1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * Virtual Device Labels 31 * --------------------- 32 * 33 * The vdev label serves several distinct purposes: 34 * 35 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 36 * identity within the pool. 37 * 38 * 2. Verify that all the devices given in a configuration are present 39 * within the pool. 40 * 41 * 3. Determine the uberblock for the pool. 42 * 43 * 4. In case of an import operation, determine the configuration of the 44 * toplevel vdev of which it is a part. 45 * 46 * 5. If an import operation cannot find all the devices in the pool, 47 * provide enough information to the administrator to determine which 48 * devices are missing. 49 * 50 * It is important to note that while the kernel is responsible for writing the 51 * label, it only consumes the information in the first three cases. The 52 * latter information is only consumed in userland when determining the 53 * configuration to import a pool. 54 * 55 * 56 * Label Organization 57 * ------------------ 58 * 59 * Before describing the contents of the label, it's important to understand how 60 * the labels are written and updated with respect to the uberblock. 61 * 62 * When the pool configuration is altered, either because it was newly created 63 * or a device was added, we want to update all the labels such that we can deal 64 * with fatal failure at any point. To this end, each disk has two labels which 65 * are updated before and after the uberblock is synced. Assuming we have 66 * labels and an uberblock with the following transacation groups: 67 * 68 * L1 UB L2 69 * +------+ +------+ +------+ 70 * | | | | | | 71 * | t10 | | t10 | | t10 | 72 * | | | | | | 73 * +------+ +------+ +------+ 74 * 75 * In this stable state, the labels and the uberblock were all updated within 76 * the same transaction group (10). Each label is mirrored and checksummed, so 77 * that we can detect when we fail partway through writing the label. 78 * 79 * In order to identify which labels are valid, the labels are written in the 80 * following manner: 81 * 82 * 1. For each vdev, update 'L1' to the new label 83 * 2. Update the uberblock 84 * 3. For each vdev, update 'L2' to the new label 85 * 86 * Given arbitrary failure, we can determine the correct label to use based on 87 * the transaction group. If we fail after updating L1 but before updating the 88 * UB, we will notice that L1's transaction group is greater than the uberblock, 89 * so L2 must be valid. If we fail after writing the uberblock but before 90 * writing L2, we will notice that L2's transaction group is less than L1, and 91 * therefore L1 is valid. 92 * 93 * Another added complexity is that not every label is updated when the config 94 * is synced. If we add a single device, we do not want to have to re-write 95 * every label for every device in the pool. This means that both L1 and L2 may 96 * be older than the pool uberblock, because the necessary information is stored 97 * on another vdev. 98 * 99 * 100 * On-disk Format 101 * -------------- 102 * 103 * The vdev label consists of two distinct parts, and is wrapped within the 104 * vdev_label_t structure. The label includes 8k of padding to permit legacy 105 * VTOC disk labels, but is otherwise ignored. 106 * 107 * The first half of the label is a packed nvlist which contains pool wide 108 * properties, per-vdev properties, and configuration information. It is 109 * described in more detail below. 110 * 111 * The latter half of the label consists of a redundant array of uberblocks. 112 * These uberblocks are updated whenever a transaction group is committed, 113 * or when the configuration is updated. When a pool is loaded, we scan each 114 * vdev for the 'best' uberblock. 115 * 116 * 117 * Configuration Information 118 * ------------------------- 119 * 120 * The nvlist describing the pool and vdev contains the following elements: 121 * 122 * version ZFS on-disk version 123 * name Pool name 124 * state Pool state 125 * txg Transaction group in which this label was written 126 * pool_guid Unique identifier for this pool 127 * vdev_tree An nvlist describing vdev tree. 128 * 129 * Each leaf device label also contains the following: 130 * 131 * top_guid Unique ID for top-level vdev in which this is contained 132 * guid Unique ID for the leaf vdev 133 * 134 * The 'vs' configuration follows the format described in 'spa_config.c'. 