xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev_label.c (revision 4c0312813f96388b6ce9453c99f2db7d6a393bd4)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 /*
29  * Virtual Device Labels
30  * ---------------------
31  *
32  * The vdev label serves several distinct purposes:
33  *
34  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
35  *	   identity within the pool.
36  *
37  * 	2. Verify that all the devices given in a configuration are present
38  *         within the pool.
39  *
40  * 	3. Determine the uberblock for the pool.
41  *
42  * 	4. In case of an import operation, determine the configuration of the
43  *         toplevel vdev of which it is a part.
44  *
45  * 	5. If an import operation cannot find all the devices in the pool,
46  *         provide enough information to the administrator to determine which
47  *         devices are missing.
48  *
49  * It is important to note that while the kernel is responsible for writing the
50  * label, it only consumes the information in the first three cases.  The
51  * latter information is only consumed in userland when determining the
52  * configuration to import a pool.
53  *
54  *
55  * Label Organization
56  * ------------------
57  *
58  * Before describing the contents of the label, it's important to understand how
59  * the labels are written and updated with respect to the uberblock.
60  *
61  * When the pool configuration is altered, either because it was newly created
62  * or a device was added, we want to update all the labels such that we can deal
63  * with fatal failure at any point.  To this end, each disk has two labels which
64  * are updated before and after the uberblock is synced.  Assuming we have
65  * labels and an uberblock with the following transacation groups:
66  *
67  *              L1          UB          L2
68  *           +------+    +------+    +------+
69  *           |      |    |      |    |      |
70  *           | t10  |    | t10  |    | t10  |
71  *           |      |    |      |    |      |
72  *           +------+    +------+    +------+
73  *
74  * In this stable state, the labels and the uberblock were all updated within
75  * the same transaction group (10).  Each label is mirrored and checksummed, so
76  * that we can detect when we fail partway through writing the label.
77  *
78  * In order to identify which labels are valid, the labels are written in the
79  * following manner:
80  *
81  * 	1. For each vdev, update 'L1' to the new label
82  * 	2. Update the uberblock
83  * 	3. For each vdev, update 'L2' to the new label
84  *
85  * Given arbitrary failure, we can determine the correct label to use based on
86  * the transaction group.  If we fail after updating L1 but before updating the
87  * UB, we will notice that L1's transaction group is greater than the uberblock,
88  * so L2 must be valid.  If we fail after writing the uberblock but before
89  * writing L2, we will notice that L2's transaction group is less than L1, and
90  * therefore L1 is valid.
91  *
92  * Another added complexity is that not every label is updated when the config
93  * is synced.  If we add a single device, we do not want to have to re-write
94  * every label for every device in the pool.  This means that both L1 and L2 may
95  * be older than the pool uberblock, because the necessary information is stored
96  * on another vdev.
97  *
98  *
99  * On-disk Format
100  * --------------
101  *
102  * The vdev label consists of two distinct parts, and is wrapped within the
103  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
104  * VTOC disk labels, but is otherwise ignored.
105  *
106  * The first half of the label is a packed nvlist which contains pool wide
107  * properties, per-vdev properties, and configuration information.  It is
108  * described in more detail below.
109  *
110  * The latter half of the label consists of a redundant array of uberblocks.
111  * These uberblocks are updated whenever a transaction group is committed,
112  * or when the configuration is updated.  When a pool is loaded, we scan each
113  * vdev for the 'best' uberblock.
114  *
115  *
116  * Configuration Information
117  * -------------------------
118  *
119  * The nvlist describing the pool and vdev contains the following elements:
120  *
121  * 	version		ZFS on-disk version
122  * 	name		Pool name
123  * 	state		Pool state
124  * 	txg		Transaction group in which this label was written
125  * 	pool_guid	Unique identifier for this pool
126  * 	vdev_tree	An nvlist describing vdev tree.
127  *
128  * Each leaf device label also contains the following:
129  *
130  * 	top_guid	Unique ID for top-level vdev in which this is contained
131  * 	guid		Unique ID for the leaf vdev
132  *
133  * The 'vs' configuration follows the format described in 'spa_config.c'.
