. 34 * 35 * 2. Verify that all the devices given in a configuration are present 36 * within the pool. 37 * 38 * 3. Determine the uberblock for the pool. 39 * 40 * 4. In case of an import operation, determine the configuration of the 41 * toplevel vdev of which it is a part. 42 * 43 * 5. If an import operation cannot find all the devices in the pool, 44 * provide enough information to the administrator to determine which 45 * devices are missing. 46 * 47 * It is important to note that while the kernel is responsible for writing the 48 * label, it only consumes the information in the first three cases. The 49 * latter information is only consumed in userland when determining the 50 * configuration to import a pool. 51 * 52 * 53 * Label Organization 54 * ------------------ 55 * 56 * Before describing the contents of the label, it's important to understand how 57 * the labels are written and updated with respect to the uberblock. 58 * 59 * When the pool configuration is altered, either because it was newly created 60 * or a device was added, we want to update all the labels such that we can deal 61 * with fatal failure at any point. To this end, each disk has two labels which 62 * are updated before and after the uberblock is synced. Assuming we have 63 * labels and an uberblock with the following transaction groups: 64 * 65 * L1 UB L2 66 * +------+ +------+ +------+ 67 * | | | | | | 68 * | t10 | | t10 | | t10 | 69 * | | | | | | 70 * +------+ +------+ +------+ 71 * 72 * In this stable state, the labels and the uberblock were all updated within 73 * the same transaction group (10). Each label is mirrored and checksummed, so 74 * that we can detect when we fail partway through writing the label. 75 * 76 * In order to identify which labels are valid, the labels are written in the 77 * following manner: 78 * 79 * 1. For each vdev, update 'L1' to the new label 80 * 2. Update the uberblock 81 * 3. For each vdev, update 'L2' to the new label 82 * 83 * Given arbitrary failure, we can determine the correct label to use based on 84 * the transaction group. If we fail after updating L1 but before updating the 85 * UB, we will notice that L1's transaction group is greater than the uberblock, 86 * so L2 must be valid. If we fail after writing the uberblock but before 87 * writing L2, we will notice that L2's transaction group is less than L1, and 88 * therefore L1 is valid. 89 * 90 * Another added complexity is that not every label is updated when the config 91 * is synced. If we add a single device, we do not want to have to re-write 92 * every label for every device in the pool. This means that both L1 and L2 may 93 * be older than the pool uberblock, because the necessary information is stored 94 * on another vdev. 95 * 96 * 97 * On-disk Format 98 * -------------- 99 * 100 * The vdev label consists of two distinct parts, and is wrapped within the 101 * vdev_label_t structure. The label includes 8k of padding to permit legacy 102 * VTOC disk labels, but is otherwise ignored. 103 * 104 * The first half of the label is a packed nvlist which contains pool wide 105 * properties, per-vdev properties, and configuration information. It is 106 * described in more detail below. 107 * 108 * The latter half of the label consists of a redundant array of uberblocks. 109 * These uberblocks are updated whenever a transaction group is committed, 110 * or when the configuration is updated. When a pool is loaded, we scan each 111 * vdev for the 'best' uberblock. 112 * 113 * 114 * Configuration Information 115 * ------------------------- 116 * 117 * The nvlist describing the pool and vdev contains the following elements: 118 * 119 * version ZFS on-disk version 120 * name Pool name 121 * state Pool state 122 * txg Transaction group in which this label was written 123 * pool_guid Unique identifier for this pool 124 * vdev_tree An nvlist describing vdev tree. 125 * 126 * Each leaf device label also contains the following: 127 * 128 * top_guid Unique ID for top-level vdev in which this is contained 129 * guid Unique ID for the leaf vdev 130 * 131 * The 'vs' configuration follows the format described in 'spa_config.c'. 