135 */ 136 137 #include <sys/zfs_context.h> 138 #include <sys/spa.h> 139 #include <sys/spa_impl.h> 140 #include <sys/dmu.h> 141 #include <sys/zap.h> 142 #include <sys/vdev.h> 143 #include <sys/vdev_impl.h> 144 #include <sys/uberblock_impl.h> 145 #include <sys/metaslab.h> 146 #include <sys/zio.h> 147 #include <sys/fs/zfs.h> 148 149 /* 150 * Basic routines to read and write from a vdev label. 151 * Used throughout the rest of this file. 152 */ 153 uint64_t 154 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 155 { 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 static void 161 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 162 uint64_t size, zio_done_func_t *done, void *private) 163 { 164 ASSERT(vd->vdev_children == 0); 165 166 zio_nowait(zio_read_phys(zio, vd, 167 vdev_label_offset(vd->vdev_psize, l, offset), 168 size, buf, ZIO_CHECKSUM_LABEL, done, private, 169 ZIO_PRIORITY_SYNC_READ, ZIO_FLAG_SPECULATIVE | 170 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 171 } 172 173 static void 174 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 175 uint64_t size, zio_done_func_t *done, void *private) 176 { 177 ASSERT(vd->vdev_children == 0); 178 179 zio_nowait(zio_write_phys(zio, vd, 180 vdev_label_offset(vd->vdev_psize, l, offset), 181 size, buf, ZIO_CHECKSUM_LABEL, done, private, 182 ZIO_PRIORITY_SYNC_WRITE, 183 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_DONT_RETRY)); 184 } 185 186 /* 187 * Generate the nvlist representing this vdev's config. 188 */ 189 nvlist_t * 190 vdev_config_generate(vdev_t *vd, int getstats) 191 { 192 nvlist_t *nv = NULL; 193 194 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, 0) == 0); 195 196 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 197 vd->vdev_ops->vdev_op_type) == 0); 198 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0); 199 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 200 201 if (vd->vdev_path != NULL) 202 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 203 vd->vdev_path) == 0); 204 205 if (vd->vdev_devid != NULL) 206 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 207 vd->vdev_devid) == 0); 208 209 if (vd->vdev_wholedisk != -1ULL) 210 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 211 vd->vdev_wholedisk) == 0); 212 213 if (vd == vd->vdev_top) { 214 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 215 vd->vdev_ms_array) == 0); 216 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 217 vd->vdev_ms_shift) == 0); 218 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 219 vd->vdev_ashift) == 0); 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 221 vd->vdev_asize) == 0); 222 } 223 224 if (vd->vdev_dtl.smo_object != 0) 225 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 226 vd->vdev_dtl.smo_object) == 0); 227 228 if (getstats) { 229 vdev_stat_t vs; 230 vdev_get_stats(vd, &vs); 231 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 232 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 233 } 234 235 if (!vd->vdev_ops->vdev_op_leaf) { 236 nvlist_t **child; 237 int c; 238 239 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 240 KM_SLEEP); 241 242 for (c = 0; c < vd->vdev_children; c++) 243 child[c] = vdev_config_generate(vd->vdev_child[c], 244 getstats); 245 246 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 247 child, vd->vdev_children) == 0); 248 249 for (c = 0; c < vd->vdev_children; c++) 250 nvlist_free(child[c]); 251 252 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 253 } 254 255 return (nv); 256 } 257 258 nvlist_t * 259 vdev_label_read_config(vdev_t *vd) 260 { 261 nvlist_t *config = NULL; 262 vdev_phys_t *vp; 263 uint64_t version; 264 zio_t *zio; 265 int l; 266 267 if (vdev_is_dead(vd)) 268 return (NULL); 269 270 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 271 272 for (l = 0; l < VDEV_LABELS; l++) { 273 274 zio = zio_root(vd->vdev_spa, NULL, NULL, 275 ZIO_FLAG_CANFAIL | ZIO_FLAG_CONFIG_HELD); 276 277 vdev_label_read(zio, vd, l, vp, 278 offsetof(vdev_label_t, vl_vdev_phys), 279 sizeof (vdev_phys_t), NULL, NULL); 280 281 if (zio_wait(zio) == 0 && 282 