1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Virtual Device Labels 28 * --------------------- 29 * 30 * The vdev label serves several distinct purposes: 31 * 32 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 33 * identity within the pool. 34 * 35 * 2. Verify that all the devices given in a configuration are present 36 * within the pool. 37 * 38 * 3. Determine the uberblock for the pool. 39 * 40 * 4. In case of an import operation, determine the configuration of the 41 * toplevel vdev of which it is a part. 42 * 43 * 5. If an import operation cannot find all the devices in the pool, 44 * provide enough information to the administrator to determine which 45 * devices are missing. 46 * 47 * It is important to note that while the kernel is responsible for writing the 48 * label, it only consumes the information in the first three cases. The 49 * latter information is only consumed in userland when determining the 50 * configuration to import a pool. 51 * 52 * 53 * Label Organization 54 * ------------------ 55 * 56 * Before describing the contents of the label, it's important to understand how 57 * the labels are written and updated with respect to the uberblock. 58 * 59 * When the pool configuration is altered, either because it was newly created 60 * or a device was added, we want to update all the labels such that we can deal 61 * with fatal failure at any point. To this end, each disk has two labels which 62 * are updated before and after the uberblock is synced. Assuming we have 63 * labels and an uberblock with the following transaction groups: 64 * 65 * L1 UB L2 66 * +------+ +------+ +------+ 67 * | | | | | | 68 * | t10 | | t10 | | t10 | 69 * | | | | | | 70 * +------+ +------+ +------+ 71 * 72 * In this stable state, the labels and the uberblock were all updated within 73 * the same transaction group (10). Each label is mirrored and checksummed, so 74 * that we can detect when we fail partway through writing the label. 75 * 76 * In order to identify which labels are valid, the labels are written in the 77 * following manner: 78 * 79 * 1. For each vdev, update 'L1' to the new label 80 * 2. Update the uberblock 81 * 3. For each vdev, update 'L2' to the new label 82 * 83 * Given arbitrary failure, we can determine the correct label to use based on 84 * the transaction group. If we fail after updating L1 but before updating the 85 * UB, we will notice that L1's transaction group is greater than the uberblock, 86 * so L2 must be valid. If we fail after writing the uberblock but before 87 * writing L2, we will notice that L2's transaction group is less than L1, and 88 * therefore L1 is valid. 89 * 90 * Another added complexity is that not every label is updated when the config 91 * is synced. If we add a single device, we do not want to have to re-write 92 * every label for every device in the pool. This means that both L1 and L2 may 93 * be older than the pool uberblock, because the necessary information is stored 94 * on another vdev. 95 * 96 * 97 * On-disk Format 98 * -------------- 99 * 100 * The vdev label consists of two distinct parts, and is wrapped within the 101 * vdev_label_t structure. The label includes 8k of padding to permit legacy 102 * VTOC disk labels, but is otherwise ignored. 103 * 104 * The first half of the label is a packed nvlist which contains pool wide 105 * properties, per-vdev properties, and configuration information. It is 106 * described in more detail below. 107 * 108 * The latter half of the label consists of a redundant array of uberblocks. 109 * These uberblocks are updated whenever a transaction group is committed, 110 * or when the configuration is updated. When a pool is loaded, we scan each 111 * vdev for the 'best' uberblock. 112 * 113 * 114 * Configuration Information 115 * ------------------------- 116 * 117 * The nvlist describing the pool and vdev contains the following elements: 118 * 119 * version ZFS on-disk version 120 * name Pool name 121 * state Pool state 122 * txg Transaction group in which this label was written 123 * pool_guid Unique identifier for this pool 124 * vdev_tree An nvlist describing vdev tree. 125 * 126 * Each leaf device label also contains the following: 127 * 128 * top_guid Unique ID for top-level vdev in which this is contained 129 * guid Unique ID for the leaf vdev 130 * 131 * The 'vs' configuration follows the format described in 'spa_config.c'. 