xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev_label.c (revision 6a42cb7b9d730ae02bbdb8898dc074179f96e178)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transaction groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	ASSERT(offset < sizeof (vdev_label_t));
156 
157 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
158 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
159 }
160 
161 static void
162 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
163 	uint64_t size, zio_done_func_t *done, void *private)
164 {
165 	ASSERT(vd->vdev_children == 0);
166 
167 	zio_nowait(zio_read_phys(zio, vd,
168 	    vdev_label_offset(vd->vdev_psize, l, offset),
169 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
170 	    ZIO_PRIORITY_SYNC_READ,
171 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
172 }
173 
174 static void
175 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
176 	uint64_t size, zio_done_func_t *done, void *private)
177 {
178 	ASSERT(vd->vdev_children == 0);
179 
180 	zio_nowait(zio_write_phys(zio, vd,
181 	    vdev_label_offset(vd->vdev_psize, l, offset),
182 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
183 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
184 }
185 
186 /*
187  * Generate the nvlist representing this vdev's config.
188  */
189 nvlist_t *
190 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
191     boolean_t isspare)
192 {
193 	nvlist_t *nv = NULL;
194 
195 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
196 
197 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
198 	    vd->vdev_ops->vdev_op_type) == 0);
199 	if (!isspare)
200 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
201 		    == 0);
202 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
203 
204 	if (vd->vdev_path != NULL)
205 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
206 		    vd->vdev_path) == 0);
207 
208 	if (vd->vdev_devid != NULL)
209 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
210 		    vd->vdev_devid) == 0);
211 
212 	if (vd->vdev_physpath != NULL)
213 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
214 		    vd->vdev_physpath) == 0);
215 
216 	if (vd->vdev_nparity != 0) {
217 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
218 		    VDEV_TYPE_RAIDZ) == 0);
219 
220 		/*
221 		 * Make sure someone hasn't managed to sneak a fancy new vdev
222 		 * into a crufty old storage pool.
223 		 */
224 		ASSERT(vd->vdev_nparity == 1 ||
225 		    (vd->vdev_nparity == 2 &&
226 		    spa_version(spa) >= ZFS_VERSION_RAID6));
227 
228 		/*
229 		 * Note that we'll add the nparity tag even on storage pools
230 		 * that only support a single parity device -- older software
231 		 * will just ignore it.
232 		 */
233 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
234 		    vd->vdev_nparity) == 0);
235 	}
236 
237 	if (vd->vdev_wholedisk != -1ULL)
238 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
239 		    vd->vdev_wholedisk) == 0);
240 
241 	if (vd->vdev_not_present)
242 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
243 
244 	if (vd->vdev_isspare)
245 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
246 
247 	if (!isspare && vd == vd->vdev_top) {
248 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
249 		    vd->vdev_ms_array) == 0);
250 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
251 		    vd->vdev_ms_shift) == 0);
252 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
253 		    vd->vdev_ashift) == 0);
254 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
255 		    vd->vdev_asize) == 0);
256 	}
257 
258 	if (vd->vdev_dtl.smo_object != 0)
259 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
260 		    vd->vdev_dtl.smo_object) == 0);
261 
262 	if (getstats) {
263 		vdev_stat_t vs;
264 		vdev_get_stats(vd, &vs);
265 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
266 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
267 	}
268 
269 	if (!vd->vdev_ops->vdev_op_leaf) {
270 		nvlist_t **child;
271 		int c;
272 
273 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
274 		    KM_SLEEP);
275 
276 		for (c = 0; c < vd->vdev_children; c++)