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 283 &config, 0) == 0 && 284 nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 285 &version) == 0 && 286 version == UBERBLOCK_VERSION) 287 break; 288 289 if (config != NULL) { 290 nvlist_free(config); 291 config = NULL; 292 } 293 } 294 295 zio_buf_free(vp, sizeof (vdev_phys_t)); 296 297 return (config); 298 } 299 300 int 301 vdev_label_init(vdev_t *vd, uint64_t crtxg) 302 { 303 spa_t *spa = vd->vdev_spa; 304 nvlist_t *label; 305 vdev_phys_t *vp; 306 vdev_boot_header_t *vb; 307 uberblock_phys_t *ubphys; 308 zio_t *zio; 309 int l, c, n; 310 char *buf; 311 size_t buflen; 312 int error; 313 314 for (c = 0; c < vd->vdev_children; c++) 315 if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0) 316 return (error); 317 318 if (!vd->vdev_ops->vdev_op_leaf) 319 return (0); 320 321 /* 322 * Make sure each leaf device is writable, and zero its initial content. 323 * Along the way, also make sure that no leaf is already in use. 324 * Note that it's important to do this sequentially, not in parallel, 325 * so that we catch cases of multiple use of the same leaf vdev in 326 * the vdev we're creating -- e.g. mirroring a disk with itself. 327 */ 328 if (vdev_is_dead(vd)) 329 return (EIO); 330 331 /* 332 * Check whether this device is already in use. 333 * Ignore the check if crtxg == 0, which we use for device removal. 334 */ 335 if (crtxg != 0 && (label = vdev_label_read_config(vd)) != NULL) { 336 uint64_t version, state, pool_guid, device_guid, txg; 337 uint64_t mycrtxg = 0; 338 339 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 340 &mycrtxg); 341 342 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, 343 &version) == 0 && version == UBERBLOCK_VERSION && 344 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 345 &state) == 0 && state == POOL_STATE_ACTIVE && 346 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 347 &pool_guid) == 0 && 348 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 349 &device_guid) == 0 && 350 spa_guid_exists(pool_guid, device_guid) && 351 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 352 &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) { 353 dprintf("vdev %s in use, pool_state %d\n", 354 vdev_description(vd), state); 355 nvlist_free(label); 356 return (EBUSY); 357 } 358 nvlist_free(label); 359 } 360 361 /* 362 * The device isn't in use, so initialize its label. 363 */ 364 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 365 bzero(vp, sizeof (vdev_phys_t)); 366 367 /* 368 * Generate a label describing the pool and our top-level vdev. 369 * We mark it as being from txg 0 to indicate that it's not 370 * really part of an active pool just yet. The labels will 371 * be written again with a meaningful txg by spa_sync(). 372 */ 373 label = spa_config_generate(spa, vd, 0ULL, 0); 374 375 /* 376 * Add our creation time. This allows us to detect multiple vdev 377 * uses as described above, and automatically expires if we fail. 378 */ 379 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0); 380 381 buf = vp->vp_nvlist; 382 buflen = sizeof (vp->vp_nvlist); 383 384 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) != 0) { 385 nvlist_free(label); 386 zio_buf_free(vp, sizeof (vdev_phys_t)); 387 return (EINVAL); 388 } 389 390 /* 391 * Initialize boot block header. 392 */ 393 vb = zio_buf_alloc(sizeof (vdev_boot_header_t)); 394 bzero(vb, sizeof (vdev_boot_header_t)); 395 vb->vb_magic = VDEV_BOOT_MAGIC; 396 vb->vb_version = VDEV_BOOT_VERSION; 397 vb->vb_offset = VDEV_BOOT_OFFSET; 398 vb->vb_size = VDEV_BOOT_SIZE; 399 400 /* 401 * Initialize uberblock template. 402 */ 403 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 404 bzero(ubphys, sizeof (uberblock_phys_t)); 405 ubphys->ubp_uberblock = spa->spa_uberblock; 406 ubphys->ubp_uberblock.ub_txg = 0; 407 408 /* 409 * Write everything in parallel. 