132 */ 133 134 #include <sys/zfs_context.h> 135 #include <sys/spa.h> 136 #include <sys/spa_impl.h> 137 #include <sys/dmu.h> 138 #include <sys/zap.h> 139 #include <sys/vdev.h> 140 #include <sys/vdev_impl.h> 141 #include <sys/uberblock_impl.h> 142 #include <sys/metaslab.h> 143 #include <sys/zio.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 boolean_t isspare, boolean_t isl2cache) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!isspare && !isl2cache) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_fru != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 238 vd->vdev_fru) == 0); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity == 2 && 250 spa_version(spa) >= SPA_VERSION_RAID6)); 251 252 /* 253 * Note that we'll add the nparity tag even on storage pools 254 * that only support a single parity device -- older software 255 * will just ignore it. 256 */ 257 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 258 vd->vdev_nparity) == 0); 259 } 260 261 if (vd->vdev_wholedisk != -1ULL) 262 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 263 vd->vdev_wholedisk) == 0); 264 265 if (vd->vdev_not_present) 266 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 267 268 if (vd->vdev_isspare) 269 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 270 271 if (!isspare && !isl2cache && vd == vd->vdev_top) { 272 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 273 vd->vdev_ms_array) == 0); 274 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 275 vd->vdev_ms_shift) == 0); 276 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 277 vd->vdev_ashift) == 0); 278 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 279 vd->vdev_asize) == 0); 280 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 281 vd->vdev_islog) == 0); 282 } 283 284 if (vd->vdev_dtl_smo.smo_object != 0) 285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 286 vd->vdev_dtl_smo.smo_object) == 0); 287 288 if (getstats) { 289 vdev_stat_t vs; 290 vdev_get_stats(vd, &vs); 291 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS, 292 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 293 } 294 295 if (!vd->vdev_ops->vdev_op_leaf) { 296 nvlist_t **child; 297 int c; 298 299 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 300 KM_SLEEP); 301 302 for (c = 0; c < vd->vdev_children; c++) 303 child[c] = vdev_config_generate(spa, vd->vdev_child[c], 304 getstats, isspare, isl2cache); 305 306 VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 307 child, vd->vdev_children) == 0); 308 309 for (c = 0; c < vd->vdev_children; c++) 310 nvlist_free(child[c]); 311 312 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 313 314 } else { 315 if (vd->vdev_offline && !vd->vdev_tmpoffline) 316 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 317 B_TRUE) == 0); 318 if (vd->vdev_faulted) 319 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 320 B_TRUE) == 0); 321 if (vd->vdev_degraded) 322 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 323 B_TRUE) == 0); 324 if (vd->vdev_removed) 325 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 326 B_TRUE) == 0); 327 if (vd->vdev_unspare) 328 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 329 B_TRUE) == 0); 330 } 331 332 return (nv); 333 } 334 335 nvlist_t * 336 vdev_label_read_config(vdev_t *vd) 337 { 338 spa_t *spa = vd->vdev_spa; 339 nvlist_t *config = NULL; 340 vdev_phys_t *vp; 341 zio_t *zio; 342 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 343 ZIO_FLAG_SPECULATIVE; 344 345 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 346 347 if (!vdev_readable(vd)) 348 return (NULL); 349 350 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 351 352 retry: 353 for (int l = 0; l < VDEV_LABELS; l++) { 354 355 zio = zio_root(spa, NULL, NULL, flags); 356 357 vdev_label_read(zio, vd, l, vp, 358 offsetof(vdev_label_t, vl_vdev_phys), 359 sizeof (vdev_phys_t), NULL, NULL, flags); 360 361 if (zio_wait(zio) == 0 && 362 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 363 &config, 0) == 0) 364 break; 365 366 if (config != NULL) { 367 nvlist_free(config); 368 config = NULL; 369 } 370 } 371 372 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 373 flags |= ZIO_FLAG_TRYHARD; 374 goto retry; 375 } 376 377 zio_buf_free(vp, sizeof (vdev_phys_t)); 378 379 return (config); 380 } 381 382 /* 383 * Determine if a device is in use. The 'spare_guid' parameter will be filled 384 * in with the device guid if this spare is active elsewhere on the system. 