132 */ 133 134 #include <sys/zfs_context.h> 135 #include <sys/spa.h> 136 #include <sys/spa_impl.h> 137 #include <sys/dmu.h> 138 #include <sys/zap.h> 139 #include <sys/vdev.h> 140 #include <sys/vdev_impl.h> 141 #include <sys/uberblock_impl.h> 142 #include <sys/metaslab.h> 143 #include <sys/zio.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 boolean_t isspare, boolean_t isl2cache) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!isspare && !isl2cache) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_fru != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 238 vd->vdev_fru) == 0); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity <= 2 && 250 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 251 (vd->vdev_nparity <= 3 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 253 254 /* 255 * Note that we'll add the nparity tag even on storage pools 256 * that only support a single parity device -- older software 257 * will just ignore it. 258 */ 259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 260 vd->vdev_nparity) == 0); 261 } 262 263 if (vd->vdev_wholedisk != -1ULL) 264 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 265 vd->vdev_wholedisk) == 0); 266 267 if (vd->vdev_not_present) 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 269 270 if (vd->vdev_isspare) 271 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 272 273 if (!isspare && !isl2cache && vd == vd->vdev_top) { 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 275 vd->vdev_ms_array) == 0); 276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 277 vd->vdev_ms_shift) == 0); 278 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 279 vd->vdev_ashift) == 0); 280 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 281 vd->vdev_asize) == 0); 282 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 283 vd->vdev_islog) == 0); 284 } 285 286 if (vd->vdev_dtl_smo.smo_object != 0) 287 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 288 vd->vdev_dtl_smo.smo_object) == 0); 289 290 if (vd->vdev_crtxg) 291 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 292 vd->vdev_crtxg) == 0); 293 294 if (getstats) { 295 vdev_stat_t vs; 296 vdev_get_stats(vd, &vs); 297 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 298 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 299 } 300 301 if (!vd->vdev_ops->vdev_op_leaf) { 302 nvlist_t **child; 303 int c; 304 305 ASSERT(!vd->vdev_ishole); 306 307 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 308 KM_SLEEP); 309 310 for (c = 0; c < vd->vdev_children; c++) 311 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 312 getstats, isspare, isl2cache); 313 314 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 315 child, vd->vdev_children) == 0); 316 317 for (c = 0; c < vd->vdev_children; c++) 318 nvlist_free(child[c]); 319 320 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 321 322 } else { 323 const char *aux = NULL; 324 325 if (vd->vdev_offline && !vd->vdev_tmpoffline) 326 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 327 B_TRUE) == 0); 328 if (vd->vdev_faulted) 329 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 330 B_TRUE) == 0); 331 if (vd->vdev_degraded) 332 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 333 B_TRUE) == 0); 334 if (vd->vdev_removed) 335 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 336 B_TRUE) == 0); 337 if (vd->vdev_unspare) 338 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 339 B_TRUE) == 0); 340 if (vd->vdev_ishole) 341 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 342 B_TRUE) == 0); 343 344 switch (vd->vdev_stat.vs_aux) { 345 case VDEV_AUX_ERR_EXCEEDED: 346 aux = "err_exceeded"; 347 break; 348 349 case VDEV_AUX_EXTERNAL: 350 aux = "external"; 351 break; 352 } 353 354 if (aux != NULL) 355 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 356 aux) == 0); 357 358 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 359 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 360 vd->vdev_orig_guid) == 0); 361 } 362 } 363 364 return (nv); 365 } 366 367 /* 368 * Generate a view of the top-level vdevs. If we currently have holes 369 * in the namespace, then generate an array which contains a list of holey 370 * vdevs. Additionally, add the number of top-level children that currently 371 * exist. 