134  */
135 
136 #include <sys/zfs_context.h>
137 #include <sys/spa.h>
138 #include <sys/spa_impl.h>
139 #include <sys/dmu.h>
140 #include <sys/zap.h>
141 #include <sys/vdev.h>
142 #include <sys/vdev_impl.h>
143 #include <sys/uberblock_impl.h>
144 #include <sys/metaslab.h>
145 #include <sys/zio.h>
146 #include <sys/fs/zfs.h>
147 
148 /*
149  * Basic routines to read and write from a vdev label.
150  * Used throughout the rest of this file.
151  */
152 uint64_t
153 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
154 {
155 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
156 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
157 }
158 
159 static void
160 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
161 	uint64_t size, zio_done_func_t *done, void *private)
162 {
163 	ASSERT(vd->vdev_children == 0);
164 
165 	zio_nowait(zio_read_phys(zio, vd,
166 	    vdev_label_offset(vd->vdev_psize, l, offset),
167 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
168 	    ZIO_PRIORITY_SYNC_READ,
169 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE));
170 }
171 
172 static void
173 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
174 	uint64_t size, zio_done_func_t *done, void *private)
175 {
176 	ASSERT(vd->vdev_children == 0);
177 
178 	zio_nowait(zio_write_phys(zio, vd,
179 	    vdev_label_offset(vd->vdev_psize, l, offset),
180 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
181 	    ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL));
182 }
183 
184 /*
185  * Generate the nvlist representing this vdev's config.
186  */
187 nvlist_t *
188 vdev_config_generate(vdev_t *vd, int getstats)
189 {
190 	nvlist_t *nv = NULL;
191 
192 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
193 
194 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
195 	    vd->vdev_ops->vdev_op_type) == 0);
196 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) == 0);
197 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
198 
199 	if (vd->vdev_path != NULL)
200 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
201 		    vd->vdev_path) == 0);
202 
203 	if (vd->vdev_devid != NULL)
204 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
205 		    vd->vdev_devid) == 0);
206 
207 	if (vd->vdev_wholedisk != -1ULL)
208 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
209 		    vd->vdev_wholedisk) == 0);
210 
211 	if (vd->vdev_not_present)
212 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
213 
214 	if (vd == vd->vdev_top) {
215 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
216 		    vd->vdev_ms_array) == 0);
217 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
218 		    vd->vdev_ms_shift) == 0);
219 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
220 		    vd->vdev_ashift) == 0);
221 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
222 		    vd->vdev_asize) == 0);
223 	}
224 
225 	if (vd->vdev_dtl.smo_object != 0)
226 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
227 		    vd->vdev_dtl.smo_object) == 0);
228 
229 	if (getstats) {
230 		vdev_stat_t vs;
231 		vdev_get_stats(vd, &vs);
232 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
233 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
234 	}
235 
236 	if (!vd->vdev_ops->vdev_op_leaf) {
237 		nvlist_t **child;
238 		int c;
239 
240 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
241 		    KM_SLEEP);
242 
243 		for (c = 0; c < vd->vdev_children; c++)
244 			child[c] = vdev_config_generate(vd->vdev_child[c],
245 			    getstats);
246 
247 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
248 		    child, vd->vdev_children) == 0);
249 
250 		for (c = 0; c < vd->vdev_children; c++)
251 			nvlist_free(child[c]);
252 
253 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
254 
255 	} else {
256 		if (!vd->vdev_tmpoffline) {
257 		    if (vd->vdev_offline)
258 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
259 				B_TRUE) == 0);
260 		    else
261 			(void) nvlist_remove(nv, ZPOOL_CONFIG_OFFLINE,
262 				DATA_TYPE_UINT64);
263 		}
264 	}
265 
266 	return (nv);