277 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
278 			    getstats, isspare);
279 
280 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
281 		    child, vd->vdev_children) == 0);
282 
283 		for (c = 0; c < vd->vdev_children; c++)
284 			nvlist_free(child[c]);
285 
286 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
287 
288 	} else {
289 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
290 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
291 			    B_TRUE) == 0);
292 		if (vd->vdev_faulted)
293 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
294 			    B_TRUE) == 0);
295 		if (vd->vdev_degraded)
296 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
297 			    B_TRUE) == 0);
298 		if (vd->vdev_removed)
299 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
300 			    B_TRUE) == 0);
301 		if (vd->vdev_unspare)
302 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
303 			    B_TRUE) == 0);
304 	}
305 
306 	return (nv);
307 }
308 
309 nvlist_t *
310 vdev_label_read_config(vdev_t *vd)
311 {
312 	spa_t *spa = vd->vdev_spa;
313 	nvlist_t *config = NULL;
314 	vdev_phys_t *vp;
315 	zio_t *zio;
316 	int l;
317 
318 	ASSERT(spa_config_held(spa, RW_READER));
319 
320 	if (vdev_is_dead(vd))
321 		return (NULL);
322 
323 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
324 
325 	for (l = 0; l < VDEV_LABELS; l++) {
326 
327 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
328 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
329 
330 		vdev_label_read(zio, vd, l, vp,
331 		    offsetof(vdev_label_t, vl_vdev_phys),
332 		    sizeof (vdev_phys_t), NULL, NULL);
333 
334 		if (zio_wait(zio) == 0 &&
335 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
336 		    &config, 0) == 0)
337 			break;
338 
339 		if (config != NULL) {
340 			nvlist_free(config);
341 			config = NULL;
342 		}
343 	}
344 
345 	zio_buf_free(vp, sizeof (vdev_phys_t));
346 
347 	return (config);
348 }
349 
350 /*
351  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
352  * in with the device guid if this spare is active elsewhere on the system.
353  */
354 static boolean_t
355 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
356     uint64_t *spare_guid)
357 {
358 	spa_t *spa = vd->vdev_spa;
359 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
360 	uint64_t vdtxg = 0;
361 	nvlist_t *label;
362 
363 	if (spare_guid)
364 		*spare_guid = 0ULL;
365 
366 	/*
367 	 * Read the label, if any, and perform some basic sanity checks.
368 	 */
369 	if ((label = vdev_label_read_config(vd)) == NULL)
370 		return (B_FALSE);
371 
372 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
373 	    &vdtxg);
374 
375 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
376 	    &state) != 0 ||
377 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
378 	    &device_guid) != 0) {
379 		nvlist_free(label);
380 		return (B_FALSE);
381 	}
382 
383 	if (state != POOL_STATE_SPARE &&
384 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
385 	    &pool_guid) != 0 ||
386 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
387 	    &txg) != 0)) {
388 		nvlist_free(label);
389 		return (B_FALSE);
390 	}
391 
392 	nvlist_free(label);
393 
394 	/*
395 	 * Check to see if this device indeed belongs to the pool it claims to
396 	 * be a part of.  The only way this is allowed is if the device is a hot
397 	 * spare (which we check for later on).
398 	 */
399 	if (state != POOL_STATE_SPARE &&
400 	    !spa_guid_exists(pool_guid, device_guid) &&
401 	    !spa_spare_exists(device_guid, NULL))
402 		return (B_FALSE);
403 
404 	/*
405 	 * If the transaction group is zero, then this an initialized (but
406 	 * unused) label.  This is only an error if the create transaction
407 	 * on-disk is the same as the one we're using now, in which case the
408 	 * user has attempted to add the same vdev multiple times in the same
409 	 * transaction.
410 	 */
411 	if (state != POOL_STATE_SPARE && txg == 0 && vdtxg == crtxg)
412 		return (B_TRUE);
413 
414 	/*
415 	 * Check to see if this is a spare device.  We do an explicit check for
416 	 * spa_has_spare() here because it may be on our pending list of spares
417 	 * to add.