372 */ 373 void 374 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 375 { 376 vdev_t *rvd = spa->spa_root_vdev; 377 uint64_t *array; 378 uint_t idx; 379 380 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 381 382 idx = 0; 383 for (int c = 0; c < rvd->vdev_children; c++) { 384 vdev_t *tvd = rvd->vdev_child[c]; 385 386 if (tvd->vdev_ishole) 387 array[idx++] = c; 388 } 389 390 if (idx) { 391 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 392 array, idx) == 0); 393 } 394 395 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 396 rvd->vdev_children) == 0); 397 398 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 399 } 400 401 nvlist_t * 402 vdev_label_read_config(vdev_t *vd) 403 { 404 spa_t *spa = vd->vdev_spa; 405 nvlist_t *config = NULL; 406 vdev_phys_t *vp; 407 zio_t *zio; 408 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 409 ZIO_FLAG_SPECULATIVE; 410 411 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 412 413 if (!vdev_readable(vd)) 414 return (NULL); 415 416 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 417 418 retry: 419 for (int l = 0; l < VDEV_LABELS; l++) { 420 421 zio = zio_root(spa, NULL, NULL, flags); 422 423 vdev_label_read(zio, vd, l, vp, 424 offsetof(vdev_label_t, vl_vdev_phys), 425 sizeof (vdev_phys_t), NULL, NULL, flags); 426 427 if (zio_wait(zio) == 0 && 428 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 429 &config, 0) == 0) 430 break; 431 432 if (config != NULL) { 433 nvlist_free(config); 434 config = NULL; 435 } 436 } 437 438 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 439 flags |= ZIO_FLAG_TRYHARD; 440 goto retry; 441 } 442 443 zio_buf_free(vp, sizeof (vdev_phys_t)); 444 445 return (config); 446 } 447 448 /* 449 * Determine if a device is in use. The 'spare_guid' parameter will be filled 450 * in with the device guid if this spare is active elsewhere on the system. 451 */ 452 static boolean_t 453 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 454 uint64_t *spare_guid, uint64_t *l2cache_guid) 455 { 456 spa_t *spa = vd->vdev_spa; 457 uint64_t state, pool_guid, device_guid, txg, spare_pool; 458 uint64_t vdtxg = 0; 459 nvlist_t *label; 460 461 if (spare_guid) 462 *spare_guid = 0ULL; 463 if (l2cache_guid) 464 *l2cache_guid = 0ULL; 465 466 /* 467 * Read the label, if any, and perform some basic sanity checks. 468 */ 469 if ((label = vdev_label_read_config(vd)) == NULL) 470 return (B_FALSE); 471 472 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 473 &vdtxg); 474 475 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 476 &state) != 0 || 477 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 478 &device_guid) != 0) { 479 nvlist_free(label); 480 return (B_FALSE); 481 } 482 483 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 484 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 485 &pool_guid) != 0 || 486 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 487 &txg) != 0)) { 488 nvlist_free(label); 489 return (B_FALSE); 490 } 491 492 nvlist_free(label); 493 494 /* 495 * Check to see if this device indeed belongs to the pool it claims to 496 * be a part of. The only way this is allowed is if the device is a hot 497 * spare (which we check for later on). 498 */ 499 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 500 !spa_guid_exists(pool_guid, device_guid) && 501 !spa_spare_exists(device_guid, NULL, NULL) && 502 !spa_l2cache_exists(device_guid, NULL)) 503 return (B_FALSE); 504 505 /* 506 * If the transaction group is zero, then this an initialized (but 507 * unused) label. This is only an error if the create transaction 508 * on-disk is the same as the one we're using now, in which case the 509 * user has attempted to add the same vdev multiple times in the same 510 * transaction. 