1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2013 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2013 Joyent, Inc. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/refcount.h> 31 #include <sys/vdev_disk.h> 32 #include <sys/vdev_impl.h> 33 #include <sys/fs/zfs.h> 34 #include <sys/zio.h> 35 #include <sys/sunldi.h> 36 #include <sys/efi_partition.h> 37 #include <sys/fm/fs/zfs.h> 38 39 /* 40 * Virtual device vector for disks. 41 */ 42 43 extern ldi_ident_t zfs_li; 44 45 static void 46 vdev_disk_hold(vdev_t *vd) 47 { 48 ddi_devid_t devid; 49 char *minor; 50 51 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 52 53 /* 54 * We must have a pathname, and it must be absolute. 55 */ 56 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') 57 return; 58 59 /* 60 * Only prefetch path and devid info if the device has 61 * never been opened. 62 */ 63 if (vd->vdev_tsd != NULL) 64 return; 65 66 if (vd->vdev_wholedisk == -1ULL) { 67 size_t len = strlen(vd->vdev_path) + 3; 68 char *buf = kmem_alloc(len, KM_SLEEP); 69 70 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 71 72 (void) ldi_vp_from_name(buf, &vd->vdev_name_vp); 73 kmem_free(buf, len); 74 } 75 76 if (vd->vdev_name_vp == NULL) 77 (void) ldi_vp_from_name(vd->vdev_path, &vd->vdev_name_vp); 78 79 if (vd->vdev_devid != NULL && 80 ddi_devid_str_decode(vd->vdev_devid, &devid, &minor) == 0) { 81 (void) ldi_vp_from_devid(devid, minor, &vd->vdev_devid_vp); 82 ddi_devid_str_free(minor); 83 ddi_devid_free(devid); 84 } 85 } 86 87 static void 88 vdev_disk_rele(vdev_t *vd) 89 { 90 ASSERT(spa_config_held(vd->vdev_spa, SCL_STATE, RW_WRITER)); 91 92 if (vd->vdev_name_vp) { 93 VN_RELE_ASYNC(vd->vdev_name_vp, 94 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 95 vd->vdev_name_vp = NULL; 96 } 97 if (vd->vdev_devid_vp) { 98 VN_RELE_ASYNC(vd->vdev_devid_vp, 99 dsl_pool_vnrele_taskq(vd->vdev_spa->spa_dsl_pool)); 100 vd->vdev_devid_vp = NULL; 101 } 102 } 103 104 static uint64_t 105 vdev_disk_get_space(vdev_t *vd, uint64_t capacity, uint_t blksz) 106 { 107 ASSERT(vd->vdev_wholedisk); 108 109 vdev_disk_t *dvd = vd->vdev_tsd; 110 dk_efi_t dk_ioc; 111 efi_gpt_t *efi; 112 uint64_t avail_space = 0; 113 int efisize = EFI_LABEL_SIZE * 2; 114 115 dk_ioc.dki_data = kmem_alloc(efisize, KM_SLEEP); 116 dk_ioc.dki_lba = 1; 117 dk_ioc.dki_length = efisize; 118 dk_ioc.dki_data_64 = (uint64_t)(uintptr_t)dk_ioc.dki_data; 119 efi = dk_ioc.dki_data; 120 121 if (ldi_ioctl(dvd->vd_lh, DKIOCGETEFI, (intptr_t)&dk_ioc, 122 FKIOCTL, kcred, NULL) == 0) { 123 uint64_t efi_altern_lba = LE_64(efi->efi_gpt_AlternateLBA); 124 125 zfs_dbgmsg("vdev %s, capacity %llu, altern lba %llu", 126 vd->vdev_path, capacity, efi_altern_lba); 127 if (capacity > efi_altern_lba) 128 avail_space = (capacity - efi_altern_lba) * blksz; 129 } 130 kmem_free(dk_ioc.dki_data, efisize); 131 return (avail_space); 132 } 133 134 /* 135 * We want to be loud in DEBUG kernels when DKIOCGMEDIAINFOEXT fails, or when 136 * even a fallback to DKIOCGMEDIAINFO fails. 137 */ 138 #ifdef DEBUG 139 #define VDEV_DEBUG(...) cmn_err(CE_NOTE, __VA_ARGS__) 140 #else 141 #define VDEV_DEBUG(...) /* Nothing... */ 142 #endif 143 144 static int 145 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *max_psize, 146 uint64_t *ashift) 147 { 148 spa_t *spa = vd->vdev_spa; 149 vdev_disk_t *dvd; 150 union { 151 struct dk_minfo_ext ude; 152 struct dk_minfo ud; 153 } dks; 154 struct dk_minfo_ext *dkmext = &dks.ude; 155 struct dk_minfo *dkm = &dks.ud; 156 int error; 157 dev_t dev; 158 int otyp; 159 boolean_t validate_devid = B_FALSE; 160 ddi_devid_t devid; 161 uint64_t capacity = 0, blksz = 0, pbsize; 162 163 /* 164 * We must have a pathname, and it must be absolute. 