418 	 */
419 	if (spa_spare_exists(device_guid, &spare_pool) ||
420 	    spa_has_spare(spa, device_guid)) {
421 		if (spare_guid)
422 			*spare_guid = device_guid;
423 
424 		switch (reason) {
425 		case VDEV_LABEL_CREATE:
426 			return (B_TRUE);
427 
428 		case VDEV_LABEL_REPLACE:
429 			return (!spa_has_spare(spa, device_guid) ||
430 			    spare_pool != 0ULL);
431 
432 		case VDEV_LABEL_SPARE:
433 			return (spa_has_spare(spa, device_guid));
434 		}
435 	}
436 
437 	/*
438 	 * If the device is marked ACTIVE, then this device is in use by another
439 	 * pool on the system.
440 	 */
441 	return (state == POOL_STATE_ACTIVE);
442 }
443 
444 /*
445  * Initialize a vdev label.  We check to make sure each leaf device is not in
446  * use, and writable.  We put down an initial label which we will later
447  * overwrite with a complete label.  Note that it's important to do this
448  * sequentially, not in parallel, so that we catch cases of multiple use of the
449  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
450  * itself.
451  */
452 int
453 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
454 {
455 	spa_t *spa = vd->vdev_spa;
456 	nvlist_t *label;
457 	vdev_phys_t *vp;
458 	vdev_boot_header_t *vb;
459 	uberblock_t *ub;
460 	zio_t *zio;
461 	int l, c, n;
462 	char *buf;
463 	size_t buflen;
464 	int error;
465 	uint64_t spare_guid;
466 
467 	ASSERT(spa_config_held(spa, RW_WRITER));
468 
469 	for (c = 0; c < vd->vdev_children; c++)
470 		if ((error = vdev_label_init(vd->vdev_child[c],
471 		    crtxg, reason)) != 0)
472 			return (error);
473 
474 	if (!vd->vdev_ops->vdev_op_leaf)
475 		return (0);
476 
477 	/*
478 	 * Dead vdevs cannot be initialized.
479 	 */
480 	if (vdev_is_dead(vd))
481 		return (EIO);
482 
483 	/*
484 	 * Determine if the vdev is in use.
485 	 */
486 	if (reason != VDEV_LABEL_REMOVE &&
487 	    vdev_inuse(vd, crtxg, reason, &spare_guid))
488 		return (EBUSY);
489 
490 	ASSERT(reason != VDEV_LABEL_REMOVE ||
491 	    vdev_inuse(vd, crtxg, reason, NULL));
492 
493 	/*
494 	 * If this is a request to add or replace a spare that is in use
495 	 * elsewhere on the system, then we must update the guid (which was
496 	 * initialized to a random value) to reflect the actual GUID (which is
497 	 * shared between multiple pools).
498 	 */
499 	if (reason != VDEV_LABEL_REMOVE && spare_guid != 0ULL) {
500 		vdev_t *pvd = vd->vdev_parent;
501 
502 		for (; pvd != NULL; pvd = pvd->vdev_parent) {
503 			pvd->vdev_guid_sum -= vd->vdev_guid;
504 			pvd->vdev_guid_sum += spare_guid;
505 		}
506 
507 		vd->vdev_guid = vd->vdev_guid_sum = spare_guid;
508 
509 		/*
510 		 * If this is a replacement, then we want to fallthrough to the
511 		 * rest of the code.  If we're adding a spare, then it's already
512 		 * labeled appropriately and we can just return.
513 		 */
514 		if (reason == VDEV_LABEL_SPARE)
515 			return (0);
516 		ASSERT(reason == VDEV_LABEL_REPLACE);
517 	}
518 
519 	/*
520 	 * Initialize its label.
521 	 */
522 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
523 	bzero(vp, sizeof (vdev_phys_t));
524 
525 	/*
526 	 * Generate a label describing the pool and our top-level vdev.
527 	 * We mark it as being from txg 0 to indicate that it's not
528 	 * really part of an active pool just yet.  The labels will
529 	 * be written again with a meaningful txg by spa_sync().