267 }
268 
269 nvlist_t *
270 vdev_label_read_config(vdev_t *vd)
271 {
272 	spa_t *spa = vd->vdev_spa;
273 	nvlist_t *config = NULL;
274 	vdev_phys_t *vp;
275 	zio_t *zio;
276 	int l;
277 
278 	ASSERT(spa_config_held(spa, RW_READER));
279 
280 	if (vdev_is_dead(vd))
281 		return (NULL);
282 
283 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
284 
285 	for (l = 0; l < VDEV_LABELS; l++) {
286 
287 		zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL |
288 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CONFIG_HELD);
289 
290 		vdev_label_read(zio, vd, l, vp,
291 		    offsetof(vdev_label_t, vl_vdev_phys),
292 		    sizeof (vdev_phys_t), NULL, NULL);
293 
294 		if (zio_wait(zio) == 0 &&
295 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
296 		    &config, 0) == 0)
297 			break;
298 
299 		if (config != NULL) {
300 			nvlist_free(config);
301 			config = NULL;
302 		}
303 	}
304 
305 	zio_buf_free(vp, sizeof (vdev_phys_t));
306 
307 	return (config);
308 }
309 
310 int
311 vdev_label_init(vdev_t *vd, uint64_t crtxg)
312 {
313 	spa_t *spa = vd->vdev_spa;
314 	nvlist_t *label;
315 	vdev_phys_t *vp;
316 	vdev_boot_header_t *vb;
317 	uberblock_phys_t *ubphys;
318 	zio_t *zio;
319 	int l, c, n;
320 	char *buf;
321 	size_t buflen;
322 	int error;
323 
324 	ASSERT(spa_config_held(spa, RW_WRITER));
325 
326 	for (c = 0; c < vd->vdev_children; c++)
327 		if ((error = vdev_label_init(vd->vdev_child[c], crtxg)) != 0)
328 			return (error);
329 
330 	if (!vd->vdev_ops->vdev_op_leaf)
331 		return (0);
332 
333 	/*
334 	 * Make sure each leaf device is writable, and zero its initial content.
335 	 * Along the way, also make sure that no leaf is already in use.
336 	 * Note that it's important to do this sequentially, not in parallel,
337 	 * so that we catch cases of multiple use of the same leaf vdev in
338 	 * the vdev we're creating -- e.g. mirroring a disk with itself.
339 	 */
340 	if (vdev_is_dead(vd))
341 		return (EIO);
342 
343 	/*
344 	 * Check whether this device is already in use.
345 	 * Ignore the check if crtxg == 0, which we use for device removal.
346 	 */
347 	if (crtxg != 0 &&
348 	    (label = vdev_label_read_config(vd)) != NULL) {
349 		uint64_t state, pool_guid, device_guid, txg;
350 		uint64_t mycrtxg = 0;
351 
352 		(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
353 		    &mycrtxg);
354 
355 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
356 		    &state) == 0 && state == POOL_STATE_ACTIVE &&
357 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
358 		    &pool_guid) == 0 &&
359 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
360 		    &device_guid) == 0 &&
361 		    spa_guid_exists(pool_guid, device_guid) &&
362 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
363 		    &txg) == 0 && (txg != 0 || mycrtxg == crtxg)) {
364 			dprintf("vdev %s in use, pool_state %d\n",
365 			    vdev_description(vd), state);
366 			nvlist_free(label);
367 			return (EBUSY);
368 		}
369 		nvlist_free(label);
370 	}
371 
372 	/*
373 	 * The device isn't in use, so initialize its label.
374 	 */
375 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
376 	bzero(vp, sizeof (vdev_phys_t));
377 
378 	/*
379 	 * Generate a label describing the pool and our top-level vdev.
380 	 * We mark it as being from txg 0 to indicate that it's not
381 	 * really part of an active pool just yet.  The labels will
382 	 * be written again with a meaningful txg by spa_sync().
383 	 */
384 	label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
385 
386 	/*
387 	 * Add our creation time.  This allows us to detect multiple vdev
388 	 * uses as described above, and automatically expires if we fail.
389 	 */
390 	VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, crtxg) == 0);
391 
392 	buf = vp->vp_nvlist;
393 	buflen = sizeof (vp->vp_nvlist);
394 
395 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) != 0) {
396 		nvlist_free(label);
397 		zio_buf_free(vp, sizeof (vdev_phys_t));
398 		return (EINVAL);
399 	}
400 
401 	/*
402 	 * Initialize boot block header.