410 */ 411 zio = zio_root(spa, NULL, NULL, 412 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 413 414 for (l = 0; l < VDEV_LABELS; l++) { 415 416 vdev_label_write(zio, vd, l, vp, 417 offsetof(vdev_label_t, vl_vdev_phys), 418 sizeof (vdev_phys_t), NULL, NULL); 419 420 vdev_label_write(zio, vd, l, vb, 421 offsetof(vdev_label_t, vl_boot_header), 422 sizeof (vdev_boot_header_t), NULL, NULL); 423 424 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 425 426 vdev_label_write(zio, vd, l, ubphys, 427 offsetof(vdev_label_t, vl_uberblock[n]), 428 sizeof (uberblock_phys_t), NULL, NULL); 429 430 } 431 } 432 433 error = zio_wait(zio); 434 435 nvlist_free(label); 436 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 437 zio_buf_free(vb, sizeof (vdev_boot_header_t)); 438 zio_buf_free(vp, sizeof (vdev_phys_t)); 439 440 return (error); 441 } 442 443 /* 444 * ========================================================================== 445 * uberblock load/sync 446 * ========================================================================== 447 */ 448 449 /* 450 * Consider the following situation: txg is safely synced to disk. We've 451 * written the first uberblock for txg + 1, and then we lose power. When we 452 * come back up, we fail to see the uberblock for txg + 1 because, say, 453 * it was on a mirrored device and the replica to which we wrote txg + 1 454 * is now offline. If we then make some changes and sync txg + 1, and then 455 * the missing replica comes back, then for a new seconds we'll have two 456 * conflicting uberblocks on disk with the same txg. The solution is simple: 457 * among uberblocks with equal txg, choose the one with the latest timestamp. 458 */ 459 static int 460 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 461 { 462 if (ub1->ub_txg < ub2->ub_txg) 463 return (-1); 464 if (ub1->ub_txg > ub2->ub_txg) 465 return (1); 466 467 if (ub1->ub_timestamp < ub2->ub_timestamp) 468 return (-1); 469 if (ub1->ub_timestamp > ub2->ub_timestamp) 470 return (1); 471 472 return (0); 473 } 474 475 static void 476 vdev_uberblock_load_done(zio_t *zio) 477 { 478 uberblock_phys_t *ubphys = zio->io_data; 479 uberblock_t *ub = &ubphys->ubp_uberblock; 480 uberblock_t *ubbest = zio->io_private; 481 spa_t *spa = zio->io_spa; 482 483 ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t)); 484 485 if (uberblock_verify(ub) == 0) { 486 mutex_enter(&spa->spa_uberblock_lock); 487 if (vdev_uberblock_compare(ub, ubbest) > 0) 488 *ubbest = *ub; 489 mutex_exit(&spa->spa_uberblock_lock); 490 } 491 492 zio_buf_free(zio->io_data, zio->io_size); 493 } 494 495 void 496 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 497 { 498 int l, c, n; 499 500 for (c = 0; c < vd->vdev_children; c++) 501 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 502 503 if (!vd->vdev_ops->vdev_op_leaf) 504 return; 505 506 if (vdev_is_dead(vd)) 507 return; 508 509 for (l = 0; l < VDEV_LABELS; l++) { 510 for (n = 0; n < VDEV_UBERBLOCKS; n++) { 511 vdev_label_read(zio, vd, l, 512 zio_buf_alloc(sizeof (uberblock_phys_t)), 513 offsetof(vdev_label_t, vl_uberblock[n]), 514 sizeof (uberblock_phys_t), 515 vdev_uberblock_load_done, ubbest); 516 } 517 } 518 } 519 520 /* 521 * Write the uberblock to both labels of all leaves of the specified vdev. 522 */ 523 static void 524 vdev_uberblock_sync_done(zio_t *zio) 525 { 526 uint64_t *good_writes = zio->io_root->io_private; 527 528 if (zio->io_error == 0) 529 atomic_add_64(good_writes, 1); 530 } 531 532 static void 533 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd, 534 uint64_t txg) 535 { 536 int l, c, n; 537 538 for (c = 0; c < vd->vdev_children; c++) 539 vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg); 540 541 if (!vd->vdev_ops->vdev_op_leaf) 542 return; 543 544 if (vdev_is_dead(vd)) 545 return; 546 547 n = txg & (VDEV_UBERBLOCKS - 1); 548 549 ASSERT(ubphys->ubp_uberblock.ub_txg == txg); 550 551 for (l = 0; l < VDEV_LABELS; l++) 552 vdev_label_write(zio, vd, l, ubphys, 553 offsetof(vdev_label_t, vl_uberblock[n]), 554 sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL); 555 556 dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg); 557 } 558 559 static int 560 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg) 561 { 562 uberblock_phys_t *ubphys; 563 uint64_t *good_writes; 564 zio_t *zio; 565 int error; 566 567 ubphys = zio_buf_alloc(sizeof (uberblock_phys_t)); 568 bzero(ubphys, sizeof (uberblock_phys_t)); 569 ubphys->ubp_uberblock = *ub; 570 571 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 572 573 zio = zio_root(spa, NULL, good_writes, 574 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 575 576 vdev_uberblock_sync(zio, ubphys, uvd, txg); 577 578 error = zio_wait(zio); 579 580 if (error && *good_writes != 0) { 581 dprintf("partial success: good_writes = %llu\n", *good_writes); 582 error = 0; 583 } 584 585 /* 586 * It's possible to have no good writes and no error if every vdev is in 587 * the CANT_OPEN state. 