530 	 */
531 	if (reason == VDEV_LABEL_SPARE ||
532 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
533 		/*
534 		 * For inactive hot spares, we generate a special label that
535 		 * identifies as a mutually shared hot spare.  We write the
536 		 * label if we are adding a hot spare, or if we are removing an
537 		 * active hot spare (in which case we want to revert the
538 		 * labels).
539 		 */
540 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
541 
542 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
543 		    spa_version(spa)) == 0);
544 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
545 		    POOL_STATE_SPARE) == 0);
546 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
547 		    vd->vdev_guid) == 0);
548 	} else {
549 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
550 
551 		/*
552 		 * Add our creation time.  This allows us to detect multiple
553 		 * vdev uses as described above, and automatically expires if we
554 		 * fail.
555 		 */
556 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
557 		    crtxg) == 0);
558 	}
559 
560 	buf = vp->vp_nvlist;
561 	buflen = sizeof (vp->vp_nvlist);
562 
563 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
564 	if (error != 0) {
565 		nvlist_free(label);
566 		zio_buf_free(vp, sizeof (vdev_phys_t));
567 		/* EFAULT means nvlist_pack ran out of room */
568 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
569 	}
570 
571 	/*
572 	 * Initialize boot block header.
573 	 */
574 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
575 	bzero(vb, sizeof (vdev_boot_header_t));
576 	vb->vb_magic = VDEV_BOOT_MAGIC;
577 	vb->vb_version = VDEV_BOOT_VERSION;
578 	vb->vb_offset = VDEV_BOOT_OFFSET;
579 	vb->vb_size = VDEV_BOOT_SIZE;
580 
581 	/*
582 	 * Initialize uberblock template.
583 	 */
584 	ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
585 	bzero(ub, VDEV_UBERBLOCK_SIZE(vd));
586 	*ub = spa->spa_uberblock;
587 	ub->ub_txg = 0;
588 
589 	/*
590 	 * Write everything in parallel.
591 	 */
592 	zio = zio_root(spa, NULL, NULL,
593 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
594 
595 	for (l = 0; l < VDEV_LABELS; l++) {
596 
597 		vdev_label_write(zio, vd, l, vp,
598 		    offsetof(vdev_label_t, vl_vdev_phys),
599 		    sizeof (vdev_phys_t), NULL, NULL);
600 
601 		vdev_label_write(zio, vd, l, vb,
602 		    offsetof(vdev_label_t, vl_boot_header),
603 		    sizeof (vdev_boot_header_t), NULL, NULL);
604 
605 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
606 			vdev_label_write(zio, vd, l, ub,
607 			    VDEV_UBERBLOCK_OFFSET(vd, n),
608 			    VDEV_UBERBLOCK_SIZE(vd), NULL, NULL);
609 		}
610 	}
611 
612 	error = zio_wait(zio);
613 
614 	nvlist_free(label);
615 	zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd));
616 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
617 	zio_buf_free(vp, sizeof (vdev_phys_t));
618 
619 	/*
620 	 * If this vdev hasn't been previously identified as a spare, then we
621 	 * mark it as such only if a) we are labeling it as a spare, or b) it
622 	 * exists as a spare elsewhere in the system.
623 	 */
624 	if (error == 0 && !vd->vdev_isspare &&
625 	    (reason == VDEV_LABEL_SPARE ||
626 	    spa_spare_exists(vd->vdev_guid, NULL)))
627 		spa_spare_add(vd);
628 
629 	return (error);
630 }
631 
632 /*
633  * ==========================================================================
634  * uberblock load/sync
635  * ==========================================================================
636  */
637 
638 /*
639  * Consider the following situation: txg is safely synced to disk.  We've
640  * written the first uberblock for txg + 1, and then we lose power.  When we
641  * come back up, we fail to see the uberblock for txg + 1 because, say,
642  * it was on a mirrored device and the replica to which we wrote txg + 1
643  * is now offline.  If we then make some changes and sync txg + 1, and then
644  * the missing replica comes back, then for a new seconds we'll have two
645  * conflicting uberblocks on disk with the same txg.  The solution is simple:
646  * among uberblocks with equal txg, choose the one with the latest timestamp.
