1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* 26 * Virtual Device Labels 27 * --------------------- 28 * 29 * The vdev label serves several distinct purposes: 30 * 31 * 1. Uniquely identify this device as part of a ZFS pool and confirm its 32 * identity within the pool. 33 * 34 * 2. Verify that all the devices given in a configuration are present 35 * within the pool. 36 * 37 * 3. Determine the uberblock for the pool. 38 * 39 * 4. In case of an import operation, determine the configuration of the 40 * toplevel vdev of which it is a part. 41 * 42 * 5. If an import operation cannot find all the devices in the pool, 43 * provide enough information to the administrator to determine which 44 * devices are missing. 45 * 46 * It is important to note that while the kernel is responsible for writing the 47 * label, it only consumes the information in the first three cases. The 48 * latter information is only consumed in userland when determining the 49 * configuration to import a pool. 50 * 51 * 52 * Label Organization 53 * ------------------ 54 * 55 * Before describing the contents of the label, it's important to understand how 56 * the labels are written and updated with respect to the uberblock. 57 * 58 * When the pool configuration is altered, either because it was newly created 59 * or a device was added, we want to update all the labels such that we can deal 60 * with fatal failure at any point. To this end, each disk has two labels which 61 * are updated before and after the uberblock is synced. Assuming we have 62 * labels and an uberblock with the following transaction groups: 63 * 64 * L1 UB L2 65 * +------+ +------+ +------+ 66 * | | | | | | 67 * | t10 | | t10 | | t10 | 68 * | | | | | | 69 * +------+ +------+ +------+ 70 * 71 * In this stable state, the labels and the uberblock were all updated within 72 * the same transaction group (10). Each label is mirrored and checksummed, so 73 * that we can detect when we fail partway through writing the label. 74 * 75 * In order to identify which labels are valid, the labels are written in the 76 * following manner: 77 * 78 * 1. For each vdev, update 'L1' to the new label 79 * 2. Update the uberblock 80 * 3. For each vdev, update 'L2' to the new label 81 * 82 * Given arbitrary failure, we can determine the correct label to use based on 83 * the transaction group. If we fail after updating L1 but before updating the 84 * UB, we will notice that L1's transaction group is greater than the uberblock, 85 * so L2 must be valid. If we fail after writing the uberblock but before 86 * writing L2, we will notice that L2's transaction group is less than L1, and 87 * therefore L1 is valid. 88 * 89 * Another added complexity is that not every label is updated when the config 90 * is synced. If we add a single device, we do not want to have to re-write 91 * every label for every device in the pool. This means that both L1 and L2 may 92 * be older than the pool uberblock, because the necessary information is stored 93 * on another vdev. 94 * 95 * 96 * On-disk Format 97 * -------------- 98 * 99 * The vdev label consists of two distinct parts, and is wrapped within the 100 * vdev_label_t structure. The label includes 8k of padding to permit legacy 101 * VTOC disk labels, but is otherwise ignored. 102 * 103 * The first half of the label is a packed nvlist which contains pool wide 104 * properties, per-vdev properties, and configuration information. It is 105 * described in more detail below. 106 * 107 * The latter half of the label consists of a redundant array of uberblocks. 108 * These uberblocks are updated whenever a transaction group is committed, 109 * or when the configuration is updated. When a pool is loaded, we scan each 110 * vdev for the 'best' uberblock. 111 * 112 * 113 * Configuration Information 114 * ------------------------- 115 * 116 * The nvlist describing the pool and vdev contains the following elements: 117 * 118 * version ZFS on-disk version 119 * name Pool name 120 * state Pool state 121 * txg Transaction group in which this label was written 122 * pool_guid Unique identifier for this pool 123 * vdev_tree An nvlist describing vdev tree. 124 * 125 * Each leaf device label also contains the following: 126 * 127 * top_guid Unique ID for top-level vdev in which this is contained 128 * guid Unique ID for the leaf vdev 129 * 130 * The 'vs' configuration follows the format described in 'spa_config.c'. 