588 */ 589 if (*good_writes == 0 && error == 0) 590 error = EIO; 591 592 kmem_free(good_writes, sizeof (uint64_t)); 593 zio_buf_free(ubphys, sizeof (uberblock_phys_t)); 594 595 return (error); 596 } 597 598 /* 599 * Sync out an individual vdev. 600 */ 601 static void 602 vdev_sync_label_done(zio_t *zio) 603 { 604 uint64_t *good_writes = zio->io_root->io_private; 605 606 if (zio->io_error == 0) 607 atomic_add_64(good_writes, 1); 608 } 609 610 static void 611 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg) 612 { 613 nvlist_t *label; 614 vdev_phys_t *vp; 615 char *buf; 616 size_t buflen; 617 int c; 618 619 for (c = 0; c < vd->vdev_children; c++) 620 vdev_sync_label(zio, vd->vdev_child[c], l, txg); 621 622 if (!vd->vdev_ops->vdev_op_leaf) 623 return; 624 625 if (vdev_is_dead(vd)) 626 return; 627 628 /* 629 * Generate a label describing the top-level config to which we belong. 630 */ 631 label = spa_config_generate(vd->vdev_spa, vd, txg, 0); 632 633 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 634 bzero(vp, sizeof (vdev_phys_t)); 635 636 buf = vp->vp_nvlist; 637 buflen = sizeof (vp->vp_nvlist); 638 639 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, 0) == 0) 640 vdev_label_write(zio, vd, l, vp, 641 offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t), 642 vdev_sync_label_done, NULL); 643 644 zio_buf_free(vp, sizeof (vdev_phys_t)); 645 nvlist_free(label); 646 647 dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg); 648 } 649 650 static int 651 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg) 652 { 653 uint64_t *good_writes; 654 zio_t *zio; 655 int error; 656 657 ASSERT(vd == vd->vdev_top); 658 659 good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP); 660 661 zio = zio_root(vd->vdev_spa, NULL, good_writes, 662 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 663 664 /* 665 * Recursively kick off writes to all labels. 666 */ 667 vdev_sync_label(zio, vd, l, txg); 668 669 error = zio_wait(zio); 670 671 if (error && *good_writes != 0) { 672 dprintf("partial success: good_writes = %llu\n", *good_writes); 673 error = 0; 674 } 675 676 if (*good_writes == 0 && error == 0) 677 error = ENODEV; 678 679 kmem_free(good_writes, sizeof (uint64_t)); 680 681 return (error); 682 } 683 684 /* 685 * Sync the entire vdev configuration. 686 * 687 * The order of operations is carefully crafted to ensure that 688 * if the system panics or loses power at any time, the state on disk 689 * is still transactionally consistent. The in-line comments below 690 * describe the failure semantics at each stage. 691 * 692 * Moreover, it is designed to be idempotent: if spa_sync_labels() fails 693 * at any time, you can just call it again, and it will resume its work. 694 */ 695 int 696 spa_sync_labels(spa_t *spa, uint64_t txg) 697 { 698 uberblock_t *ub = &spa->spa_uberblock; 699 vdev_t *rvd = spa->spa_root_vdev; 700 vdev_t *vd, *uvd; 701 zio_t *zio; 702 int c, l, error; 703 704 ASSERT(ub->ub_txg <= txg); 705 706 /* 707 * If this isn't a resync due to I/O errors, and nothing changed 708 * in this transaction group, and the vdev configuration hasn't changed, 709 * and this isn't an explicit sync-all, then there's nothing to do. 710 */ 711 if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE && 712 list_is_empty(&spa->spa_dirty_list)) { 713 dprintf("nothing to sync in %s in txg %llu\n", 714 spa_name(spa), txg); 715 return (0); 716 } 717 718 if (txg > spa_freeze_txg(spa)) 719 return (0); 720 721 dprintf("syncing %s txg %llu\n", spa_name(spa), txg); 722 723 /* 724 * Flush the write cache of every disk that's been written to 725 * in this transaction group. This ensures that all blocks 726 * written in this txg will be committed to stable storage 727 * before any uberblock that references them. 728 */ 729 zio = zio_root(spa, NULL, NULL, 730 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 731 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 732 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) { 733 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 734 NULL, NULL, ZIO_PRIORITY_NOW, 735 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 736 } 737 (void) zio_wait(zio); 738 739 /* 740 * Sync out the even labels (L0, L2) for every dirty vdev. If the 741 * system dies in the middle of this process, that's OK: all of the 742 * even labels that made it to disk will be newer than any uberblock, 743 * and will therefore be considered invalid. The odd labels (L1, L3), 744 * which have not yet been touched, will still be valid. 