403 	 */
404 	vb = zio_buf_alloc(sizeof (vdev_boot_header_t));
405 	bzero(vb, sizeof (vdev_boot_header_t));
406 	vb->vb_magic = VDEV_BOOT_MAGIC;
407 	vb->vb_version = VDEV_BOOT_VERSION;
408 	vb->vb_offset = VDEV_BOOT_OFFSET;
409 	vb->vb_size = VDEV_BOOT_SIZE;
410 
411 	/*
412 	 * Initialize uberblock template.
413 	 */
414 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
415 	bzero(ubphys, sizeof (uberblock_phys_t));
416 	ubphys->ubp_uberblock = spa->spa_uberblock;
417 	ubphys->ubp_uberblock.ub_txg = 0;
418 
419 	/*
420 	 * Write everything in parallel.
421 	 */
422 	zio = zio_root(spa, NULL, NULL,
423 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
424 
425 	for (l = 0; l < VDEV_LABELS; l++) {
426 
427 		vdev_label_write(zio, vd, l, vp,
428 		    offsetof(vdev_label_t, vl_vdev_phys),
429 		    sizeof (vdev_phys_t), NULL, NULL);
430 
431 		vdev_label_write(zio, vd, l, vb,
432 		    offsetof(vdev_label_t, vl_boot_header),
433 		    sizeof (vdev_boot_header_t), NULL, NULL);
434 
435 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
436 
437 			vdev_label_write(zio, vd, l, ubphys,
438 			    offsetof(vdev_label_t, vl_uberblock[n]),
439 			    sizeof (uberblock_phys_t), NULL, NULL);
440 
441 		}
442 	}
443 
444 	error = zio_wait(zio);
445 
446 	nvlist_free(label);
447 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
448 	zio_buf_free(vb, sizeof (vdev_boot_header_t));
449 	zio_buf_free(vp, sizeof (vdev_phys_t));
450 
451 	return (error);
452 }
453 
454 /*
455  * ==========================================================================
456  * uberblock load/sync
457  * ==========================================================================
458  */
459 
460 /*
461  * Consider the following situation: txg is safely synced to disk.  We've
462  * written the first uberblock for txg + 1, and then we lose power.  When we
463  * come back up, we fail to see the uberblock for txg + 1 because, say,
464  * it was on a mirrored device and the replica to which we wrote txg + 1
465  * is now offline.  If we then make some changes and sync txg + 1, and then
466  * the missing replica comes back, then for a new seconds we'll have two
467  * conflicting uberblocks on disk with the same txg.  The solution is simple:
468  * among uberblocks with equal txg, choose the one with the latest timestamp.
469  */
470 static int
471 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
472 {
473 	if (ub1->ub_txg < ub2->ub_txg)
474 		return (-1);
475 	if (ub1->ub_txg > ub2->ub_txg)
476 		return (1);
477 
478 	if (ub1->ub_timestamp < ub2->ub_timestamp)
479 		return (-1);
480 	if (ub1->ub_timestamp > ub2->ub_timestamp)
481 		return (1);
482 
483 	return (0);
484 }
485 
486 static void
487 vdev_uberblock_load_done(zio_t *zio)
488 {
489 	uberblock_phys_t *ubphys = zio->io_data;
490 	uberblock_t *ub = &ubphys->ubp_uberblock;
491 	uberblock_t *ubbest = zio->io_private;
492 	spa_t *spa = zio->io_spa;
493 
494 	ASSERT3U(zio->io_size, ==, sizeof (uberblock_phys_t));
495 
496 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
497 		mutex_enter(&spa->spa_uberblock_lock);
498 		if (vdev_uberblock_compare(ub, ubbest) > 0)
499 			*ubbest = *ub;
500 		mutex_exit(&spa->spa_uberblock_lock);
501 	}
502 
503 	zio_buf_free(zio->io_data, zio->io_size);
504 }
505 
506 void
507 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
508 {
509 	int l, c, n;
510 
511 	for (c = 0; c < vd->vdev_children; c++)
512 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
513 
514 	if (!vd->vdev_ops->vdev_op_leaf)
515 		return;
516 
517 	if (vdev_is_dead(vd))
518 		return;
519 
520 	for (l = 0; l < VDEV_LABELS; l++) {
521 		for (n = 0; n < VDEV_UBERBLOCKS; n++) {
522 			vdev_label_read(zio, vd, l,
523 			    zio_buf_alloc(sizeof (uberblock_phys_t)),
524 			    offsetof(vdev_label_t, vl_uberblock[n]),
525 			    sizeof (uberblock_phys_t),
526 			    vdev_uberblock_load_done, ubbest);
527 		}
528 	}
529 }
530 
531 /*
532  * Write the uberblock to both labels of all leaves of the specified vdev.