131 */ 132 133 #include <sys/zfs_context.h> 134 #include <sys/spa.h> 135 #include <sys/spa_impl.h> 136 #include <sys/dmu.h> 137 #include <sys/zap.h> 138 #include <sys/vdev.h> 139 #include <sys/vdev_impl.h> 140 #include <sys/uberblock_impl.h> 141 #include <sys/metaslab.h> 142 #include <sys/zio.h> 143 #include <sys/dsl_scan.h> 144 #include <sys/fs/zfs.h> 145 146 /* 147 * Basic routines to read and write from a vdev label. 148 * Used throughout the rest of this file. 149 */ 150 uint64_t 151 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 152 { 153 ASSERT(offset < sizeof (vdev_label_t)); 154 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 155 156 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 157 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 158 } 159 160 /* 161 * Returns back the vdev label associated with the passed in offset. 162 */ 163 int 164 vdev_label_number(uint64_t psize, uint64_t offset) 165 { 166 int l; 167 168 if (offset >= psize - VDEV_LABEL_END_SIZE) { 169 offset -= psize - VDEV_LABEL_END_SIZE; 170 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 171 } 172 l = offset / sizeof (vdev_label_t); 173 return (l < VDEV_LABELS ? l : -1); 174 } 175 176 static void 177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 178 uint64_t size, zio_done_func_t *done, void *private, int flags) 179 { 180 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 181 SCL_STATE_ALL); 182 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 183 184 zio_nowait(zio_read_phys(zio, vd, 185 vdev_label_offset(vd->vdev_psize, l, offset), 186 size, buf, ZIO_CHECKSUM_LABEL, done, private, 187 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 188 } 189 190 static void 191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 192 uint64_t size, zio_done_func_t *done, void *private, int flags) 193 { 194 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 195 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 196 (SCL_CONFIG | SCL_STATE) && 197 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 198 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 199 200 zio_nowait(zio_write_phys(zio, vd, 201 vdev_label_offset(vd->vdev_psize, l, offset), 202 size, buf, ZIO_CHECKSUM_LABEL, done, private, 203 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 204 } 205 206 /* 207 * Generate the nvlist representing this vdev's config. 208 */ 209 nvlist_t * 210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 211 vdev_config_flag_t flags) 212 { 213 nvlist_t *nv = NULL; 214 215 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 216 217 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 218 vd->vdev_ops->vdev_op_type) == 0); 219 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 220 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 221 == 0); 222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 223 224 if (vd->vdev_path != NULL) 225 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 226 vd->vdev_path) == 0); 227 228 if (vd->vdev_devid != NULL) 229 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 230 vd->vdev_devid) == 0); 231 232 if (vd->vdev_physpath != NULL) 233 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 234 vd->vdev_physpath) == 0); 235 236 if (vd->vdev_fru != NULL) 237 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 238 vd->vdev_fru) == 0); 239 240 if (vd->vdev_nparity != 0) { 241 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 242 VDEV_TYPE_RAIDZ) == 0); 243 244 /* 245 * Make sure someone hasn't managed to sneak a fancy new vdev 246 * into a crufty old storage pool. 247 */ 248 ASSERT(vd->vdev_nparity == 1 || 249 (vd->vdev_nparity <= 2 && 250 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 251 (vd->vdev_nparity <= 3 && 252 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 253 254 /* 255 * Note that we'll add the nparity tag even on storage pools 256 * that only support a single parity device -- older software 257 * will just ignore it. 258 */ 259 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 260 vd->vdev_nparity) == 0); 261 } 262 263 if (vd->vdev_wholedisk != -1ULL) 264 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 265 vd->vdev_wholedisk) == 0); 266 267 if (vd->vdev_not_present) 268 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 269 270 if (vd->vdev_isspare) 271 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 272 273 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 274 vd == vd->vdev_top) { 275 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 276 vd->vdev_ms_array) == 0); 277 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 278 vd->vdev_ms_shift) == 0); 279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 