511 */ 512 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 513 txg == 0 && vdtxg == crtxg) 514 return (B_TRUE); 515 516 /* 517 * Check to see if this is a spare device. We do an explicit check for 518 * spa_has_spare() here because it may be on our pending list of spares 519 * to add. We also check if it is an l2cache device. 520 */ 521 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 522 spa_has_spare(spa, device_guid)) { 523 if (spare_guid) 524 *spare_guid = device_guid; 525 526 switch (reason) { 527 case VDEV_LABEL_CREATE: 528 case VDEV_LABEL_L2CACHE: 529 return (B_TRUE); 530 531 case VDEV_LABEL_REPLACE: 532 return (!spa_has_spare(spa, device_guid) || 533 spare_pool != 0ULL); 534 535 case VDEV_LABEL_SPARE: 536 return (spa_has_spare(spa, device_guid)); 537 } 538 } 539 540 /* 541 * Check to see if this is an l2cache device. 542 */ 543 if (spa_l2cache_exists(device_guid, NULL)) 544 return (B_TRUE); 545 546 /* 547 * If the device is marked ACTIVE, then this device is in use by another 548 * pool on the system. 549 */ 550 return (state == POOL_STATE_ACTIVE); 551 } 552 553 /* 554 * Initialize a vdev label. We check to make sure each leaf device is not in 555 * use, and writable. We put down an initial label which we will later 556 * overwrite with a complete label. Note that it's important to do this 557 * sequentially, not in parallel, so that we catch cases of multiple use of the 558 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 559 * itself. 560 */ 561 int 562 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 563 { 564 spa_t *spa = vd->vdev_spa; 565 nvlist_t *label; 566 vdev_phys_t *vp; 567 char *pad2; 568 uberblock_t *ub; 569 zio_t *zio; 570 char *buf; 571 size_t buflen; 572 int error; 573 uint64_t spare_guid, l2cache_guid; 574 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 575 576 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 577 578 for (int c = 0; c < vd->vdev_children; c++) 579 if ((error = vdev_label_init(vd->vdev_child[c], 580 crtxg, reason)) != 0) 581 return (error); 582 583 /* Track the creation time for this vdev */ 584 vd->vdev_crtxg = crtxg; 585 586 if (!vd->vdev_ops->vdev_op_leaf) 587 return (0); 588 589 /* 590 * Dead vdevs cannot be initialized. 591 */ 592 if (vdev_is_dead(vd)) 593 return (EIO); 594 595 /* 596 * Determine if the vdev is in use. 597 */ 598 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 599 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 600 return (EBUSY); 601 602 /* 603 * If this is a request to add or replace a spare or l2cache device 604 * that is in use elsewhere on the system, then we must update the 605 * guid (which was initialized to a random value) to reflect the 606 * actual GUID (which is shared between multiple pools). 607 */ 608 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 609 spare_guid != 0ULL) { 610 uint64_t guid_delta = spare_guid - vd->vdev_guid; 611 612 vd->vdev_guid += guid_delta; 613 614 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 615 pvd->vdev_guid_sum += guid_delta; 616 617 /* 618 * If this is a replacement, then we want to fallthrough to the 619 * rest of the code. If we're adding a spare, then it's already 620 * labeled appropriately and we can just return. 621 */ 622 if (reason == VDEV_LABEL_SPARE) 623 return (0); 624 ASSERT(reason == VDEV_LABEL_REPLACE || 625 reason == VDEV_LABEL_SPLIT); 626 } 627 628 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 629 l2cache_guid != 0ULL) { 630 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 631 632 vd->vdev_guid += guid_delta; 633 634 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 635 pvd->vdev_guid_sum += guid_delta; 636 637 /* 638 * If this is a replacement, then we want to fallthrough to the 639 * rest of the code. If we're adding an l2cache, then it's 640 * already labeled appropriately and we can just return. 641 */ 642 if (reason == VDEV_LABEL_L2CACHE) 643 return (0); 644 ASSERT(reason == VDEV_LABEL_REPLACE); 645 } 646 647 /* 648 * Initialize its label. 