1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * Virtual Device Labels 30 * --------------------- 31 * 32 * The vdev label serves several distinct purposes: 33 * 34 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 35 * identity within the pool. 36 * 37 * 2. Verify that all the devices given in a configuration are present 38 * within the pool. 39 * 40 * 3. Determine the uberblock for the pool. 41 * 42 * 4. In case of an import operation, determine the configuration of the 43 * toplevel vdev of which it is a part. 44 * 45 * 5. If an import operation cannot find all the devices in the pool, 46 * provide enough information to the administrator to determine which 47 * devices are missing. 48 * 49 * It is important to note that while the kernel is responsible for writing the 50 * label, it only consumes the information in the first three cases. The 51 * latter information is only consumed in userland when determining the 52 * configuration to import a pool. 53 * 54 * 55 * Label Organization 56 * ------------------ 57 * 58 * Before describing the contents of the label, it's important to understand how 59 * the labels are written and updated with respect to the uberblock. 60 * 61 * When the pool configuration is altered, either because it was newly created 62 * or a device was added, we want to update all the labels such that we can deal 63 * with fatal failure at any point. To this end, each disk has two labels which 64 * are updated before and after the uberblock is synced. Assuming we have 65 * labels and an uberblock with the following transacation groups: 66 * 67 * L1 UB L2 68 * +------+ +------+ +------+ 69 * | | | | | | 70 * | t10 | | t10 | | t10 | 71 * | | | | | | 72 * +------+ +------+ +------+ 73 * 74 * In this stable state, the labels and the uberblock were all updated within 75 * the same transaction group (10). Each label is mirrored and checksummed, so 76 * that we can detect when we fail partway through writing the label. 77 * 78 * In order to identify which labels are valid, the labels are written in the 79 * following manner: 80 * 81 * 1. For each vdev, update 'L1' to the new label 82 * 2. Update the uberblock 83 * 3. For each vdev, update 'L2' to the new label 84 * 85 * Given arbitrary failure, we can determine the correct label to use based on 86 * the transaction group. If we fail after updating L1 but before updating the 87 * UB, we will notice that L1's transaction group is greater than the uberblock, 88 * so L2 must be valid. If we fail after writing the uberblock but before 89 * writing L2, we will notice that L2's transaction group is less than L1, and 90 * therefore L1 is valid. 91 * 92 * Another added complexity is that not every label is updated when the config 93 * is synced. If we add a single device, we do not want to have to re-write 94 * every label for every device in the pool. This means that both L1 and L2 may 95 * be older than the pool uberblock, because the necessary information is stored 96 * on another vdev. 97 * 98 * 99 * On-disk Format 100 * -------------- 101 * 102 * The vdev label consists of two distinct parts, and is wrapped within the 103 * vdev_label_t structure. The label includes 8k of padding to permit legacy 104 * VTOC disk labels, but is otherwise ignored. 105 * 106 * The first half of the label is a packed nvlist which contains pool wide 107 * properties, per-vdev properties, and configuration information. It is 108 * described in more detail below. 109 * 110 * The latter half of the label consists of a redundant array of uberblocks. 111 * These uberblocks are updated whenever a transaction group is committed, 112 * or when the configuration is updated. When a pool is loaded, we scan each 113 * vdev for the 'best' uberblock. 114 * 115 * 116 * Configuration Information 117 * ------------------------- 118 * 119 * The nvlist describing the pool and vdev contains the following elements: 120 * 121 * version ZFS on-disk version 122 * name Pool name 123 * state Pool state 124 * txg Transaction group in which this label was written 125 * pool_guid Unique identifier for this pool 126 * vdev_tree An nvlist describing vdev tree. 127 * 128 * Each leaf device label also contains the following: 129 * 130 * top_guid Unique ID for top-level vdev in which this is contained 131 * guid Unique ID for the leaf vdev 132 * 133 * The 'vs' configuration follows the format described in 'spa_config.c'. 