280 vd->vdev_ashift) == 0); 281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 282 vd->vdev_asize) == 0); 283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 284 vd->vdev_islog) == 0); 285 if (vd->vdev_removing) 286 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 287 vd->vdev_removing) == 0); 288 } 289 290 if (vd->vdev_dtl_smo.smo_object != 0) 291 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 292 vd->vdev_dtl_smo.smo_object) == 0); 293 294 if (vd->vdev_crtxg) 295 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 296 vd->vdev_crtxg) == 0); 297 298 if (getstats) { 299 vdev_stat_t vs; 300 pool_scan_stat_t ps; 301 302 vdev_get_stats(vd, &vs); 303 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 304 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 305 306 /* provide either current or previous scan information */ 307 if (spa_scan_get_stats(spa, &ps) == 0) { 308 VERIFY(nvlist_add_uint64_array(nv, 309 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 310 sizeof (pool_scan_stat_t) / sizeof (uint64_t)) 311 == 0); 312 } 313 } 314 315 if (!vd->vdev_ops->vdev_op_leaf) { 316 nvlist_t **child; 317 int c, idx; 318 319 ASSERT(!vd->vdev_ishole); 320 321 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 322 KM_SLEEP); 323 324 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 325 vdev_t *cvd = vd->vdev_child[c]; 326 327 /* 328 * If we're generating an nvlist of removing 329 * vdevs then skip over any device which is 330 * not being removed. 331 */ 332 if ((flags & VDEV_CONFIG_REMOVING) && 333 !cvd->vdev_removing) 334 continue; 335 336 child[idx++] = vdev_config_generate(spa, cvd, 337 getstats, flags); 338 } 339 340 if (idx) { 341 VERIFY(nvlist_add_nvlist_array(nv, 342 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 343 } 344 345 for (c = 0; c < idx; c++) 346 nvlist_free(child[c]); 347 348 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 349 350 } else { 351 const char *aux = NULL; 352 353 if (vd->vdev_offline && !vd->vdev_tmpoffline) 354 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 355 B_TRUE) == 0); 356 if (vd->vdev_faulted) 357 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 358 B_TRUE) == 0); 359 if (vd->vdev_degraded) 360 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 361 B_TRUE) == 0); 362 if (vd->vdev_removed) 363 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 364 B_TRUE) == 0); 365 if (vd->vdev_unspare) 366 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 367 B_TRUE) == 0); 368 if (vd->vdev_ishole) 369 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 370 B_TRUE) == 0); 371 372 switch (vd->vdev_stat.vs_aux) { 373 case VDEV_AUX_ERR_EXCEEDED: 374 aux = "err_exceeded"; 375 break; 376 377 case VDEV_AUX_EXTERNAL: 378 aux = "external"; 379 break; 380 } 381 382 if (aux != NULL) 383 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 384 aux) == 0); 385 386 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 387 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 388 vd->vdev_orig_guid) == 0); 389 } 390 } 391 392 return (nv); 393 } 394 395 /* 396 * Generate a view of the top-level vdevs. If we currently have holes 397 * in the namespace, then generate an array which contains a list of holey 398 * vdevs. Additionally, add the number of top-level children that currently 399 * exist. 400 */ 401 void 402 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 403 { 404 vdev_t *rvd = spa->spa_root_vdev; 405 uint64_t *array; 406 uint_t c, idx; 407 408 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 409 410 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 411 vdev_t *tvd = rvd->vdev_child[c]; 412 413 if (tvd->vdev_ishole) 414 array[idx++] = c; 415 } 416 417 if (idx) { 418 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 419 array, idx) == 0); 420 } 421 422 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 423 rvd->vdev_children) == 0); 424 425 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 426 } 427 428 nvlist_t * 429 vdev_label_read_config(vdev_t *vd) 430 { 431 spa_t *spa = vd->vdev_spa; 432 nvlist_t *config = NULL; 433 vdev_phys_t *vp; 434 zio_t *zio; 435 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 436 ZIO_FLAG_SPECULATIVE; 437 438 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 439 440 if (!vdev_readable(vd)) 441 return (NULL); 442 443 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 444 445 retry: 446 for (int l = 0; l < VDEV_LABELS; l++) { 447 448 zio = zio_root(spa, NULL, NULL, flags); 449 450 vdev_label_read(zio, vd, l, vp, 451 offsetof(vdev_label_t, vl_vdev_phys), 452 sizeof (vdev_phys_t), NULL, NULL, flags); 453 454 if (zio_wait(zio) == 0 && 455 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 456 &config, 0) == 0) 457 break; 458 459 if (config != NULL) { 460 nvlist_free(config); 461 config = NULL; 462 } 463 } 464 465 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 466 flags |= ZIO_FLAG_TRYHARD; 467 goto retry; 468 } 469 470 zio_buf_free(vp, sizeof (vdev_phys_t)); 471 472 return (config); 473 } 474 475 /* 476 * Determine if a device is in use. The 'spare_guid' parameter will be filled 477 * in with the device guid if this spare is active elsewhere on the system. 