165 */ 166 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 167 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 168 return (SET_ERROR(EINVAL)); 169 } 170 171 /* 172 * Reopen the device if it's not currently open. Otherwise, 173 * just update the physical size of the device. 174 */ 175 if (vd->vdev_tsd != NULL) { 176 ASSERT(vd->vdev_reopening); 177 dvd = vd->vdev_tsd; 178 goto skip_open; 179 } 180 181 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 182 183 /* 184 * When opening a disk device, we want to preserve the user's original 185 * intent. We always want to open the device by the path the user gave 186 * us, even if it is one of multiple paths to the same device. But we 187 * also want to be able to survive disks being removed/recabled. 188 * Therefore the sequence of opening devices is: 189 * 190 * 1. Try opening the device by path. For legacy pools without the 191 * 'whole_disk' property, attempt to fix the path by appending 's0'. 192 * 193 * 2. If the devid of the device matches the stored value, return 194 * success. 195 * 196 * 3. Otherwise, the device may have moved. Try opening the device 197 * by the devid instead. 198 */ 199 if (vd->vdev_devid != NULL) { 200 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 201 &dvd->vd_minor) != 0) { 202 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 203 return (SET_ERROR(EINVAL)); 204 } 205 } 206 207 error = EINVAL; /* presume failure */ 208 209 if (vd->vdev_path != NULL) { 210 211 if (vd->vdev_wholedisk == -1ULL) { 212 size_t len = strlen(vd->vdev_path) + 3; 213 char *buf = kmem_alloc(len, KM_SLEEP); 214 ldi_handle_t lh; 215 216 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 217 218 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 219 &lh, zfs_li) == 0) { 220 spa_strfree(vd->vdev_path); 221 vd->vdev_path = buf; 222 vd->vdev_wholedisk = 1ULL; 223 (void) ldi_close(lh, spa_mode(spa), kcred); 224 } else { 225 kmem_free(buf, len); 226 } 227 } 228 229 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 230 &dvd->vd_lh, zfs_li); 231 232 /* 233 * Compare the devid to the stored value. 234 */ 235 if (error == 0 && vd->vdev_devid != NULL && 236 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 237 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 238 error = SET_ERROR(EINVAL); 239 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 240 kcred); 241 dvd->vd_lh = NULL; 242 } 243 ddi_devid_free(devid); 244 } 245 246 /* 247 * If we succeeded in opening the device, but 'vdev_wholedisk' 248 * is not yet set, then this must be a slice. 249 */ 250 if (error == 0 && vd->vdev_wholedisk == -1ULL) 251 vd->vdev_wholedisk = 0; 252 } 253 254 /* 255 * If we were unable to open by path, or the devid check fails, open by 256 * devid instead. 257 */ 258 if (error != 0 && vd->vdev_devid != NULL) { 259 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 260 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 261 } 262 263 /* 264 * If all else fails, then try opening by physical path (if available) 265 * or the logical path (if we failed due to the devid check). While not 266 * as reliable as the devid, this will give us something, and the higher 267 * level vdev validation will prevent us from opening the wrong device. 