385 */ 386 static boolean_t 387 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 388 uint64_t *spare_guid, uint64_t *l2cache_guid) 389 { 390 spa_t *spa = vd->vdev_spa; 391 uint64_t state, pool_guid, device_guid, txg, spare_pool; 392 uint64_t vdtxg = 0; 393 nvlist_t *label; 394 395 if (spare_guid) 396 *spare_guid = 0ULL; 397 if (l2cache_guid) 398 *l2cache_guid = 0ULL; 399 400 /* 401 * Read the label, if any, and perform some basic sanity checks. 402 */ 403 if ((label = vdev_label_read_config(vd)) == NULL) 404 return (B_FALSE); 405 406 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 407 &vdtxg); 408 409 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 410 &state) != 0 || 411 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 412 &device_guid) != 0) { 413 nvlist_free(label); 414 return (B_FALSE); 415 } 416 417 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 418 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 419 &pool_guid) != 0 || 420 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 421 &txg) != 0)) { 422 nvlist_free(label); 423 return (B_FALSE); 424 } 425 426 nvlist_free(label); 427 428 /* 429 * Check to see if this device indeed belongs to the pool it claims to 430 * be a part of. The only way this is allowed is if the device is a hot 431 * spare (which we check for later on). 432 */ 433 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 434 !spa_guid_exists(pool_guid, device_guid) && 435 !spa_spare_exists(device_guid, NULL, NULL) && 436 !spa_l2cache_exists(device_guid, NULL)) 437 return (B_FALSE); 438 439 /* 440 * If the transaction group is zero, then this an initialized (but 441 * unused) label. This is only an error if the create transaction 442 * on-disk is the same as the one we're using now, in which case the 443 * user has attempted to add the same vdev multiple times in the same 444 * transaction. 445 */ 446 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 447 txg == 0 && vdtxg == crtxg) 448 return (B_TRUE); 449 450 /* 451 * Check to see if this is a spare device. We do an explicit check for 452 * spa_has_spare() here because it may be on our pending list of spares 453 * to add. We also check if it is an l2cache device. 454 */ 455 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 456 spa_has_spare(spa, device_guid)) { 457 if (spare_guid) 458 *spare_guid = device_guid; 459 460 switch (reason) { 461 case VDEV_LABEL_CREATE: 462 case VDEV_LABEL_L2CACHE: 463 return (B_TRUE); 464 465 case VDEV_LABEL_REPLACE: 466 return (!spa_has_spare(spa, device_guid) || 467 spare_pool != 0ULL); 468 469 case VDEV_LABEL_SPARE: 470 return (spa_has_spare(spa, device_guid)); 471 } 472 } 473 474 /* 475 * Check to see if this is an l2cache device. 476 */ 477 if (spa_l2cache_exists(device_guid, NULL)) 478 return (B_TRUE); 479 480 /* 481 * If the device is marked ACTIVE, then this device is in use by another 482 * pool on the system. 483 */ 484 return (state == POOL_STATE_ACTIVE); 485 } 486 487 /* 488 * Initialize a vdev label. We check to make sure each leaf device is not in 489 * use, and writable. We put down an initial label which we will later 490 * overwrite with a complete label. Note that it's important to do this 491 * sequentially, not in parallel, so that we catch cases of multiple use of the 492 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 493 * itself. 494 */ 495 int 496 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 497 { 498 spa_t *spa = vd->vdev_spa; 499 nvlist_t *label; 500 vdev_phys_t *vp; 501 char *pad2; 502 uberblock_t *ub; 503 zio_t *zio; 504 char *buf; 505 size_t buflen; 506 int error; 507 uint64_t spare_guid, l2cache_guid; 508 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 509 510 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 511 512 for (int c = 0; c < vd->vdev_children; c++) 513 if ((error = vdev_label_init(vd->vdev_child[c], 514 crtxg, reason)) != 0) 515 return (error); 516 517 if (!vd->vdev_ops->vdev_op_leaf) 518 return (0); 519 520 /* 521 * Dead vdevs cannot be initialized. 522 */ 523 if (vdev_is_dead(vd)) 524 return (EIO); 525 526 /* 527 * Determine if the vdev is in use. 528 */ 529 if (reason != VDEV_LABEL_REMOVE && 530 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 531 return (EBUSY); 532 533 /* 534 * If this is a request to add or replace a spare or l2cache device 535 * that is in use elsewhere on the system, then we must update the 536 * guid (which was initialized to a random value) to reflect the 537 * actual GUID (which is shared between multiple pools). 