478 */ 479 static boolean_t 480 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 481 uint64_t *spare_guid, uint64_t *l2cache_guid) 482 { 483 spa_t *spa = vd->vdev_spa; 484 uint64_t state, pool_guid, device_guid, txg, spare_pool; 485 uint64_t vdtxg = 0; 486 nvlist_t *label; 487 488 if (spare_guid) 489 *spare_guid = 0ULL; 490 if (l2cache_guid) 491 *l2cache_guid = 0ULL; 492 493 /* 494 * Read the label, if any, and perform some basic sanity checks. 495 */ 496 if ((label = vdev_label_read_config(vd)) == NULL) 497 return (B_FALSE); 498 499 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 500 &vdtxg); 501 502 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 503 &state) != 0 || 504 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 505 &device_guid) != 0) { 506 nvlist_free(label); 507 return (B_FALSE); 508 } 509 510 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 511 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 512 &pool_guid) != 0 || 513 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 514 &txg) != 0)) { 515 nvlist_free(label); 516 return (B_FALSE); 517 } 518 519 nvlist_free(label); 520 521 /* 522 * Check to see if this device indeed belongs to the pool it claims to 523 * be a part of. The only way this is allowed is if the device is a hot 524 * spare (which we check for later on). 525 */ 526 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 527 !spa_guid_exists(pool_guid, device_guid) && 528 !spa_spare_exists(device_guid, NULL, NULL) && 529 !spa_l2cache_exists(device_guid, NULL)) 530 return (B_FALSE); 531 532 /* 533 * If the transaction group is zero, then this an initialized (but 534 * unused) label. This is only an error if the create transaction 535 * on-disk is the same as the one we're using now, in which case the 536 * user has attempted to add the same vdev multiple times in the same 537 * transaction. 538 */ 539 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 540 txg == 0 && vdtxg == crtxg) 541 return (B_TRUE); 542 543 /* 544 * Check to see if this is a spare device. We do an explicit check for 545 * spa_has_spare() here because it may be on our pending list of spares 546 * to add. We also check if it is an l2cache device. 547 */ 548 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 549 spa_has_spare(spa, device_guid)) { 550 if (spare_guid) 551 *spare_guid = device_guid; 552 553 switch (reason) { 554 case VDEV_LABEL_CREATE: 555 case VDEV_LABEL_L2CACHE: 556 return (B_TRUE); 557 558 case VDEV_LABEL_REPLACE: 559 return (!spa_has_spare(spa, device_guid) || 560 spare_pool != 0ULL); 561 562 case VDEV_LABEL_SPARE: 563 return (spa_has_spare(spa, device_guid)); 564 } 565 } 566 567 /* 568 * Check to see if this is an l2cache device. 569 */ 570 if (spa_l2cache_exists(device_guid, NULL)) 571 return (B_TRUE); 572 573 /* 574 * If the device is marked ACTIVE, then this device is in use by another 575 * pool on the system. 576 */ 577 return (state == POOL_STATE_ACTIVE); 578 } 579 580 /* 581 * Initialize a vdev label. We check to make sure each leaf device is not in 582 * use, and writable. We put down an initial label which we will later 583 * overwrite with a complete label. Note that it's important to do this 584 * sequentially, not in parallel, so that we catch cases of multiple use of the 585 * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with 586 * itself. 587 */ 588 int 589 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 590 { 591 spa_t *spa = vd->vdev_spa; 592 nvlist_t *label; 593 vdev_phys_t *vp; 594 char *pad2; 595 uberblock_t *ub; 596 zio_t *zio; 597 char *buf; 598 size_t buflen; 599 int error; 600 uint64_t spare_guid, l2cache_guid; 601 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 602 603 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 604 605 for (int c = 0; c < vd->vdev_children; c++) 606 if ((error = vdev_label_init(vd->vdev_child[c], 607 crtxg, reason)) != 0) 608 return (error); 609 610 /* Track the creation time for this vdev */ 611 vd->vdev_crtxg = crtxg; 612 613 if (!vd->vdev_ops->vdev_op_leaf) 614 return (0); 615 616 /* 617 * Dead vdevs cannot be initialized. 