647  */
648 static int
649 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
650 {
651 	if (ub1->ub_txg < ub2->ub_txg)
652 		return (-1);
653 	if (ub1->ub_txg > ub2->ub_txg)
654 		return (1);
655 
656 	if (ub1->ub_timestamp < ub2->ub_timestamp)
657 		return (-1);
658 	if (ub1->ub_timestamp > ub2->ub_timestamp)
659 		return (1);
660 
661 	return (0);
662 }
663 
664 static void
665 vdev_uberblock_load_done(zio_t *zio)
666 {
667 	uberblock_t *ub = zio->io_data;
668 	uberblock_t *ubbest = zio->io_private;
669 	spa_t *spa = zio->io_spa;
670 
671 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
672 
673 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
674 		mutex_enter(&spa->spa_uberblock_lock);
675 		if (vdev_uberblock_compare(ub, ubbest) > 0)
676 			*ubbest = *ub;
677 		mutex_exit(&spa->spa_uberblock_lock);
678 	}
679 
680 	zio_buf_free(zio->io_data, zio->io_size);
681 }
682 
683 void
684 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
685 {
686 	int l, c, n;
687 
688 	for (c = 0; c < vd->vdev_children; c++)
689 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
690 
691 	if (!vd->vdev_ops->vdev_op_leaf)
692 		return;
693 
694 	if (vdev_is_dead(vd))
695 		return;
696 
697 	for (l = 0; l < VDEV_LABELS; l++) {
698 		for (n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
699 			vdev_label_read(zio, vd, l,
700 			    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
701 			    VDEV_UBERBLOCK_OFFSET(vd, n),
702 			    VDEV_UBERBLOCK_SIZE(vd),
703 			    vdev_uberblock_load_done, ubbest);
704 		}
705 	}
706 }
707 
708 /*
709  * Write the uberblock to both labels of all leaves of the specified vdev.
710  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
711  */
712 static void
713 vdev_uberblock_sync_done(zio_t *zio)
714 {
715 	uint64_t *good_writes = zio->io_root->io_private;
716 
717 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
718 		atomic_add_64(good_writes, 1);
719 }
720 
721 static void
722 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, uint64_t txg)
723 {
724 	int l, c, n;
725 
726 	for (c = 0; c < vd->vdev_children; c++)
727 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], txg);
728 
729 	if (!vd->vdev_ops->vdev_op_leaf)
730 		return;
731 
732 	if (vdev_is_dead(vd))
733 		return;
734 
735 	n = txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
736 
737 	ASSERT(ub->ub_txg == txg);
738 
739 	for (l = 0; l < VDEV_LABELS; l++)
740 		vdev_label_write(zio, vd, l, ub,
741 		    VDEV_UBERBLOCK_OFFSET(vd, n),
742 		    VDEV_UBERBLOCK_SIZE(vd),
743 		    vdev_uberblock_sync_done, NULL);
744 
745 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
746 }
747 
748 static int
749 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *vd, uint64_t txg)
750 {
751 	uberblock_t *ubbuf;
752 	size_t size = vd->vdev_top ? VDEV_UBERBLOCK_SIZE(vd) : SPA_MAXBLOCKSIZE;
753 	uint64_t *good_writes;
754 	zio_t *zio;
755 	int error;
756 
757 	ubbuf = zio_buf_alloc(size);
758 	bzero(ubbuf, size);
759 	*ubbuf = *ub;
760 
761 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
762 
763 	zio = zio_root(spa, NULL, good_writes,
764 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
765 
766 	vdev_uberblock_sync(zio, ubbuf, vd, txg);
767 
768 	error = zio_wait(zio);
769 
770 	if (error && *good_writes != 0) {
771 		dprintf("partial success: good_writes = %llu\n", *good_writes);
772 		error = 0;
773 	}
774 
775 	/*
776 	 * It's possible to have no good writes and no error if every vdev is in
777 	 * the CANT_OPEN state.