538 */ 539 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 540 spare_guid != 0ULL) { 541 uint64_t guid_delta = spare_guid - vd->vdev_guid; 542 543 vd->vdev_guid += guid_delta; 544 545 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 546 pvd->vdev_guid_sum += guid_delta; 547 548 /* 549 * If this is a replacement, then we want to fallthrough to the 550 * rest of the code. If we're adding a spare, then it's already 551 * labeled appropriately and we can just return. 552 */ 553 if (reason == VDEV_LABEL_SPARE) 554 return (0); 555 ASSERT(reason == VDEV_LABEL_REPLACE); 556 } 557 558 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 559 l2cache_guid != 0ULL) { 560 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 561 562 vd->vdev_guid += guid_delta; 563 564 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 565 pvd->vdev_guid_sum += guid_delta; 566 567 /* 568 * If this is a replacement, then we want to fallthrough to the 569 * rest of the code. If we're adding an l2cache, then it's 570 * already labeled appropriately and we can just return. 571 */ 572 if (reason == VDEV_LABEL_L2CACHE) 573 return (0); 574 ASSERT(reason == VDEV_LABEL_REPLACE); 575 } 576 577 /* 578 * Initialize its label. 579 */ 580 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 581 bzero(vp, sizeof (vdev_phys_t)); 582 583 /* 584 * Generate a label describing the pool and our top-level vdev. 585 * We mark it as being from txg 0 to indicate that it's not 586 * really part of an active pool just yet. The labels will 587 * be written again with a meaningful txg by spa_sync(). 588 */ 589 if (reason == VDEV_LABEL_SPARE || 590 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 591 /* 592 * For inactive hot spares, we generate a special label that 593 * identifies as a mutually shared hot spare. We write the 594 * label if we are adding a hot spare, or if we are removing an 595 * active hot spare (in which case we want to revert the 596 * labels). 597 */ 598 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 599 600 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 601 spa_version(spa)) == 0); 602 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 603 POOL_STATE_SPARE) == 0); 604 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 605 vd->vdev_guid) == 0); 606 } else if (reason == VDEV_LABEL_L2CACHE || 607 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 608 /* 609 * For level 2 ARC devices, add a special label. 610 */ 611 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 612 613 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 614 spa_version(spa)) == 0); 615 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 616 POOL_STATE_L2CACHE) == 0); 617 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 618 vd->vdev_guid) == 0); 619 } else { 620 label = spa_config_generate(spa, vd, 0ULL, B_FALSE); 621 622 /* 623 * Add our creation time. This allows us to detect multiple 624 * vdev uses as described above, and automatically expires if we 625 * fail. 626 */ 627 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 628 crtxg) == 0); 629 } 630 631 buf = vp->vp_nvlist; 632 buflen = sizeof (vp->vp_nvlist); 633 634 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 635 if (error != 0) { 636 nvlist_free(label); 637 zio_buf_free(vp, sizeof (vdev_phys_t)); 638 /* EFAULT means nvlist_pack ran out of room */ 639 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 640 } 641 642 /* 643 * Initialize uberblock template. 644 */ 645 ub = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 646 bzero(ub, VDEV_UBERBLOCK_SIZE(vd)); 647 *ub = spa->spa_uberblock; 648 ub->ub_txg = 0; 649 650 /* Initialize the 2nd padding area. */ 651 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 652 bzero(pad2, VDEV_PAD_SIZE); 653 654 /* 655 * Write everything in parallel. 656 */ 657 retry: 658 zio = zio_root(spa, NULL, NULL, flags); 659 660 for (int l = 0; l < VDEV_LABELS; l++) { 661 662 vdev_label_write(zio, vd, l, vp, 663 offsetof(vdev_label_t, vl_vdev_phys), 664 sizeof (vdev_phys_t), NULL, NULL, flags); 665 666 /* 667 * Skip the 1st padding area. 668 * Zero out the 2nd padding area where it might have 669 * left over data from previous filesystem format. 