618 */ 619 if (vdev_is_dead(vd)) 620 return (EIO); 621 622 /* 623 * Determine if the vdev is in use. 624 */ 625 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 626 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 627 return (EBUSY); 628 629 /* 630 * If this is a request to add or replace a spare or l2cache device 631 * that is in use elsewhere on the system, then we must update the 632 * guid (which was initialized to a random value) to reflect the 633 * actual GUID (which is shared between multiple pools). 634 */ 635 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 636 spare_guid != 0ULL) { 637 uint64_t guid_delta = spare_guid - vd->vdev_guid; 638 639 vd->vdev_guid += guid_delta; 640 641 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 642 pvd->vdev_guid_sum += guid_delta; 643 644 /* 645 * If this is a replacement, then we want to fallthrough to the 646 * rest of the code. If we're adding a spare, then it's already 647 * labeled appropriately and we can just return. 648 */ 649 if (reason == VDEV_LABEL_SPARE) 650 return (0); 651 ASSERT(reason == VDEV_LABEL_REPLACE || 652 reason == VDEV_LABEL_SPLIT); 653 } 654 655 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 656 l2cache_guid != 0ULL) { 657 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 658 659 vd->vdev_guid += guid_delta; 660 661 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 662 pvd->vdev_guid_sum += guid_delta; 663 664 /* 665 * If this is a replacement, then we want to fallthrough to the 666 * rest of the code. If we're adding an l2cache, then it's 667 * already labeled appropriately and we can just return. 668 */ 669 if (reason == VDEV_LABEL_L2CACHE) 670 return (0); 671 ASSERT(reason == VDEV_LABEL_REPLACE); 672 } 673 674 /* 675 * Initialize its label. 676 */ 677 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 678 bzero(vp, sizeof (vdev_phys_t)); 679 680 /* 681 * Generate a label describing the pool and our top-level vdev. 682 * We mark it as being from txg 0 to indicate that it's not 683 * really part of an active pool just yet. The labels will 684 * be written again with a meaningful txg by spa_sync(). 685 */ 686 if (reason == VDEV_LABEL_SPARE || 687 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 688 /* 689 * For inactive hot spares, we generate a special label that 690 * identifies as a mutually shared hot spare. We write the 691 * label if we are adding a hot spare, or if we are removing an 692 * active hot spare (in which case we want to revert the 693 * labels). 694 */ 695 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 696 697 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 698 spa_version(spa)) == 0); 699 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 700 POOL_STATE_SPARE) == 0); 701 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 702 vd->vdev_guid) == 0); 703 } else if (reason == VDEV_LABEL_L2CACHE || 704 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 705 /* 706 * For level 2 ARC devices, add a special label. 707 */ 708 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 709 710 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 711 spa_version(spa)) == 0); 712 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 713 POOL_STATE_L2CACHE) == 0); 714 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 715 vd->vdev_guid) == 0); 716 } else { 717 uint64_t txg = 0ULL; 718 719 if (reason == VDEV_LABEL_SPLIT) 720 txg = spa->spa_uberblock.ub_txg; 721 label = spa_config_generate(spa, vd, txg, B_FALSE); 722 723 /* 724 * Add our creation time. This allows us to detect multiple 725 * vdev uses as described above, and automatically expires if we 726 * fail. 727 */ 728 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 729 crtxg) == 0); 730 } 731 732 buf = vp->vp_nvlist; 733 buflen = sizeof (vp->vp_nvlist); 734 735 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 736 if (error != 0) { 737 nvlist_free(label); 738 zio_buf_free(vp, sizeof (vdev_phys_t)); 739 /* EFAULT means nvlist_pack ran out of room */ 740 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 741 } 742 743 /* 744 * Initialize uberblock template. 745 */ 746 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 747 bzero(ub, VDEV_UBERBLOCK_RING); 748 *ub = spa->spa_uberblock; 749 ub->ub_txg = 0; 750 751 /* Initialize the 2nd padding area. */ 752 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 753 bzero(pad2, VDEV_PAD_SIZE); 754 755 /* 756 * Write everything in parallel. 