134 */ 135 136 #include <sys/zfs_context.h> 137 #include <sys/spa.h> 138 #include <sys/spa_impl.h> 139 #include <sys/dmu.h> 140 #include <sys/zap.h> 141 #include <sys/vdev.h> 142 #include <sys/vdev_impl.h> 143 #include <sys/uberblock_impl.h> 144 #include <sys/metaslab.h> 145 #include <sys/zio.h> 146 #include <sys/fs/zfs.h> 147 148 /* 149 * Basic routines to read and write from a vdev label. 150 * Used throughout the rest of this file. 151 */ 152 uint64_t 153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 154 { 155 ASSERT(offset < sizeof (vdev_label_t)); 156 157 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 158 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 159 } 160 161 static void 162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 163 uint64_t size, zio_done_func_t *done, void *private) 164 { 165 ASSERT(vd->vdev_children == 0); 166 167 zio_nowait(zio_read_phys(zio, vd, 168 vdev_label_offset(vd->vdev_psize, l, offset), 169 size, buf, ZIO_CHECKSUM_LABEL, done, private, 170 ZIO_PRIORITY_SYNC_READ, 171 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE)); 172 } 173 174 static void 175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 176 uint64_t size, zio_done_func_t *done, void *private) 177 { 178 ASSERT(vd->vdev_children == 0); 179 180 zio_nowait(zio_write_phys(zio, vd, 181 vdev_label_offset(vd->vdev_psize, l, offset), 182 size, buf, ZIO_CHECKSUM_LABEL, done, private, 183 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL)); 184 } 185 186 /* 187 * Generate the nvlist representing this vdev's config. 188 */ 189 nvlist_t * 190 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 191 boolean_t isspare) 192 { 193 nvlist_t *nv = NULL; 194 195 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 196 197 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 198 vd->vdev_ops->vdev_op_type) == 0); 199 if (!isspare) 200 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 201 == 0); 202 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 203 204 if (vd->vdev_path != NULL) 205 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 206 vd->vdev_path) == 0); 207 208 if (vd->vdev_devid != NULL) 209 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 210 vd->vdev_devid) == 0); 211 212 if (vd->vdev_nparity != 0) { 213 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 214 VDEV_TYPE_RAIDZ) == 0); 215 216 /* 217 * Make sure someone hasn't managed to sneak a fancy new vdev 218 * into a crufty old storage pool. 219 */ 220 ASSERT(vd->vdev_nparity == 1 || 221 (vd->vdev_nparity == 2 && 222 spa_version(spa) >= ZFS_VERSION_RAID6)); 223 224 /* 225 * Note that we'll add the nparity tag even on storage pools 226 * that only support a single parity device -- older software 227 * will just ignore it. 228 */ 229 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 230 vd->vdev_nparity) == 0); 231 } 232 233 if (vd->vdev_wholedisk != -1ULL) 234 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 235 vd->vdev_wholedisk) == 0); 236 237 if (vd->vdev_not_present) 238 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 239 240 if (vd->vdev_isspare) 241 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 242 243 if (!isspare && vd == vd->vdev_top) { 244 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 245 vd->vdev_ms_array) == 0); 246 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 247 vd->vdev_ms_shift) == 0); 248 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 249 vd->vdev_ashift) == 0); 250 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 251 vd->vdev_asize) == 0); 252 } 253 254 if (vd->vdev_dtl.smo_object != 0) 255 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 256 vd->vdev_dtl.smo_object) == 0); 257 258 if (getstats) { 259 vdev_stat_t vs; 260 vdev_get_stats(vd, &vs); 261 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 262 