649 */ 650 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 651 bzero(vp, sizeof (vdev_phys_t)); 652 653 /* 654 * Generate a label describing the pool and our top-level vdev. 655 * We mark it as being from txg 0 to indicate that it's not 656 * really part of an active pool just yet. The labels will 657 * be written again with a meaningful txg by spa_sync(). 658 */ 659 if (reason == VDEV_LABEL_SPARE || 660 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 661 /* 662 * For inactive hot spares, we generate a special label that 663 * identifies as a mutually shared hot spare. We write the 664 * label if we are adding a hot spare, or if we are removing an 665 * active hot spare (in which case we want to revert the 666 * labels). 667 */ 668 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 669 670 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 671 spa_version(spa)) == 0); 672 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 673 POOL_STATE_SPARE) == 0); 674 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 675 vd->vdev_guid) == 0); 676 } else if (reason == VDEV_LABEL_L2CACHE || 677 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 678 /* 679 * For level 2 ARC devices, add a special label. 680 */ 681 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 682 683 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 684 spa_version(spa)) == 0); 685 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 686 POOL_STATE_L2CACHE) == 0); 687 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 688 vd->vdev_guid) == 0); 689 } else { 690 uint64_t txg = 0ULL; 691 692 if (reason == VDEV_LABEL_SPLIT) 693 txg = spa->spa_uberblock.ub_txg; 694 label = spa_config_generate(spa, vd, txg, B_FALSE); 695 696 /* 697 * Add our creation time. This allows us to detect multiple 698 * vdev uses as described above, and automatically expires if we 699 * fail. 700 */ 701 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 702 crtxg) == 0); 703 } 704 705 buf = vp->vp_nvlist; 706 buflen = sizeof (vp->vp_nvlist); 707 708 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 709 if (error != 0) { 710 nvlist_free(label); 711 zio_buf_free(vp, sizeof (vdev_phys_t)); 712 /* EFAULT means nvlist_pack ran out of room */ 713 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 714 } 715 716 /* 717 * Initialize uberblock template. 718 */ 719 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 720 bzero(ub, VDEV_UBERBLOCK_RING); 721 *ub = spa->spa_uberblock; 722 ub->ub_txg = 0; 723 724 /* Initialize the 2nd padding area. */ 725 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 726 bzero(pad2, VDEV_PAD_SIZE); 727 728 /* 729 * Write everything in parallel. 730 */ 731 retry: 732 zio = zio_root(spa, NULL, NULL, flags); 733 734 for (int l = 0; l < VDEV_LABELS; l++) { 735 736 vdev_label_write(zio, vd, l, vp, 737 offsetof(vdev_label_t, vl_vdev_phys), 738 sizeof (vdev_phys_t), NULL, NULL, flags); 739 740 /* 741 * Skip the 1st padding area. 742 * Zero out the 2nd padding area where it might have 743 * left over data from previous filesystem format. 744 */ 745 vdev_label_write(zio, vd, l, pad2, 746 offsetof(vdev_label_t, vl_pad2), 747 VDEV_PAD_SIZE, NULL, NULL, flags); 748 749 vdev_label_write(zio, vd, l, ub, 750 offsetof(vdev_label_t, vl_uberblock), 751 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 752 } 753 754 error = zio_wait(zio); 755 756 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 757 flags |= ZIO_FLAG_TRYHARD; 758 goto retry; 759 } 760 761 nvlist_free(label); 762 zio_buf_free(pad2, VDEV_PAD_SIZE); 763 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 764 zio_buf_free(vp, sizeof (vdev_phys_t)); 765 766 /* 767 * If this vdev hasn't been previously identified as a spare, then we 768 * mark it as such only if a) we are labeling it as a spare, or b) it 769 * exists as a spare elsewhere in the system. Do the same for 770 * level 2 ARC devices. 