778 	 */
779 	if (*good_writes == 0 && error == 0)
780 		error = EIO;
781 
782 	kmem_free(good_writes, sizeof (uint64_t));
783 	zio_buf_free(ubbuf, size);
784 
785 	return (error);
786 }
787 
788 /*
789  * Sync out an individual vdev.
790  */
791 static void
792 vdev_sync_label_done(zio_t *zio)
793 {
794 	uint64_t *good_writes = zio->io_root->io_private;
795 
796 	if (zio->io_error == 0)
797 		atomic_add_64(good_writes, 1);
798 }
799 
800 static void
801 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
802 {
803 	nvlist_t *label;
804 	vdev_phys_t *vp;
805 	char *buf;
806 	size_t buflen;
807 	int c;
808 
809 	for (c = 0; c < vd->vdev_children; c++)
810 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
811 
812 	if (!vd->vdev_ops->vdev_op_leaf)
813 		return;
814 
815 	if (vdev_is_dead(vd))
816 		return;
817 
818 	/*
819 	 * Generate a label describing the top-level config to which we belong.
820 	 */
821 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
822 
823 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
824 	bzero(vp, sizeof (vdev_phys_t));
825 
826 	buf = vp->vp_nvlist;
827 	buflen = sizeof (vp->vp_nvlist);
828 
829 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
830 		vdev_label_write(zio, vd, l, vp,
831 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
832 		    vdev_sync_label_done, NULL);
833 
834 	zio_buf_free(vp, sizeof (vdev_phys_t));
835 	nvlist_free(label);
836 
837 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
838 }
839 
840 static int
841 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
842 {
843 	uint64_t *good_writes;
844 	zio_t *zio;
845 	int error;
846 
847 	ASSERT(vd == vd->vdev_top);
848 
849 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
850 
851 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
852 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
853 
854 	/*
855 	 * Recursively kick off writes to all labels.
856 	 */
857 	vdev_sync_label(zio, vd, l, txg);
858 
859 	error = zio_wait(zio);
860 
861 	if (error && *good_writes != 0) {
862 		dprintf("partial success: good_writes = %llu\n", *good_writes);
863 		error = 0;
864 	}
865 
866 	if (*good_writes == 0 && error == 0)
867 		error = ENODEV;
868 
869 	kmem_free(good_writes, sizeof (uint64_t));
870 
871 	return (error);
872 }
873 
874 /*
875  * Sync the entire vdev configuration.
876  *
877  * The order of operations is carefully crafted to ensure that
878  * if the system panics or loses power at any time, the state on disk
879  * is still transactionally consistent.  The in-line comments below
880  * describe the failure semantics at each stage.
881  *
882  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
883  * at any time, you can just call it again, and it will resume its work.
884  */
885 int
886 vdev_config_sync(vdev_t *uvd, uint64_t txg)
887 {
888 	spa_t *spa = uvd->vdev_spa;
889 	uberblock_t *ub = &spa->spa_uberblock;
890 	vdev_t *rvd = spa->spa_root_vdev;
891 	vdev_t *vd;
892 	zio_t *zio;
893 	int l, error;
894 
895 	ASSERT(ub->ub_txg <= txg);
896 
897 	/*
898 	 * If this isn't a resync due to I/O errors, and nothing changed
899 	 * in this transaction group, and the vdev configuration hasn't changed,
900 	 * then there's nothing to do.