757 */ 758 retry: 759 zio = zio_root(spa, NULL, NULL, flags); 760 761 for (int l = 0; l < VDEV_LABELS; l++) { 762 763 vdev_label_write(zio, vd, l, vp, 764 offsetof(vdev_label_t, vl_vdev_phys), 765 sizeof (vdev_phys_t), NULL, NULL, flags); 766 767 /* 768 * Skip the 1st padding area. 769 * Zero out the 2nd padding area where it might have 770 * left over data from previous filesystem format. 771 */ 772 vdev_label_write(zio, vd, l, pad2, 773 offsetof(vdev_label_t, vl_pad2), 774 VDEV_PAD_SIZE, NULL, NULL, flags); 775 776 vdev_label_write(zio, vd, l, ub, 777 offsetof(vdev_label_t, vl_uberblock), 778 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 779 } 780 781 error = zio_wait(zio); 782 783 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 784 flags |= ZIO_FLAG_TRYHARD; 785 goto retry; 786 } 787 788 nvlist_free(label); 789 zio_buf_free(pad2, VDEV_PAD_SIZE); 790 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 791 zio_buf_free(vp, sizeof (vdev_phys_t)); 792 793 /* 794 * If this vdev hasn't been previously identified as a spare, then we 795 * mark it as such only if a) we are labeling it as a spare, or b) it 796 * exists as a spare elsewhere in the system. Do the same for 797 * level 2 ARC devices. 798 */ 799 if (error == 0 && !vd->vdev_isspare && 800 (reason == VDEV_LABEL_SPARE || 801 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 802 spa_spare_add(vd); 803 804 if (error == 0 && !vd->vdev_isl2cache && 805 (reason == VDEV_LABEL_L2CACHE || 806 spa_l2cache_exists(vd->vdev_guid, NULL))) 807 spa_l2cache_add(vd); 808 809 return (error); 810 } 811 812 /* 813 * ========================================================================== 814 * uberblock load/sync 815 * ========================================================================== 816 */ 817 818 /* 819 * Consider the following situation: txg is safely synced to disk. We've 820 * written the first uberblock for txg + 1, and then we lose power. When we 821 * come back up, we fail to see the uberblock for txg + 1 because, say, 822 * it was on a mirrored device and the replica to which we wrote txg + 1 823 * is now offline. If we then make some changes and sync txg + 1, and then 824 * the missing replica comes back, then for a new seconds we'll have two 825 * conflicting uberblocks on disk with the same txg. The solution is simple: 826 * among uberblocks with equal txg, choose the one with the latest timestamp. 827 */ 828 static int 829 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 830 { 831 if (ub1->ub_txg < ub2->ub_txg) 832 return (-1); 833 if (ub1->ub_txg > ub2->ub_txg) 834 return (1); 835 836 if (ub1->ub_timestamp < ub2->ub_timestamp) 837 return (-1); 838 if (ub1->ub_timestamp > ub2->ub_timestamp) 839 return (1); 840 841 return (0); 842 } 843 844 static void 845 vdev_uberblock_load_done(zio_t *zio) 846 { 847 spa_t *spa = zio->io_spa; 848 zio_t *rio = zio->io_private; 849 uberblock_t *ub = zio->io_data; 850 uberblock_t *ubbest = rio->io_private; 851 852 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd)); 853 854 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 855 mutex_enter(&rio->io_lock); 856 if (ub->ub_txg <= spa->spa_load_max_txg && 857 vdev_uberblock_compare(ub, ubbest) > 0) 858 *ubbest = *ub; 859 mutex_exit(&rio->io_lock); 860 } 861 862 zio_buf_free(zio->io_data, zio->io_size); 863 } 864 865 void 866 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest) 867 { 868 spa_t *spa = vd->vdev_spa; 869 vdev_t *rvd = spa->spa_root_vdev; 870 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 871 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 872 873 if (vd == rvd) { 874 ASSERT(zio == NULL); 875 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 876 zio = zio_root(spa, NULL, ubbest, flags); 877 bzero(ubbest, sizeof (uberblock_t)); 878 } 879 880 ASSERT(zio != NULL); 881 882 for (int c = 0; c < vd->vdev_children; c++) 883 vdev_uberblock_load(zio, vd->vdev_child[c], ubbest); 884 885 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 886 for (int l = 0; l < VDEV_LABELS; l++) { 887 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 888 vdev_label_read(zio, vd, l, 889 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 890 VDEV_UBERBLOCK_OFFSET(vd, n), 891 VDEV_UBERBLOCK_SIZE(vd), 892 vdev_uberblock_load_done, zio, flags); 893 } 894 } 895 } 896 897 if (vd == rvd) { 898 (void) zio_wait(zio); 899 spa_config_exit(spa, SCL_ALL, FTAG); 900 } 901 } 902 903 /* 904 * On success, increment root zio's count of good writes. 