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 263 } 264 265 if (!vd->vdev_ops->vdev_op_leaf) { 266 nvlist_t **child; 267 int c; 268 269 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 270 KM_SLEEP); 271 272 for (c = 0; c < vd->vdev_children; c++) 273 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 274 getstats, isspare); 275 276 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 277 child, vd->vdev_children) == 0); 278 279 for (c = 0; c < vd->vdev_children; c++) 280 nvlist_free(child[c]); 281 282 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 283 284 } else { 285 if (vd->vdev_offline && !vd->vdev_tmpoffline) 286 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 287 B_TRUE) == 0); 288 else 289 (void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE, 290 DATA_TYPE_UINT64); 291 } 292 293 return (nv); 294 } 295 296 nvlist_t * 297 vdev_label_read_config(vdev_t *vd) 298 { 299 spa_t *spa = vd->vdev_spa; 300 nvlist_t *config = NULL; 301 vdev_phys_t *vp; 302 zio_t *zio; 303 int l; 304 305 ASSERT(spa_config_held(spa, RW_READER)); 306 307 if (vdev_is_dead(vd)) 308 return (NULL); 309 310 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 311 312 for (l = 0; l < VDEV_LABELS; l++) { 313 314 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL | 315 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD); 316 317 vdev_label_read(zio, vd, l, vp, 318 offsetof(vdev_label_t, vl_vdev_phys), 319 sizeof (vdev_phys_t), NULL, NULL); 320 321 if (zio_wait(zio) == 0 && 322 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 323 &config, 0) == 0) 324 break; 325 326 if (config != NULL) { 327 nvlist_free(config); 328 config = NULL; 329 } 330 } 331 332 zio_buf_free(vp, sizeof (vdev_phys_t)); 333 334 return (config); 335 } 336 337 static int 338 vdev_label_common(vdev_t *vd, uint64_t crtxg, boolean_t isspare, 339 boolean_t isreplacing) 340 { 341 spa_t *spa = vd->vdev_spa; 342 nvlist_t *label; 343 vdev_phys_t *vp; 344 vdev_boot_header_t *vb; 345 uberblock_t *ub; 346 zio_t *zio; 347 int l, c, n; 348 char *buf; 349 size_t buflen; 350 int error; 351 352 ASSERT(spa_config_held(spa, RW_WRITER)); 353 354 for (c = 0; c < vd->vdev_children; c++) 355 if ((error = vdev_label_common(vd->vdev_child[c], 356 crtxg, isspare, isreplacing)) != 0) 357 return (error); 358 359 if (!vd->vdev_ops->vdev_op_leaf) 360 return (0); 361 362 /* 363 * Make sure each leaf device is writable, and zero its initial content. 364 * Along the way, also make sure that no leaf is already in use. 365 * Note that it's important to do this sequentially, not in parallel, 366 * so that we catch cases of multiple use of the same leaf vdev in 367 * the vdev we're creating -- e.g. mirroring a disk with itself. 368 */ 369 if (vdev_is_dead(vd)) 370 return (EIO); 371 372 /* 373 * Check whether this device is already in use. 374 * Ignore the check if crtxg == 0, which we use for device removal. 375 */ 376 if (crtxg != 0 && 377 (label = vdev_label_read_config(vd)) != NULL) { 378 uint64_t state, pool_guid, device_guid, txg, spare; 379 uint64_t mycrtxg = 0; 380 381 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 382 &mycrtxg); 383 384 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 385 &state) == 0 && state == POOL_STATE_ACTIVE && 386 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 387 &pool_guid) == 0 && 388 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 389 &device_guid) == 0 && 390 spa_guid_exists(pool_guid, device_guid) && 391 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 392 &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) { 393 if (isspare && pool_guid != spa_guid(spa) && 394 nvlist_lookup_uint64(label, 395 ZPOOL_CONFIG_IS_SPARE, &spare) == 0 && 396 !spa_has_spare(spa, device_guid)) { 397 /* 398 * If this is a request to add a spare that 399 * is actively in use in another pool, simply 400 * return success, after updating the guid. 401 */ 402 vdev_t *pvd = vd->vdev_parent; 403 404 for (; pvd != NULL; pvd = pvd->vdev_parent) { 405 pvd->vdev_guid_sum -= vd->vdev_guid; 406 pvd->vdev_guid_sum += device_guid; 407 } 408 409 vd->vdev_guid = vd->vdev_guid_sum = device_guid; 410 nvlist_free(label); 411 return (0); 412 } 413 nvlist_free(label); 414 return (EBUSY); 415 } 416 417 /* 418 * If this device is reserved as a hot spare for this pool, 419 * adopt its GUID, and mark it as such. This way we preserve 420 * the fact that it is a hot spare even as it is added and 421 * removed from the pool. 422 */ 423 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 424 &state) == 0 && state == POOL_STATE_SPARE && 425 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 426 &device_guid) == 0) { 427 vdev_t *pvd = vd->vdev_parent; 428 429 if ((isspare || !isreplacing) && 430 spa_has_spare(spa, device_guid)) { 431 nvlist_free(label); 432 return (EBUSY); 433 } 434 435 for (; pvd != NULL; pvd = pvd->vdev_parent) { 436 pvd->vdev_guid_sum -= vd->vdev_guid; 437 pvd->vdev_guid_sum += device_guid; 438 } 439 440 vd->vdev_guid = vd->vdev_guid_sum = device_guid; 441 442 if (!isspare) { 443 vd->vdev_isspare = B_TRUE; 444 spa_spare_add(vd->vdev_guid); 445 } 446 } 447 448 nvlist_free(label); 449 } 450 451 /* 452 * The device isn't in use, so initialize its label. 453 */ 454 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 455 bzero(vp, sizeof (vdev_phys_t)); 456 457 /* 458 * Generate a label describing the pool and our top-level vdev. 459 * We mark it as being from txg 0 to indicate that it's not 460 * really part of an active pool just yet. The labels will 461 * be written again with a meaningful txg by spa_sync(). 462 * 463 * For hot spares, we generate a special label that identifies as a 464 * mutually shared hot spare. If this is being added as a hot spare, 465 * always write out the spare label. If this was a hot spare, then 466 * always label it as such. If we are adding the vdev, it will remain 467 * labelled in this state until it's really added to the config. If we 468 * are removing the vdev or destroying the pool, then it goes back to 469 * its original hot spare state. 470 */ 471 if (isspare || vd->vdev_isspare) { 472 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 473 474 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 475 spa_version(spa)) == 0); 476 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 477 POOL_STATE_SPARE) == 0); 478 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 479 vd->vdev_guid) == 0); 480 } else { 481 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 482 483 /* 484 * Add our creation time. This allows us to detect multiple 485 * vdev uses as described above, and automatically expires if we 486 * fail. 487 */ 488 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 489 crtxg) == 0); 490 } 491 492 buf = vp->vp_nvlist; 493 buflen = sizeof (vp->vp_nvlist); 494 495 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) { 496 nvlist_free(label); 497 zio_buf_free(vp, sizeof (vdev_phys_t)); 498 return (EINVAL); 499 } 500 501 /* 502 * Initialize boot block header. 503 */ 504 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 505 bzero(vb, sizeof (vdev_boot_header_t)); 506 vb->vb_magic = VDEV_BOOT_MAGIC; 507 vb->vb_version = VDEV_BOOT_VERSION; 508 vb->vb_offset = VDEV_BOOT_OFFSET; 509 vb->vb_size = VDEV_BOOT_SIZE; 510 511 /* 512 * Initialize uberblock template. 513 */ 514 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 515 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 516 *ub = spa->spa_uberblock; 517 ub->ub_txg = 0; 518 519 /* 520 * Write everything in parallel. 521 */ 522 zio = zio_root(spa, NULL, NULL, 523 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 524 525 for (l = 0; l < VDEV_LABELS; l++) { 526 527 vdev_label_write(zio, vd, l, vp, 528 offsetof(vdev_label_t, vl_vdev_phys), 529 sizeof (vdev_phys_t), NULL, NULL); 530 531 vdev_label_write(zio, vd, l, vb, 532 offsetof(vdev_label_t, vl_boot_header), 533 sizeof (vdev_boot_header_t), NULL, NULL); 534 535 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 536 vdev_label_write(zio, vd, l, ub, 537 VDEV_UBERBLOCK_OFFSET(vd, n), 538 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL); 539 } 540 } 541 542 error = zio_wait(zio); 543 544 nvlist_free(label); 545 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 