901 	 */
902 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
903 	    list_is_empty(&spa->spa_dirty_list)) {
904 		dprintf("nothing to sync in %s in txg %llu\n",
905 		    spa_name(spa), txg);
906 		return (0);
907 	}
908 
909 	if (txg > spa_freeze_txg(spa))
910 		return (0);
911 
912 	ASSERT(txg <= spa->spa_final_txg);
913 
914 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
915 
916 	/*
917 	 * Flush the write cache of every disk that's been written to
918 	 * in this transaction group.  This ensures that all blocks
919 	 * written in this txg will be committed to stable storage
920 	 * before any uberblock that references them.
921 	 */
922 	zio = zio_root(spa, NULL, NULL,
923 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
924 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
925 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
926 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
927 		    NULL, NULL, ZIO_PRIORITY_NOW,
928 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
929 	}
930 	(void) zio_wait(zio);
931 
932 	/*
933 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
934 	 * system dies in the middle of this process, that's OK: all of the
935 	 * even labels that made it to disk will be newer than any uberblock,
936 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
937 	 * which have not yet been touched, will still be valid.
938 	 */
939 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
940 	    vd = list_next(&spa->spa_dirty_list, vd)) {
941 		for (l = 0; l < VDEV_LABELS; l++) {
942 			if (l & 1)
943 				continue;
944 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
945 				return (error);
946 		}
947 	}
948 
949 	/*
950 	 * Flush the new labels to disk.  This ensures that all even-label
951 	 * updates are committed to stable storage before the uberblock update.
952 	 */
953 	zio = zio_root(spa, NULL, NULL,
954 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
955 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
956 	    vd = list_next(&spa->spa_dirty_list, vd)) {
957 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
958 		    NULL, NULL, ZIO_PRIORITY_NOW,
959 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
960 	}
961 	(void) zio_wait(zio);
962 
963 	/*
964 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
965 	 * If the system dies in the middle of this step, there are two cases
966 	 * to consider, and the on-disk state is consistent either way:
967 	 *
968 	 * (1)	If none of the new uberblocks made it to disk, then the
969 	 *	previous uberblock will be the newest, and the odd labels
970 	 *	(which had not yet been touched) will be valid with respect
971 	 *	to that uberblock.
972 	 *
973 	 * (2)	If one or more new uberblocks made it to disk, then they
974 	 *	will be the newest, and the even labels (which had all
975 	 *	been successfully committed) will be valid with respect
976 	 *	to the new uberblocks.
977 	 */
978 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
979 		return (error);
980 
981 	/*
982 	 * Flush the uberblocks to disk.  This ensures that the odd labels
983 	 * are no longer needed (because the new uberblocks and the even
984 	 * labels are safely on disk), so it is safe to overwrite them.
985 	 */
986 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
987 	    NULL, NULL, ZIO_PRIORITY_NOW,
988 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
989 
990 	/*
991 	 * Sync out odd labels for every dirty vdev.  If the system dies
992 	 * in the middle of this process, the even labels and the new
993 	 * uberblocks will suffice to open the pool.  The next time
994 	 * the pool is opened, the first thing we'll do -- before any
995 	 * user data is modified -- is mark every vdev dirty so that
996 	 * all labels will be brought up to date.
997 	 */
998 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
999 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1000 		for (l = 0; l < VDEV_LABELS; l++) {
1001 			if ((l & 1) == 0)
1002 				continue;
1003 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
1004 				return (error);
1005 		}
1006 	}
1007 
1008 	/*
1009 	 * Flush the new labels to disk.  This ensures that all odd-label
1010 	 * updates are committed to stable storage before the next
1011 	 * transaction group begins.
1012 	 */
1013 	zio = zio_root(spa, NULL, NULL,
1014 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
1015 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
1016 	    vd = list_next(&spa->spa_dirty_list, vd)) {
1017 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
1018 		    NULL, NULL, ZIO_PRIORITY_NOW,
1019 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
1020 	}
1021 	(void) zio_wait(zio);
1022 
1023 	return (0);
1024 }
1025