905 * We only get credit for writes to known-visible vdevs; see spa_vdev_add(). 906 */ 907 static void 908 vdev_uberblock_sync_done(zio_t *zio) 909 { 910 uint64_t *good_writes = zio->io_private; 911 912 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 913 atomic_add_64(good_writes, 1); 914 } 915 916 /* 917 * Write the uberblock to all labels of all leaves of the specified vdev. 918 */ 919 static void 920 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 921 { 922 uberblock_t *ubbuf; 923 int n; 924 925 for (int c = 0; c < vd->vdev_children; c++) 926 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 927 928 if (!vd->vdev_ops->vdev_op_leaf) 929 return; 930 931 if (!vdev_writeable(vd)) 932 return; 933 934 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 935 936 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 937 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 938 *ubbuf = *ub; 939 940 for (int l = 0; l < VDEV_LABELS; l++) 941 vdev_label_write(zio, vd, l, ubbuf, 942 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 943 vdev_uberblock_sync_done, zio->io_private, 944 flags | ZIO_FLAG_DONT_PROPAGATE); 945 946 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 947 } 948 949 int 950 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 951 { 952 spa_t *spa = svd[0]->vdev_spa; 953 zio_t *zio; 954 uint64_t good_writes = 0; 955 956 zio = zio_root(spa, NULL, &good_writes, flags); 957 958 for (int v = 0; v < svdcount; v++) 959 vdev_uberblock_sync(zio, ub, svd[v], flags); 960 961 (void) zio_wait(zio); 962 963 /* 964 * Flush the uberblocks to disk. This ensures that the odd labels 965 * are no longer needed (because the new uberblocks and the even 966 * labels are safely on disk), so it is safe to overwrite them. 967 */ 968 zio = zio_root(spa, NULL, NULL, flags); 969 970 for (int v = 0; v < svdcount; v++) 971 zio_flush(zio, svd[v]); 972 973 (void) zio_wait(zio); 974 975 return (good_writes >= 1 ? 0 : EIO); 976 } 977 978 /* 979 * On success, increment the count of good writes for our top-level vdev. 980 */ 981 static void 982 vdev_label_sync_done(zio_t *zio) 983 { 984 uint64_t *good_writes = zio->io_private; 985 986 if (zio->io_error == 0) 987 atomic_add_64(good_writes, 1); 988 } 989 990 /* 991 * If there weren't enough good writes, indicate failure to the parent. 992 */ 993 static void 994 vdev_label_sync_top_done(zio_t *zio) 995 { 996 uint64_t *good_writes = zio->io_private; 997 998 if (*good_writes == 0) 999 zio->io_error = EIO; 1000 1001 kmem_free(good_writes, sizeof (uint64_t)); 1002 } 1003 1004 /* 1005 * We ignore errors for log and cache devices, simply free the private data. 1006 */ 1007 static void 1008 vdev_label_sync_ignore_done(zio_t *zio) 1009 { 1010 kmem_free(zio->io_private, sizeof (uint64_t)); 1011 } 1012 1013 /* 1014 * Write all even or odd labels to all leaves of the specified vdev. 1015 */ 1016 static void 1017 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 1018 { 1019 nvlist_t *label; 1020 vdev_phys_t *vp; 1021 char *buf; 1022 size_t buflen; 1023 1024 for (int c = 0; c < vd->vdev_children; c++) 1025 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 1026 1027 if (!vd->vdev_ops->vdev_op_leaf) 1028 return; 1029 1030 if (!vdev_writeable(vd)) 1031 return; 1032 1033 /* 1034 * Generate a label describing the top-level config to which we belong. 1035 */ 1036 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 1037 1038 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 1039 bzero(vp, sizeof (vdev_phys_t)); 1040 1041 buf = vp->vp_nvlist; 1042 buflen = sizeof (vp->vp_nvlist); 1043 1044 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 1045 for (; l < VDEV_LABELS; l += 2) { 1046 vdev_label_write(zio, vd, l, vp, 1047 offsetof(vdev_label_t, vl_vdev_phys), 1048 sizeof (vdev_phys_t), 1049 vdev_label_sync_done, zio->io_private, 1050 flags | ZIO_FLAG_DONT_PROPAGATE); 1051 } 1052 } 1053 1054 zio_buf_free(vp, sizeof (vdev_phys_t)); 1055 nvlist_free(label); 1056 } 1057 1058 int 1059 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 1060 { 1061 list_t *dl = &spa->spa_config_dirty_list; 1062 vdev_t *vd; 1063 zio_t *zio; 1064 int error; 1065 1066 /* 1067 * Write the new labels to disk. 1068 */ 1069 zio = zio_root(spa, NULL, NULL, flags); 1070 1071 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 1072 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 1073 KM_SLEEP); 1074 1075 ASSERT(!vd->vdev_ishole); 1076 1077 zio_t *vio = zio_null(zio, spa, NULL, 1078 (vd->vdev_islog || vd->vdev_aux != NULL) ? 