546 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 547 zio_buf_free(vp, sizeof (vdev_phys_t)); 548 549 return (error); 550 } 551 552 int 553 vdev_label_init(vdev_t *vd, uint64_t crtxg, boolean_t isreplacing) 554 { 555 return (vdev_label_common(vd, crtxg, B_FALSE, isreplacing)); 556 } 557 558 /* 559 * Label a disk as a hot spare. A hot spare label is a special label with only 560 * the following members: version, pool_state, and guid. 561 */ 562 int 563 vdev_label_spare(vdev_t *vd, uint64_t crtxg) 564 { 565 return (vdev_label_common(vd, crtxg, B_TRUE, B_FALSE)); 566 } 567 568 /* 569 * ========================================================================== 570 * uberblock load/sync 571 * ========================================================================== 572 */ 573 574 /* 575 * Consider the following situation: txg is safely synced to disk. We've 576 * written the first uberblock for txg + 1, and then we lose power. When we 577 * come back up, we fail to see the uberblock for txg + 1 because, say, 578 * it was on a mirrored device and the replica to which we wrote txg + 1 579 * is now offline. If we then make some changes and sync txg + 1, and then 580 * the missing replica comes back, then for a new seconds we'll have two 581 * conflicting uberblocks on disk with the same txg. The solution is simple: 582 * among uberblocks with equal txg, choose the one with the latest timestamp. 583 */ 584 static int 585 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 586 { 587 if (ub1->ub_txg < ub2->ub_txg) 588 return (-1); 589 if (ub1->ub_txg > ub2->ub_txg) 590 return (1); 591 592 if (ub1->ub_timestamp < ub2->ub_timestamp) 593 return (-1); 594 if (ub1->ub_timestamp > ub2->ub_timestamp) 595 return (1); 596 597 return (0); 598 } 599 600 static void 601 vdev_uberblock_load_done(zio_t *zio) 602 { 603 uberblock_t *ub = zio->io_data; 604 uberblock_t *ubbest = zio->io_private; 605 spa_t *spa = zio->io_spa; 606 607 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 608 609 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 610 mutex_enter(&spa->spa_uberblock_lock); 611 if (vdev_uberblock_compare(ub, ubbest) > 0) 612 *ubbest = *ub; 613 mutex_exit(&spa->spa_uberblock_lock); 614 } 615 616 zio_buf_free(zio->io_data, zio->io_size); 617 } 618 619 void 620 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 621 { 622 int l, c, n; 623 624 for (c = 0; c < vd->vdev_children; c++) 625 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 626 627 if (!vd->vdev_ops->vdev_op_leaf) 628 return; 629 630 if (vdev_is_dead(vd)) 631 return; 632 633 for (l = 0; l < VDEV_LABELS; l++) { 634 for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 635 vdev_label_read(zio, vd, l, 636 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 637 VDEV_UBERBLOCK_OFFSET(vd, n), 638 VDEV_UBERBLOCK_SIZE(vd), 639 vdev_uberblock_load_done, ubbest); 640 } 641 } 642 } 643 644 /* 645 * Write the uberblock to both labels of all leaves of the specified vdev. 646 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 647 */ 648 static void 649 vdev_uberblock_sync_done(zio_t *zio) 650 { 651 uint64_t *good_writes = zio->io_root->io_private; 652 653 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 654 atomic_add_64(good_writes, 1); 655 } 656 657 static void 658 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg) 659 { 660 int l, c, n; 661 662 for (c = 0; c < vd->vdev_children; c++) 663 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg); 664 665 if (!vd->vdev_ops->vdev_op_leaf) 666 return; 667 668 if (vdev_is_dead(vd)) 669 return; 670 671 n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 672 673 ASSERT(ub->ub_txg == txg); 674 675 for (l = 0; l < VDEV_LABELS; l++) 676 vdev_label_write(zio, vd, l, ub, 677 VDEV_UBERBLOCK_OFFSET(vd, n), 678 VDEV_UBERBLOCK_SIZE(vd), 679 vdev_uberblock_sync_done, NULL); 680 681 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 682 } 683 684 static int 685 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg) 686 { 687 uberblock_t *ubbuf; 688 size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE; 689 uint64_t *good_writes; 690 zio_t *zio; 691 int error; 692 693 ubbuf = zio_buf_alloc(size); 694 bzero(ubbuf, size); 695 *ubbuf = *ub; 696 697 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 698 699 zio = zio_root(spa, NULL, good_writes, 700 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 701 702 vdev_uberblock_sync(zio, ubbuf, vd, txg); 703 704 error = zio_wait(zio); 705 706 if (error && *good_writes != 0) { 707 dprintf("partial success: good_writes = %llu\n", *good_writes); 708 error = 0; 709 } 710 711 /* 712 * It's possible to have no good writes and no error if every vdev is in 713 * the CANT_OPEN state. 