268 */ 269 if (error) { 270 if (vd->vdev_devid != NULL) 271 validate_devid = B_TRUE; 272 273 if (vd->vdev_physpath != NULL && 274 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 275 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 276 kcred, &dvd->vd_lh, zfs_li); 277 278 /* 279 * Note that we don't support the legacy auto-wholedisk support 280 * as above. This hasn't been used in a very long time and we 281 * don't need to propagate its oddities to this edge condition. 282 */ 283 if (error && vd->vdev_path != NULL) 284 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 285 kcred, &dvd->vd_lh, zfs_li); 286 } 287 288 if (error) { 289 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 290 return (error); 291 } 292 293 /* 294 * Now that the device has been successfully opened, update the devid 295 * if necessary. 296 */ 297 if (validate_devid && spa_writeable(spa) && 298 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 299 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 300 char *vd_devid; 301 302 vd_devid = ddi_devid_str_encode(devid, dvd->vd_minor); 303 zfs_dbgmsg("vdev %s: update devid from %s, " 304 "to %s", vd->vdev_path, vd->vdev_devid, vd_devid); 305 spa_strfree(vd->vdev_devid); 306 vd->vdev_devid = spa_strdup(vd_devid); 307 ddi_devid_str_free(vd_devid); 308 } 309 ddi_devid_free(devid); 310 } 311 312 /* 313 * Once a device is opened, verify that the physical device path (if 314 * available) is up to date. 315 */ 316 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 317 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 318 char *physpath, *minorname; 319 320 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 321 minorname = NULL; 322 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 323 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 324 (vd->vdev_physpath == NULL || 325 strcmp(vd->vdev_physpath, physpath) != 0)) { 326 if (vd->vdev_physpath) 327 spa_strfree(vd->vdev_physpath); 328 (void) strlcat(physpath, ":", MAXPATHLEN); 329 (void) strlcat(physpath, minorname, MAXPATHLEN); 330 vd->vdev_physpath = spa_strdup(physpath); 331 } 332 if (minorname) 333 kmem_free(minorname, strlen(minorname) + 1); 334 kmem_free(physpath, MAXPATHLEN); 335 } 336 337 skip_open: 338 /* 339 * Determine the actual size of the device. 340 */ 341 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 342 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 343 return (SET_ERROR(EINVAL)); 344 } 345 346 *max_psize = *psize; 347 348 /* 349 * Determine the device's minimum transfer size. 350 * If the ioctl isn't supported, assume DEV_BSIZE. 351 */ 352 if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFOEXT, 353 (intptr_t)dkmext, FKIOCTL, kcred, NULL)) == 0) { 354 capacity = dkmext->dki_capacity - 1; 355 blksz = dkmext->dki_lbsize; 356 pbsize = dkmext->dki_pbsize; 357 } else if ((error = ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, 358 (intptr_t)dkm, FKIOCTL, kcred, NULL)) == 0) { 359 VDEV_DEBUG( 360 "vdev_disk_open(\"%s\"): fallback to DKIOCGMEDIAINFO\n", 361 vd->vdev_path); 362 capacity = dkm->dki_capacity - 1; 363 blksz = dkm->dki_lbsize; 364 pbsize = blksz; 365 } else { 366 VDEV_DEBUG("vdev_disk_open(\"%s\"): " 367 "both DKIOCGMEDIAINFO{,EXT} calls failed, %d\n", 368 vd->vdev_path, error); 369 pbsize = DEV_BSIZE; 370 } 371 372 *ashift = highbit(MAX(pbsize, SPA_MINBLOCKSIZE)) - 1; 373 374 if (vd->vdev_wholedisk == 1) { 375 int wce = 1; 376 377 if (error == 0) { 378 /* 379 * If we have the capability to expand, we'd have 380 * found out via success from DKIOCGMEDIAINFO{,EXT}. 