533  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
534  */
535 static void
536 vdev_uberblock_sync_done(zio_t *zio)
537 {
538 	uint64_t *good_writes = zio->io_root->io_private;
539 
540 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
541 		atomic_add_64(good_writes, 1);
542 }
543 
544 static void
545 vdev_uberblock_sync(zio_t *zio, uberblock_phys_t *ubphys, vdev_t *vd,
546 	uint64_t txg)
547 {
548 	int l, c, n;
549 
550 	for (c = 0; c < vd->vdev_children; c++)
551 		vdev_uberblock_sync(zio, ubphys, vd->vdev_child[c], txg);
552 
553 	if (!vd->vdev_ops->vdev_op_leaf)
554 		return;
555 
556 	if (vdev_is_dead(vd))
557 		return;
558 
559 	n = txg & (VDEV_UBERBLOCKS - 1);
560 
561 	ASSERT(ubphys->ubp_uberblock.ub_txg == txg);
562 
563 	for (l = 0; l < VDEV_LABELS; l++)
564 		vdev_label_write(zio, vd, l, ubphys,
565 		    offsetof(vdev_label_t, vl_uberblock[n]),
566 		    sizeof (uberblock_phys_t), vdev_uberblock_sync_done, NULL);
567 
568 	dprintf("vdev %s in txg %llu\n", vdev_description(vd), txg);
569 }
570 
571 static int
572 vdev_uberblock_sync_tree(spa_t *spa, uberblock_t *ub, vdev_t *uvd, uint64_t txg)
573 {
574 	uberblock_phys_t *ubphys;
575 	uint64_t *good_writes;
576 	zio_t *zio;
577 	int error;
578 
579 	ubphys = zio_buf_alloc(sizeof (uberblock_phys_t));
580 	bzero(ubphys, sizeof (uberblock_phys_t));
581 	ubphys->ubp_uberblock = *ub;
582 
583 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
584 
585 	zio = zio_root(spa, NULL, good_writes,
586 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
587 
588 	vdev_uberblock_sync(zio, ubphys, uvd, txg);
589 
590 	error = zio_wait(zio);
591 
592 	if (error && *good_writes != 0) {
593 		dprintf("partial success: good_writes = %llu\n", *good_writes);
594 		error = 0;
595 	}
596 
597 	/*
598 	 * It's possible to have no good writes and no error if every vdev is in
599 	 * the CANT_OPEN state.
600 	 */
601 	if (*good_writes == 0 && error == 0)
602 		error = EIO;
603 
604 	kmem_free(good_writes, sizeof (uint64_t));
605 	zio_buf_free(ubphys, sizeof (uberblock_phys_t));
606 
607 	return (error);
608 }
609 
610 /*
611  * Sync out an individual vdev.