771 */ 772 if (error == 0 && !vd->vdev_isspare && 773 (reason == VDEV_LABEL_SPARE || 774 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 775 spa_spare_add(vd); 776 777 if (error == 0 && !vd->vdev_isl2cache && 778 (reason == VDEV_LABEL_L2CACHE || 779 spa_l2cache_exists(vd->vdev_guid, NULL))) 780 spa_l2cache_add(vd); 781 782 return (error); 783 } 784 785 /* 786 * ========================================================================== 787 * uberblock load/sync 788 * ========================================================================== 789 */ 790 791 /* 792 * Consider the following situation: txg is safely synced to disk. We've 793 * written the first uberblock for txg + 1, and then we lose power. When we 794 * come back up, we fail to see the uberblock for txg + 1 because, say, 795 * it was on a mirrored device and the replica to which we wrote txg + 1 796 * is now offline. If we then make some changes and sync txg + 1, and then 797 * the missing replica comes back, then for a new seconds we'll have two 798 * conflicting uberblocks on disk with the same txg. The solution is simple: 799 * among uberblocks with equal txg, choose the one with the latest timestamp. 800 */ 801 static int 802 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 803 { 804 if (ub1->ub_txg < ub2->ub_txg) 805 return (-1); 806 if (ub1->ub_txg > ub2->ub_txg) 807 return (1); 808 809 if (ub1->ub_timestamp < ub2->ub_timestamp) 810 return (-1); 811 if (ub1->ub_timestamp > ub2->ub_timestamp) 812 return (1); 813 814 return (0); 815 } 816 817 static void 818 vdev_uberblock_load_done(zio_t *zio) 819 { 820 spa_t *spa = zio->io_spa; 821 zio_t *rio = zio->io_private; 822 uberblock_t *ub = zio->io_data; 823 uberblock_t *ubbest = rio->io_private; 824 825 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 826 827 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 828 mutex_enter(&rio->io_lock); 829 if (ub->ub_txg <= spa->spa_load_max_txg && 830 vdev_uberblock_compare(ub, ubbest) > 0) 831 *ubbest = *ub; 832 mutex_exit(&rio->io_lock); 833 } 834 835 zio_buf_free(zio->io_data, zio->io_size); 836 } 837 838 void 839 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 840 { 841 spa_t *spa = vd->vdev_spa; 842 vdev_t *rvd = spa->spa_root_vdev; 843 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 844 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 845 846 if (vd == rvd) { 847 ASSERT(zio == NULL); 848 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 849 zio = zio_root(spa, NULL, ubbest, flags); 850 bzero(ubbest, sizeof (uberblock_t)); 851 } 852 853 ASSERT(zio != NULL); 854 855 for (int c = 0; c < vd->vdev_children; c++) 856 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 857 858 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 859 for (int l = 0; l < VDEV_LABELS; l++) { 860 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 861 vdev_label_read(zio, vd, l, 862 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 863 VDEV_UBERBLOCK_OFFSET(vd, n), 864 VDEV_UBERBLOCK_SIZE(vd), 865 vdev_uberblock_load_done, zio, flags); 866 } 867 } 868 } 869 870 if (vd == rvd) { 871 (void) zio_wait(zio); 872 spa_config_exit(spa, SCL_ALL, FTAG); 873 } 874 } 875 876 /* 877 * On success, increment root zio's count of good writes. 878 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 879 */ 880 static void 881 vdev_uberblock_sync_done(zio_t *zio) 882 { 883 uint64_t *good_writes = zio->io_private; 884 885 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 886 atomic_add_64(good_writes, 1); 887 } 888 889 /* 890 * Write the uberblock to all labels of all leaves of the specified vdev. 891 */ 892 static void 893 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 894 { 895 uberblock_t *ubbuf; 896 int n; 897 898 for (int c = 0; c < vd->vdev_children; c++) 899 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 900 901 if (!vd->vdev_ops->vdev_op_leaf) 902 return; 903 904 if (!vdev_writeable(vd)) 905 return; 906 907 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 908 909 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 910 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 911 *ubbuf = *ub; 912 913 for (int l = 0; l < VDEV_LABELS; l++) 914 vdev_label_write(zio, vd, l, ubbuf, 915 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 916 vdev_uberblock_sync_done, zio->io_private, 917 flags | ZIO_FLAG_DONT_PROPAGATE); 918 919 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 920 } 921 922 int 923 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 924 { 925 spa_t *spa = svd[0]->vdev_spa; 926 zio_t *zio; 927 uint64_t good_writes = 0; 928 929 zio = zio_root(spa, NULL, &good_writes, flags); 930 931 for (int v = 0; v < svdcount; v++) 932 vdev_uberblock_sync(zio, ub, svd[v], flags); 933 934 (void) zio_wait(zio); 935 936 /* 937 * Flush the uberblocks to disk. This ensures that the odd labels 938 * are no longer needed (because the new uberblocks and the even 939 * labels are safely on disk), so it is safe to overwrite them. 940 */ 941 zio = zio_root(spa, NULL, NULL, flags); 942 943 for (int v = 0; v < svdcount; v++) 944 zio_flush(zio, svd[v]); 945 946 (void) zio_wait(zio); 947 948 return (good_writes >= 1 ? 0 : EIO); 949 } 950 951 /* 952 * On success, increment the count of good writes for our top-level vdev. 953 */ 954 static void 955 vdev_label_sync_done(zio_t *zio) 956 { 957 uint64_t *good_writes = zio->io_private; 958 959 if (zio->io_error == 0) 960 atomic_add_64(good_writes, 1); 961 } 962 963 /* 964 * If there weren't enough good writes, indicate failure to the parent. 965 */ 966 static void 967 vdev_label_sync_top_done(zio_t *zio) 968 { 969 uint64_t *good_writes = zio->io_private; 970 971 if (*good_writes == 0) 972 zio->io_error = EIO; 973 974 kmem_free(good_writes, sizeof (uint64_t)); 975 } 976 977 /* 978 * We ignore errors for log and cache devices, simply free the private data. 979 */ 980 static void 981 vdev_label_sync_ignore_done(zio_t *zio) 982 { 983 kmem_free(zio->io_private, sizeof (uint64_t)); 984 } 985 986 /* 987 * Write all even or odd labels to all leaves of the specified vdev. 988 */ 989 static void 990 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 991 { 992 nvlist_t *label; 993 vdev_phys_t *vp; 994 char *buf; 995 size_t buflen; 996 997 for (int c = 0; c < vd->vdev_children; c++) 998 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 999 1000 if (!vd->vdev_ops->vdev_op_leaf) 1001 return; 1002 1003 if (!vdev_writeable(vd)) 1004 return; 1005 1006 /* 1007 * Generate a label describing the top-level config to which we belong. 1008 */ 1009 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1010 1011 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1012 bzero(vp, sizeof (vdev_phys_t)); 1013 1014 buf = vp->vp_nvlist; 1015 buflen = sizeof (vp->vp_nvlist); 1016 1017 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1018 for (; l < VDEV_LABELS; l += 2) { 1019 vdev_label_write(zio, vd, l, vp, 1020 offsetof(vdev_label_t, vl_vdev_phys), 1021 sizeof (vdev_phys_t), 1022 vdev_label_sync_done, zio->io_private, 1023 flags | ZIO_FLAG_DONT_PROPAGATE); 1024 } 1025 } 1026 1027 zio_buf_free(vp, sizeof (vdev_phys_t)); 1028 nvlist_free(label); 1029 } 1030 1031 int 1032 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1033 { 1034 list_t *dl = &spa->spa_config_dirty_list; 1035 vdev_t *vd; 1036 zio_t *zio; 1037 int error; 1038 1039 /* 1040 * Write the new labels to disk. 1041 */ 1042 zio = zio_root(spa, NULL, NULL, flags); 1043 1044 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1045 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1046 KM_SLEEP); 1047 1048 ASSERT(!vd->vdev_ishole); 1049 1050 zio_t *vio = zio_null(zio, spa, NULL, 1051 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1052 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1053 good_writes, flags); 1054 vdev_label_sync(vio, vd, l, txg, flags); 1055 zio_nowait(vio); 1056 } 1057 1058 error = zio_wait(zio); 1059 1060 /* 1061 * Flush the new labels to disk. 1062 */ 1063 zio = zio_root(spa, NULL, NULL, flags); 1064 1065 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1066 zio_flush(zio, vd); 1067 1068 (void) zio_wait(zio); 1069 1070 return (error); 1071 } 1072 1073 /* 1074 * Sync the uberblock and any changes to the vdev configuration. 