714 */ 715 if (*good_writes == 0 && error == 0) 716 error = EIO; 717 718 kmem_free(good_writes, sizeof (uint64_t)); 719 zio_buf_free(ubbuf, size); 720 721 return (error); 722 } 723 724 /* 725 * Sync out an individual vdev. 726 */ 727 static void 728 vdev_sync_label_done(zio_t *zio) 729 { 730 uint64_t *good_writes = zio->io_root->io_private; 731 732 if (zio->io_error == 0) 733 atomic_add_64(good_writes, 1); 734 } 735 736 static void 737 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 738 { 739 nvlist_t *label; 740 vdev_phys_t *vp; 741 char *buf; 742 size_t buflen; 743 int c; 744 745 for (c = 0; c < vd->vdev_children; c++) 746 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 747 748 if (!vd->vdev_ops->vdev_op_leaf) 749 return; 750 751 if (vdev_is_dead(vd)) 752 return; 753 754 /* 755 * Generate a label describing the top-level config to which we belong. 756 */ 757 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 758 759 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 760 bzero(vp, sizeof (vdev_phys_t)); 761 762 buf = vp->vp_nvlist; 763 buflen = sizeof (vp->vp_nvlist); 764 765 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) 766 vdev_label_write(zio, vd, l, vp, 767 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 768 vdev_sync_label_done, NULL); 769 770 zio_buf_free(vp, sizeof (vdev_phys_t)); 771 nvlist_free(label); 772 773 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 774 } 775 776 static int 777 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 778 { 779 uint64_t *good_writes; 780 zio_t *zio; 781 int error; 782 783 ASSERT(vd == vd->vdev_top); 784 785 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 786 787 zio = zio_root(vd->vdev_spa, NULL, good_writes, 788 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 789 790 /* 791 * Recursively kick off writes to all labels. 792 */ 793 vdev_sync_label(zio, vd, l, txg); 794 795 error = zio_wait(zio); 796 797 if (error && *good_writes != 0) { 798 dprintf("partial success: good_writes = %llu\n", *good_writes); 799 error = 0; 800 } 801 802 if (*good_writes == 0 && error == 0) 803 error = ENODEV; 804 805 kmem_free(good_writes, sizeof (uint64_t)); 806 807 return (error); 808 } 809 810 /* 811 * Sync the entire vdev configuration. 812 * 813 * The order of operations is carefully crafted to ensure that 814 * if the system panics or loses power at any time, the state on disk 815 * is still transactionally consistent. The in-line comments below 816 * describe the failure semantics at each stage. 817 * 818 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 819 * at any time, you can just call it again, and it will resume its work. 820 */ 821 int 822 vdev_config_sync(vdev_t *uvd, uint64_t txg) 823 { 824 spa_t *spa = uvd->vdev_spa; 825 uberblock_t *ub = &spa->spa_uberblock; 826 vdev_t *rvd = spa->spa_root_vdev; 827 vdev_t *vd; 828 zio_t *zio; 829 int l, error; 830 831 ASSERT(ub->ub_txg <= txg); 832 833 /* 834 * If this isn't a resync due to I/O errors, and nothing changed 835 * in this transaction group, and the vdev configuration hasn't changed, 836 * then there's nothing to do. 837 */ 838 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 839 list_is_empty(&spa->spa_dirty_list)) { 840 dprintf("nothing to sync in %s in txg %llu\n", 841 spa_name(spa), txg); 842 return (0); 843 } 844 845 if (txg > spa_freeze_txg(spa)) 846 return (0); 847 848 ASSERT(txg <= spa->spa_final_txg); 849 850 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 851 852 /* 853 * Flush the write cache of every disk that's been