612  */
613 static void
614 vdev_sync_label_done(zio_t *zio)
615 {
616 	uint64_t *good_writes = zio->io_root->io_private;
617 
618 	if (zio->io_error == 0)
619 		atomic_add_64(good_writes, 1);
620 }
621 
622 static void
623 vdev_sync_label(zio_t *zio, vdev_t *vd, int l, uint64_t txg)
624 {
625 	nvlist_t *label;
626 	vdev_phys_t *vp;
627 	char *buf;
628 	size_t buflen;
629 	int c;
630 
631 	for (c = 0; c < vd->vdev_children; c++)
632 		vdev_sync_label(zio, vd->vdev_child[c], l, txg);
633 
634 	if (!vd->vdev_ops->vdev_op_leaf)
635 		return;
636 
637 	if (vdev_is_dead(vd))
638 		return;
639 
640 	/*
641 	 * Generate a label describing the top-level config to which we belong.
642 	 */
643 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
644 
645 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
646 	bzero(vp, sizeof (vdev_phys_t));
647 
648 	buf = vp->vp_nvlist;
649 	buflen = sizeof (vp->vp_nvlist);
650 
651 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0)
652 		vdev_label_write(zio, vd, l, vp,
653 		    offsetof(vdev_label_t, vl_vdev_phys), sizeof (vdev_phys_t),
654 		    vdev_sync_label_done, NULL);
655 
656 	zio_buf_free(vp, sizeof (vdev_phys_t));
657 	nvlist_free(label);
658 
659 	dprintf("%s label %d txg %llu\n", vdev_description(vd), l, txg);
660 }
661 
662 static int
663 vdev_sync_labels(vdev_t *vd, int l, uint64_t txg)
664 {
665 	uint64_t *good_writes;
666 	zio_t *zio;
667 	int error;
668 
669 	ASSERT(vd == vd->vdev_top);
670 
671 	good_writes = kmem_zalloc(sizeof (uint64_t), KM_SLEEP);
672 
673 	zio = zio_root(vd->vdev_spa, NULL, good_writes,
674 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
675 
676 	/*
677 	 * Recursively kick off writes to all labels.
678 	 */
679 	vdev_sync_label(zio, vd, l, txg);
680 
681 	error = zio_wait(zio);
682 
683 	if (error && *good_writes != 0) {
684 		dprintf("partial success: good_writes = %llu\n", *good_writes);
685 		error = 0;
686 	}
687 
688 	if (*good_writes == 0 && error == 0)
689 		error = ENODEV;
690 
691 	kmem_free(good_writes, sizeof (uint64_t));
692 
693 	return (error);
694 }
695 
696 /*
697  * Sync the entire vdev configuration.
698  *
699  * The order of operations is carefully crafted to ensure that
700  * if the system panics or loses power at any time, the state on disk
701  * is still transactionally consistent.  The in-line comments below
702  * describe the failure semantics at each stage.
703  *
704  * Moreover, it is designed to be idempotent: if spa_sync_labels() fails
705  * at any time, you can just call it again, and it will resume its work.
706  */
707 int
708 vdev_config_sync(vdev_t *uvd, uint64_t txg)
709 {
710 	spa_t *spa = uvd->vdev_spa;
711 	uberblock_t *ub = &spa->spa_uberblock;
712 	vdev_t *rvd = spa->spa_root_vdev;
713 	vdev_t *vd;
714 	zio_t *zio;
715 	int l, error;
716 
717 	ASSERT(ub->ub_txg <= txg);
718 
719 	/*
720 	 * If this isn't a resync due to I/O errors, and nothing changed
721 	 * in this transaction group, and the vdev configuration hasn't changed,
722 	 * then there's nothing to do.
723 	 */
724 	if (ub->ub_txg < txg && uberblock_update(ub, rvd, txg) == B_FALSE &&
725 	    list_is_empty(&spa->spa_dirty_list)) {
726 		dprintf("nothing to sync in %s in txg %llu\n",
727 		    spa_name(spa), txg);
728 		return (0);
729 	}
730 
731 	if (txg > spa_freeze_txg(spa))
732 		return (0);
733 
734 	ASSERT(txg <= spa->spa_final_txg);
735 
736 	dprintf("syncing %s txg %llu\n", spa_name(spa), txg);
737 
738 	/*
739 	 * Flush the write cache of every disk that's been written to
740 	 * in this transaction group.  This ensures that all blocks
741 	 * written in this txg will be committed to stable storage
742 	 * before any uberblock that references them.