745 */ 746 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 747 vd = list_next(&spa->spa_dirty_list, vd)) { 748 for (l = 0; l < VDEV_LABELS; l++) { 749 if (l & 1) 750 continue; 751 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 752 return (error); 753 } 754 } 755 756 /* 757 * Flush the new labels to disk. This ensures that all even-label 758 * updates are committed to stable storage before the uberblock update. 759 */ 760 zio = zio_root(spa, NULL, NULL, 761 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 762 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 763 vd = list_next(&spa->spa_dirty_list, vd)) { 764 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 765 NULL, NULL, ZIO_PRIORITY_NOW, 766 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 767 } 768 (void) zio_wait(zio); 769 770 /* 771 * If there are any dirty vdevs, sync the uberblock to all vdevs. 772 * Otherwise, pick one top-level vdev at random. 773 */ 774 if (!list_is_empty(&spa->spa_dirty_list)) 775 uvd = rvd; 776 else 777 uvd = rvd->vdev_child[spa_get_random(rvd->vdev_children)]; 778 779 /* 780 * Sync the uberblocks. If the system dies in the middle of this 781 * step, there are two cases to consider, and the on-disk state 782 * is consistent either way: 783 * 784 * (1) If none of the new uberblocks made it to disk, then the 785 * previous uberblock will be the newest, and the odd labels 786 * (which had not yet been touched) will be valid with respect 787 * to that uberblock. 788 * 789 * (2) If one or more new uberblocks made it to disk, then they 790 * will be the newest, and the even labels (which had all 791 * been successfully committed) will be valid with respect 792 * to the new uberblocks. 793 */ 794 if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0) 795 return (error); 796 797 /* 798 * Flush the uberblocks to disk. This ensures that the odd labels 799 * are no longer needed (because the new uberblocks and the even 800 * labels are safely on disk), so it is safe to overwrite them. 801 */ 802 (void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE, 803 NULL, NULL, ZIO_PRIORITY_NOW, 804 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 805 806 /* 807 * Sync out odd labels for every dirty vdev. If the system dies 808 * in the middle of this process, the even labels and the new 809 * uberblocks will suffice to open the pool. The next time 810 * the pool is opened, the first thing we'll do -- before any 811 * user data is modified -- is mark every vdev dirty so that 812 * all labels will be brought up to date. 813 */ 814 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 815 vd = list_next(&spa->spa_dirty_list, vd)) { 816 for (l = 0; l < VDEV_LABELS; l++) { 817 if ((l & 1) == 0) 818 continue; 819 if ((error = vdev_sync_labels(vd, l, txg)) != 0) 820 return (error); 821 } 822 } 823 824 /* 825 * Flush the new labels to disk. This ensures that all odd-label 826 * updates are committed to stable storage before the next 827 * transaction group begins. 828 */ 829 zio = zio_root(spa, NULL, NULL, 830 ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL); 831 for (vd = list_head(&spa->spa_dirty_list); vd != NULL; 832 vd = list_next(&spa->spa_dirty_list, vd)) { 833 zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE, 834 NULL, NULL, ZIO_PRIORITY_NOW, 835 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY)); 836 } 837 (void) zio_wait(zio); 838 839 /* 840 * Clear the dirty list. 841 */ 842 while (!list_is_empty(&spa->spa_dirty_list)) 843 vdev_config_clean(list_head(&spa->spa_dirty_list)); 844 845 #ifdef DEBUG 846 for (c = 0; c < rvd->vdev_children; c++) { 847 ASSERT(rvd->vdev_child[c]->vdev_is_dirty == 0); 848 } 849 #endif 850 851 return (0); 852 } 853