1075 * 1076 * The order of operations is carefully crafted to ensure that 1077 * if the system panics or loses power at any time, the state on disk 1078 * is still transactionally consistent. The in-line comments below 1079 * describe the failure semantics at each stage. 1080 * 1081 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1082 * at any time, you can just call it again, and it will resume its work. 1083 */ 1084 int 1085 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1086 { 1087 spa_t *spa = svd[0]->vdev_spa; 1088 uberblock_t *ub = &spa->spa_uberblock; 1089 vdev_t *vd; 1090 zio_t *zio; 1091 int error; 1092 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1093 1094 /* 1095 * Normally, we don't want to try too hard to write every label and 1096 * uberblock. If there is a flaky disk, we don't want the rest of the 1097 * sync process to block while we retry. But if we can't write a 1098 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1099 * bailing out and declaring the pool faulted. 1100 */ 1101 if (tryhard) 1102 flags |= ZIO_FLAG_TRYHARD; 1103 1104 ASSERT(ub->ub_txg <= txg); 1105 1106 /* 1107 * If this isn't a resync due to I/O errors, 1108 * and nothing changed in this transaction group, 1109 * and the vdev configuration hasn't changed, 1110 * then there's nothing to do. 1111 */ 1112 if (ub->ub_txg < txg && 1113 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1114 list_is_empty(&spa->spa_config_dirty_list)) 1115 return (0); 1116 1117 if (txg > spa_freeze_txg(spa)) 1118 return (0); 1119 1120 ASSERT(txg <= spa->spa_final_txg); 1121 1122 /* 1123 * Flush the write cache of every disk that's been written to 1124 * in this transaction group. This ensures that all blocks 1125 * written in this txg will be committed to stable storage 1126 * before any uberblock that references them. 1127 */ 1128 zio = zio_root(spa, NULL, NULL, flags); 1129 1130 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1131 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1132 zio_flush(zio, vd); 1133 1134 (void) zio_wait(zio); 1135 1136 /* 1137 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1138 * system dies in the middle of this process, that's OK: all of the 1139 * even labels that made it to disk will be newer than any uberblock, 1140 * and will therefore be considered invalid. The odd labels (L1, L3), 1141 * which have not yet been touched, will still be valid. We flush 1142 * the new labels to disk to ensure that all even-label updates 1143 * are committed to stable storage before the uberblock update. 1144 */ 1145 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1146 return (error); 1147 1148 /* 1149 * Sync the uberblocks to all vdevs in svd[]. 1150 * If the system dies in the middle of this step, there are two cases 1151 * to consider, and the on-disk state is consistent either way: 1152 * 1153 * (1) If none of the new uberblocks made it to disk, then the 1154 * previous uberblock will be the newest, and the odd labels 1155 * (which had not yet been touched) will be valid with respect 1156 * to that uberblock. 1157 * 1158 * (2) If one or more new uberblocks made it to disk, then they 1159 * will be the newest, and the even labels (which had all 1160 * been successfully committed) will be valid with respect 1161 * to the new uberblocks. 1162 */ 1163 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1164 return (error); 1165 1166 /* 1167 * Sync out odd labels for every dirty vdev. If the system dies 1168 * in the middle of this process, the even labels and the new 1169 * uberblocks will suffice to open the pool. The next time 1170 * the pool is opened, the first thing we'll do -- before any 1171 * user data is modified -- is mark every vdev dirty so that 1172 * all labels will be brought up to date. We flush the new labels 1173 * to disk to ensure that all odd-label updates are committed to 1174 * stable storage before the next transaction group begins. 1175 */ 1176 return (vdev_label_sync_list(spa, 1, txg, flags)); 1177 } 1178