743 	 */
744 	zio = zio_root(spa, NULL, NULL,
745 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
746 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
747 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) {
748 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
749 		    NULL, NULL, ZIO_PRIORITY_NOW,
750 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
751 	}
752 	(void) zio_wait(zio);
753 
754 	/*
755 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
756 	 * system dies in the middle of this process, that's OK: all of the
757 	 * even labels that made it to disk will be newer than any uberblock,
758 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
759 	 * which have not yet been touched, will still be valid.
760 	 */
761 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
762 	    vd = list_next(&spa->spa_dirty_list, vd)) {
763 		for (l = 0; l < VDEV_LABELS; l++) {
764 			if (l & 1)
765 				continue;
766 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
767 				return (error);
768 		}
769 	}
770 
771 	/*
772 	 * Flush the new labels to disk.  This ensures that all even-label
773 	 * updates are committed to stable storage before the uberblock update.
774 	 */
775 	zio = zio_root(spa, NULL, NULL,
776 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
777 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
778 	    vd = list_next(&spa->spa_dirty_list, vd)) {
779 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
780 		    NULL, NULL, ZIO_PRIORITY_NOW,
781 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
782 	}
783 	(void) zio_wait(zio);
784 
785 	/*
786 	 * Sync the uberblocks to all vdevs in the tree specified by uvd.
787 	 * If the system dies in the middle of this step, there are two cases
788 	 * to consider, and the on-disk state is consistent either way:
789 	 *
790 	 * (1)	If none of the new uberblocks made it to disk, then the
791 	 *	previous uberblock will be the newest, and the odd labels
792 	 *	(which had not yet been touched) will be valid with respect
793 	 *	to that uberblock.
794 	 *
795 	 * (2)	If one or more new uberblocks made it to disk, then they
796 	 *	will be the newest, and the even labels (which had all
797 	 *	been successfully committed) will be valid with respect
798 	 *	to the new uberblocks.
799 	 */
800 	if ((error = vdev_uberblock_sync_tree(spa, ub, uvd, txg)) != 0)
801 		return (error);
802 
803 	/*
804 	 * Flush the uberblocks to disk.  This ensures that the odd labels
805 	 * are no longer needed (because the new uberblocks and the even
806 	 * labels are safely on disk), so it is safe to overwrite them.
807 	 */
808 	(void) zio_wait(zio_ioctl(NULL, spa, uvd, DKIOCFLUSHWRITECACHE,
809 	    NULL, NULL, ZIO_PRIORITY_NOW,
810 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
811 
812 	/*
813 	 * Sync out odd labels for every dirty vdev.  If the system dies
814 	 * in the middle of this process, the even labels and the new
815 	 * uberblocks will suffice to open the pool.  The next time
816 	 * the pool is opened, the first thing we'll do -- before any
817 	 * user data is modified -- is mark every vdev dirty so that
818 	 * all labels will be brought up to date.
819 	 */
820 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
821 	    vd = list_next(&spa->spa_dirty_list, vd)) {
822 		for (l = 0; l < VDEV_LABELS; l++) {
823 			if ((l & 1) == 0)
824 				continue;
825 			if ((error = vdev_sync_labels(vd, l, txg)) != 0)
826 				return (error);
827 		}
828 	}
829 
830 	/*
831 	 * Flush the new labels to disk.  This ensures that all odd-label
832 	 * updates are committed to stable storage before the next
833 	 * transaction group begins.
834 	 */
835 	zio = zio_root(spa, NULL, NULL,
836 	    ZIO_FLAG_CONFIG_HELD | ZIO_FLAG_CANFAIL);
837 	for (vd = list_head(&spa->spa_dirty_list); vd != NULL;
838 	    vd = list_next(&spa->spa_dirty_list, vd)) {
839 		zio_nowait(zio_ioctl(zio, spa, vd, DKIOCFLUSHWRITECACHE,
840 		    NULL, NULL, ZIO_PRIORITY_NOW,
841 		    ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY));
842 	}
843 	(void) zio_wait(zio);
844 
845 	return (0);
846 }
847