670 */ 671 vdev_label_write(zio, vd, l, pad2, 672 offsetof(vdev_label_t, vl_pad2), 673 VDEV_PAD_SIZE, NULL, NULL, flags); 674 675 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 676 vdev_label_write(zio, vd, l, ub, 677 VDEV_UBERBLOCK_OFFSET(vd, n), 678 VDEV_UBERBLOCK_SIZE(vd), NULL, NULL, flags); 679 } 680 } 681 682 error = zio_wait(zio); 683 684 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 685 flags |= ZIO_FLAG_TRYHARD; 686 goto retry; 687 } 688 689 nvlist_free(label); 690 zio_buf_free(pad2, VDEV_PAD_SIZE); 691 zio_buf_free(ub, VDEV_UBERBLOCK_SIZE(vd)); 692 zio_buf_free(vp, sizeof (vdev_phys_t)); 693 694 /* 695 * If this vdev hasn't been previously identified as a spare, then we 696 * mark it as such only if a) we are labeling it as a spare, or b) it 697 * exists as a spare elsewhere in the system. Do the same for 698 * level 2 ARC devices. 699 */ 700 if (error == 0 && !vd->vdev_isspare && 701 (reason == VDEV_LABEL_SPARE || 702 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 703 spa_spare_add(vd); 704 705 if (error == 0 && !vd->vdev_isl2cache && 706 (reason == VDEV_LABEL_L2CACHE || 707 spa_l2cache_exists(vd->vdev_guid, NULL))) 708 spa_l2cache_add(vd); 709 710 return (error); 711 } 712 713 /* 714 * ========================================================================== 715 * uberblock load/sync 716 * ========================================================================== 717 */ 718 719 /* 720 * For use by zdb and debugging purposes only 721 */ 722 uint64_t ub_max_txg = UINT64_MAX; 723 724 /* 725 * Consider the following situation: txg is safely synced to disk. We've 726 * written the first uberblock for txg + 1, and then we lose power. When we 727 * come back up, we fail to see the uberblock for txg + 1 because, say, 728 * it was on a mirrored device and the replica to which we wrote txg + 1 729 * is now offline. If we then make some changes and sync txg + 1, and then 730 * the missing replica comes back, then for a new seconds we'll have two 731 * conflicting uberblocks on disk with the same txg. The solution is simple: 732 * among uberblocks with equal txg, choose the one with the latest timestamp. 733 */ 734 static int 735 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 736 { 737 if (ub1->ub_txg < ub2->ub_txg) 738 return (-1); 739 if (ub1->ub_txg > ub2->ub_txg) 740 return (1); 741 742 if (ub1->ub_timestamp < ub2->ub_timestamp) 743 return (-1); 744 if (ub1->ub_timestamp > ub2->ub_timestamp) 745 return (1); 746 747 return (0); 748 } 749 750 static void 751 vdev_uberblock_load_done(zio_t *zio) 752 { 753 zio_t *rio = zio->io_private; 754 uberblock_t *ub = zio->io_data; 755 uberblock_t *ubbest = rio->io_private; 756 757 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 758 759 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 760 mutex_enter(&rio->io_lock); 761 if (ub->ub_txg <= ub_max_txg && 762 vdev_uberblock_compare(ub, ubbest) > 0) 763 *ubbest = *ub; 764 mutex_exit(&rio->io_lock); 765 } 766 767 zio_buf_free(zio->io_data, zio->io_size); 768 } 769 770 void 771 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 772 { 773 spa_t *spa = vd->vdev_spa; 774 vdev_t *rvd = spa->spa_root_vdev; 775 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 776 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 777 778 if (vd == rvd) { 779 ASSERT(zio == NULL); 780 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 781 zio = zio_root(spa, NULL, ubbest, flags); 782 bzero(ubbest, sizeof (uberblock_t)); 783 } 784 785 ASSERT(zio != NULL); 786 787 for (int c = 0; c < vd->vdev_children; c++) 788 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 789 790 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 791 for (int l = 0; l < VDEV_LABELS; l++) { 792 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 793 vdev_label_read(zio, vd, l, 794 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 795 VDEV_UBERBLOCK_OFFSET(vd, n), 796 VDEV_UBERBLOCK_SIZE(vd), 797 vdev_uberblock_load_done, zio, flags); 798 } 799 } 800 } 801 802 if (vd == rvd) { 803 (void) zio_wait(zio); 804 spa_config_exit(spa, SCL_ALL, FTAG); 805 } 806 } 807 808 /* 809 * On success, increment root zio's count of good writes. 