1079 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 1080 good_writes, flags); 1081 vdev_label_sync(vio, vd, l, txg, flags); 1082 zio_nowait(vio); 1083 } 1084 1085 error = zio_wait(zio); 1086 1087 /* 1088 * Flush the new labels to disk. 1089 */ 1090 zio = zio_root(spa, NULL, NULL, flags); 1091 1092 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 1093 zio_flush(zio, vd); 1094 1095 (void) zio_wait(zio); 1096 1097 return (error); 1098 } 1099 1100 /* 1101 * Sync the uberblock and any changes to the vdev configuration. 1102 * 1103 * The order of operations is carefully crafted to ensure that 1104 * if the system panics or loses power at any time, the state on disk 1105 * is still transactionally consistent. The in-line comments below 1106 * describe the failure semantics at each stage. 1107 * 1108 * Moreover, vdev_config_sync() is designed to be idempotent: if it fails 1109 * at any time, you can just call it again, and it will resume its work. 1110 */ 1111 int 1112 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 1113 { 1114 spa_t *spa = svd[0]->vdev_spa; 1115 uberblock_t *ub = &spa->spa_uberblock; 1116 vdev_t *vd; 1117 zio_t *zio; 1118 int error; 1119 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 1120 1121 /* 1122 * Normally, we don't want to try too hard to write every label and 1123 * uberblock. If there is a flaky disk, we don't want the rest of the 1124 * sync process to block while we retry. But if we can't write a 1125 * single label out, we should retry with ZIO_FLAG_TRYHARD before 1126 * bailing out and declaring the pool faulted. 1127 */ 1128 if (tryhard) 1129 flags |= ZIO_FLAG_TRYHARD; 1130 1131 ASSERT(ub->ub_txg <= txg); 1132 1133 /* 1134 * If this isn't a resync due to I/O errors, 1135 * and nothing changed in this transaction group, 1136 * and the vdev configuration hasn't changed, 1137 * then there's nothing to do. 1138 */ 1139 if (ub->ub_txg < txg && 1140 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 1141 list_is_empty(&spa->spa_config_dirty_list)) 1142 return (0); 1143 1144 if (txg > spa_freeze_txg(spa)) 1145 return (0); 1146 1147 ASSERT(txg <= spa->spa_final_txg); 1148 1149 /* 1150 * Flush the write cache of every disk that's been written to 1151 * in this transaction group. This ensures that all blocks 1152 * written in this txg will be committed to stable storage 1153 * before any uberblock that references them. 1154 */ 1155 zio = zio_root(spa, NULL, NULL, flags); 1156 1157 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 1158 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 1159 zio_flush(zio, vd); 1160 1161 (void) zio_wait(zio); 1162 1163 /* 1164 * Sync out the even labels (L0, L2) for every dirty vdev. If the 1165 * system dies in the middle of this process, that's OK: all of the 1166 * even labels that made it to disk will be newer than any uberblock, 1167 * and will therefore be considered invalid. The odd labels (L1, L3), 1168 * which have not yet been touched, will still be valid. We flush 1169 * the new labels to disk to ensure that all even-label updates 1170 * are committed to stable storage before the uberblock update. 1171 */ 1172 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 1173 return (error); 1174 1175 /* 1176 * Sync the uberblocks to all vdevs in svd[]. 1177 * If the system dies in the middle of this step, there are two cases 1178 * to consider, and the on-disk state is consistent either way: 1179 * 1180 * (1) If none of the new uberblocks made it to disk, then the 1181 * previous uberblock will be the newest, and the odd labels 1182 * (which had not yet been touched) will be valid with respect 1183 * to that uberblock. 1184 * 1185 * (2) If one or more new uberblocks made it to disk, then they 1186 * will be the newest, and the even labels (which had all 1187 * been successfully committed) will be valid with respect 1188 * to the new uberblocks. 1189 */ 1190 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 1191 return (error); 1192 1193 /* 1194 * Sync out odd labels for every dirty vdev. If the system dies 1195 * in the middle of this process, the even labels and the new 1196 * uberblocks will suffice to open the pool. The next time 1197 * the pool is opened, the first thing we'll do -- before any 1198 * user data is modified -- is mark every vdev dirty so that 1199 * all labels will be brought up to date. We flush the new labels 1200 * to disk to ensure that all odd-label updates are committed to 1201 * stable storage before the next transaction group begins. 1202 */ 1203 return (vdev_label_sync_list(spa, 1, txg, flags)); 1204 } 1205