written to 854 * in this transaction group. This ensures that all blocks 855 * written in this txg will be committed to stable storage 856 * before any uberblock that references them. 857 */ 858 zio = zio_root(spa, NULL, NULL, 859 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 860 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 861 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 862 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 863 NULL, NULL, ZIO_PRIORITY_NOW, 864 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 865 } 866 (void) zio_wait(zio); 867 868 /* 869 * Sync out the even labels (L0, L2) for every dirty vdev. If the 870 * system dies in the middle of this process, that's OK: all of the 871 * even labels that made it to disk will be newer than any uberblock, 872 * and will therefore be considered invalid. The odd labels (L1, L3), 873 * which have not yet been touched, will still be valid. 874 */ 875 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 876 vd = list_next(&spa->spa_dirty_list, vd)) { 877 for (l = 0; l < VDEV_LABELS; l++) { 878 if (l & 1) 879 continue; 880 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 881 return (error); 882 } 883 } 884 885 /* 886 * Flush the new labels to disk. This ensures that all even-label 887 * updates are committed to stable storage before the uberblock update. 888 */ 889 zio = zio_root(spa, NULL, NULL, 890 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 891 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 892 vd = list_next(&spa->spa_dirty_list, vd)) { 893 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 894 NULL, NULL, ZIO_PRIORITY_NOW, 895 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 896 } 897 (void) zio_wait(zio); 898 899 /* 900 * Sync the uberblocks to all vdevs in the tree specified by uvd. 901 * If the system dies in the middle of this step, there are two cases 902 * to consider, and the on-disk state is consistent either way: 903 * 904 * (1) If none of the new uberblocks made it to disk, then the 905 * previous uberblock will be the newest, and the odd labels 906 * (which had not yet been touched) will be valid with respect 907 * to that uberblock. 908 * 909 * (2) If one or more new uberblocks made it to disk, then they 910 * will be the newest, and the even labels (which had all 911 * been successfully committed) will be valid with respect 912 * to the new uberblocks. 913 */ 914 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 915 return (error); 916 917 /* 918 * Flush the uberblocks to disk. This ensures that the odd labels 919 * are no longer needed (because the new uberblocks and the even 920 * labels are safely on disk), so it is safe to overwrite them. 921 */ 922 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 923 NULL, NULL, ZIO_PRIORITY_NOW, 924 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 925 926 /* 927 * Sync out odd labels for every dirty vdev. If the system dies 928 * in the middle of this process, the even labels and the new 929 * uberblocks will suffice to open the pool. The next time 930 * the pool is opened, the first thing we'll do -- before any 931 * user data is modified -- is mark every vdev dirty so that 932 * all labels will be brought up to date. 933 */ 934 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 935 vd = list_next(&spa->spa_dirty_list, vd)) { 936 for (l = 0; l < VDEV_LABELS; l++) { 937 if ((l & 1) == 0) 938 continue; 939 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 940 return (error); 941 } 942 } 943 944 /* 945 * Flush the new labels to disk. This ensures that all odd-label 946 * updates are committed to stable storage before the next 947 * transaction group begins. 948 */ 949 zio = zio_root(spa, NULL, NULL, 950 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 951 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 952 vd = list_next(&spa->spa_dirty_list, vd)) { 953 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 954 NULL, NULL, ZIO_PRIORITY_NOW, 955 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 956 } 957 (void) zio_wait(zio); 958 959 return (0); 960 } 961