810 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 811 */ 812 static void 813 vdev_uberblock_sync_done(zio_t *zio) 814 { 815 uint64_t *good_writes = zio->io_private; 816 817 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 818 atomic_add_64(good_writes, 1); 819 } 820 821 /* 822 * Write the uberblock to all labels of all leaves of the specified vdev. 823 */ 824 static void 825 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 826 { 827 uberblock_t *ubbuf; 828 int n; 829 830 for (int c = 0; c < vd->vdev_children; c++) 831 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 832 833 if (!vd->vdev_ops->vdev_op_leaf) 834 return; 835 836 if (!vdev_writeable(vd)) 837 return; 838 839 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 840 841 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 842 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 843 *ubbuf = *ub; 844 845 for (int l = 0; l < VDEV_LABELS; l++) 846 vdev_label_write(zio, vd, l, ubbuf, 847 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 848 vdev_uberblock_sync_done, zio->io_private, 849 flags | ZIO_FLAG_DONT_PROPAGATE); 850 851 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 852 } 853 854 int 855 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 856 { 857 spa_t *spa = svd[0]->vdev_spa; 858 zio_t *zio; 859 uint64_t good_writes = 0; 860 861 zio = zio_root(spa, NULL, &good_writes, flags); 862 863 for (int v = 0; v < svdcount; v++) 864 vdev_uberblock_sync(zio, ub, svd[v], flags); 865 866 (void) zio_wait(zio); 867 868 /* 869 * Flush the uberblocks to disk. This ensures that the odd labels 870 * are no longer needed (because the new uberblocks and the even 871 * labels are safely on disk), so it is safe to overwrite them. 872 */ 873 zio = zio_root(spa, NULL, NULL, flags); 874 875 for (int v = 0; v < svdcount; v++) 876 zio_flush(zio, svd[v]); 877 878 (void) zio_wait(zio); 879 880 return (good_writes >= 1 ? 0 : EIO); 881 } 882 883 /* 884 * On success, increment the count of good writes for our top-level vdev. 885 */ 886 static void 887 vdev_label_sync_done(zio_t *zio) 888 { 889 uint64_t *good_writes = zio->io_private; 890 891 if (zio->io_error == 0) 892 atomic_add_64(good_writes, 1); 893 } 894 895 /* 896 * If there weren't enough good writes, indicate failure to the parent. 897 */ 898 static void 899 vdev_label_sync_top_done(zio_t *zio) 900 { 901 uint64_t *good_writes = zio->io_private; 902 903 if (*good_writes == 0) 904 zio->io_error = EIO; 905 906 kmem_free(good_writes, sizeof (uint64_t)); 907 } 908 909 /* 910 * We ignore errors for log and cache devices, simply free the private data. 911 */ 912 static void 913 vdev_label_sync_ignore_done(zio_t *zio) 914 { 915 kmem_free(zio->io_private, sizeof (uint64_t)); 916 } 917 918 /* 919 * Write all even or odd labels to all leaves of the specified vdev. 920 */ 921 static void 922 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 923 { 924 nvlist_t *label; 925 vdev_phys_t *vp; 926 char *buf; 927 size_t buflen; 928 929 for (int c = 0; c < vd->vdev_children; c++) 930 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 931 932 if (!vd->vdev_ops->vdev_op_leaf) 933 return; 934 935 if (!vdev_writeable(vd)) 936 return; 937 938 /* 939 * Generate a label describing the top-level config to which we belong. 940 */ 941 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 942 943 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 944 bzero(vp, sizeof (vdev_phys_t)); 945 946 buf = vp->vp_nvlist; 947 buflen = sizeof (vp->vp_nvlist); 948 949 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 950 for (; l < VDEV_LABELS; l += 2) { 951 vdev_label_write(zio, vd, l, vp, 952 offsetof(vdev_label_t, vl_vdev_phys), 953 sizeof (vdev_phys_t), 954 vdev_label_sync_done, zio->io_private, 955 flags | ZIO_FLAG_DONT_PROPAGATE); 956 } 957 } 958 959 zio_buf_free(vp, sizeof (vdev_phys_t)); 960 nvlist_free(label); 961 } 962 963 int 964 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 965 { 966 list_t *dl = &spa->spa_config_dirty_list; 967 vdev_t *vd; 968 zio_t *zio; 969 int error; 970 971 /* 972 * Write the new labels to disk. 973 */ 974 zio = zio_root(spa, NULL, NULL, flags); 975 976 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 977 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 978 KM_SLEEP); 979 zio_t *vio = zio_null(zio, spa, NULL, 980 (vd->vdev_islog || vd->vdev_aux != NULL) ? 981 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 982 good_writes, flags); 983 vdev_label_sync(vio, vd, l, txg, flags); 984 zio_nowait(vio); 985 } 986 987 error = zio_wait(zio); 988 989 /* 990 * Flush the new labels to disk. 991 */ 992 zio = zio_root(spa, NULL, NULL, flags); 993 994 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 995 zio_flush(zio, vd); 996 997 (void) zio_wait(zio); 998 999 return (error); 1000 } 1001 1002 /* 1003 * Sync the uberblock and any changes to the vdev configuration. 1004 * 1005 * The order of operations is carefully crafted to ensure that 1006 * if the system panics or loses power at any time, the state on disk 1007 * is still transactionally consistent. The in-line comments below 1008 * describe the failure semantics at each stage. 1009 * 1010 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1011 * at any time, you can just call it again, and it will resume its work. 1012 */ 1013 int 1014 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1015 { 1016 spa_t *spa = svd[0]->vdev_spa; 1017 uberblock_t *ub = &spa->spa_uberblock; 1018 vdev_t *vd; 1019 zio_t *zio; 1020 int error; 1021 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1022 1023 /* 1024 * Normally, we don't want to try too hard to write every label and 1025 * uberblock. If there is a flaky disk, we don't want the rest of the 1026 * sync process to block while we retry. But if we can't write a 1027 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1028 * bailing out and declaring the pool faulted. 1029 */ 1030 if (tryhard) 1031 flags |= ZIO_FLAG_TRYHARD; 1032 1033 ASSERT(ub->ub_txg <= txg); 1034 1035 /* 1036 * If this isn't a resync due to I/O errors, 1037 * and nothing changed in this transaction group, 1038 * and the vdev configuration hasn't changed, 1039 * then there's nothing to do. 1040 */ 1041 if (ub->ub_txg < txg && 1042 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1043 list_is_empty(&spa->spa_config_dirty_list)) 1044 return (0); 1045 1046 if (txg > spa_freeze_txg(spa)) 1047 return (0); 1048 1049 ASSERT(txg <= spa->spa_final_txg); 1050 1051 /* 1052 * Flush the write cache of every disk that's been written to 1053 * in this transaction group. This ensures that all blocks 1054 * written in this txg will be committed to stable storage 1055 * before any uberblock that references them. 1056 */ 1057 zio = zio_root(spa, NULL, NULL, flags); 1058 1059 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1060 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1061 zio_flush(zio, vd); 1062 1063 (void) zio_wait(zio); 1064 1065 /* 1066 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1067 * system dies in the middle of this process, that's OK: all of the 1068 * even labels that made it to disk will be newer than any uberblock, 1069 * and will therefore be considered invalid. The odd labels (L1, L3), 1070 * which have not yet been touched, will still be valid. We flush 1071 * the new labels to disk to ensure that all even-label updates 1072 * are committed to stable storage before the uberblock update. 1073 */ 1074 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1075 return (error); 1076 1077 /* 1078 * Sync the uberblocks to all vdevs in svd[]. 1079 * If the system dies in the middle of this step, there are two cases 1080 * to consider, and the on-disk state is consistent either way: 1081 * 1082 * (1) If none of the new uberblocks made it to disk, then the 1083 * previous uberblock will be the newest, and the odd labels 1084 * (which had not yet been touched) will be valid with respect 1085 * to that uberblock. 1086 * 1087 * (2) If one or more new uberblocks made it to disk, then they 1088 * will be the newest, and the even labels (which had all 1089 * been successfully committed) will be valid with respect 1090 * to the new uberblocks. 1091 */ 1092 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1093 return (error); 1094 1095 /* 1096 * Sync out odd labels for every dirty vdev. If the system dies 1097 * in the middle of this process, the even labels and the new 1098 * uberblocks will suffice to open the pool. The next time 1099 * the pool is opened, the first thing we'll do -- before any 1100 * user data is modified -- is mark every vdev dirty so that 1101 * all labels will be brought up to date. We flush the new labels 1102 * to disk to ensure that all odd-label updates are committed to 1103 * stable storage before the next transaction group begins. 1104 */ 1105 return (vdev_label_sync_list(spa, 1, txg, flags)); 1106 } 1107