381 * Adjust max_psize upward accordingly since we know 382 * we own the whole disk now. 383 */ 384 *max_psize += vdev_disk_get_space(vd, capacity, blksz); 385 zfs_dbgmsg("capacity change: vdev %s, psize %llu, " 386 "max_psize %llu", vd->vdev_path, *psize, 387 *max_psize); 388 } 389 390 /* 391 * Since we own the whole disk, try to enable disk write 392 * caching. We ignore errors because it's OK if we can't do it. 393 */ 394 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 395 FKIOCTL, kcred, NULL); 396 } 397 398 /* 399 * Clear the nowritecache bit, so that on a vdev_reopen() we will 400 * try again. 401 */ 402 vd->vdev_nowritecache = B_FALSE; 403 404 return (0); 405 } 406 407 static void 408 vdev_disk_close(vdev_t *vd) 409 { 410 vdev_disk_t *dvd = vd->vdev_tsd; 411 412 if (vd->vdev_reopening || dvd == NULL) 413 return; 414 415 if (dvd->vd_minor != NULL) 416 ddi_devid_str_free(dvd->vd_minor); 417 418 if (dvd->vd_devid != NULL) 419 ddi_devid_free(dvd->vd_devid); 420 421 if (dvd->vd_lh != NULL) 422 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 423 424 vd->vdev_delayed_close = B_FALSE; 425 kmem_free(dvd, sizeof (vdev_disk_t)); 426 vd->vdev_tsd = NULL; 427 } 428 429 int 430 vdev_disk_physio(vdev_t *vd, caddr_t data, 431 size_t size, uint64_t offset, int flags, boolean_t isdump) 432 { 433 vdev_disk_t *dvd = vd->vdev_tsd; 434 435 ASSERT(vd->vdev_ops == &vdev_disk_ops); 436 437 /* 438 * If in the context of an active crash dump, use the ldi_dump(9F) 439 * call instead of ldi_strategy(9F) as usual. 440 */ 441 if (isdump) { 442 ASSERT3P(dvd, !=, NULL); 443 return (ldi_dump(dvd->vd_lh, data, lbtodb(offset), 444 lbtodb(size))); 445 } 446 447 return (vdev_disk_ldi_physio(dvd->vd_lh, data, size, offset, flags)); 448 } 449 450 int 451 vdev_disk_ldi_physio(ldi_handle_t vd_lh, caddr_t data, 452 size_t size, uint64_t offset, int flags) 453 { 454 buf_t *bp; 455 int error = 0; 456 457 if (vd_lh == NULL) 458 return (SET_ERROR(EINVAL)); 459 460 ASSERT(flags & B_READ || flags & B_WRITE); 461 462 bp = getrbuf(KM_SLEEP); 463 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 464 bp->b_bcount = size; 465 bp->b_un.b_addr = (void *)data; 466 bp->b_lblkno = lbtodb(offset); 467 bp->b_bufsize = size; 468 469 error = ldi_strategy(vd_lh, bp); 470 ASSERT(error == 0); 471 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 472 error = SET_ERROR(EIO); 473 freerbuf(bp); 474 475 return (error); 476 } 477 478 static void 479 vdev_disk_io_intr(buf_t *bp) 480 { 481 vdev_buf_t *vb = (vdev_buf_t *)bp; 482 zio_t *zio = vb->vb_io; 483 484 /* 485 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 486 * Rather than teach the rest of the stack about other error 487 * possibilities (EFAULT, etc), we normalize the error value here. 488 */ 489 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 490 491 if (zio->io_error == 0 && bp->b_resid != 0) 492 zio->io_error = SET_ERROR(EIO); 493 494 kmem_free(vb, sizeof (vdev_buf_t)); 495 496 zio_interrupt(zio); 497 } 498 499 static void 500 vdev_disk_ioctl_free(zio_t *zio) 501 { 502 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 503 } 504 505 static const zio_vsd_ops_t vdev_disk_vsd_ops = { 506 vdev_disk_ioctl_free, 507 zio_vsd_default_cksum_report 508 }; 509 510 static void 511 vdev_disk_ioctl_done(void *zio_arg, int error) 512 { 513 zio_t *zio = zio_arg; 514 515 zio->io_error = error; 516 517 zio_interrupt(zio); 518 } 519 520 static int 521 vdev_disk_io_start(zio_t *zio) 522 { 523 vdev_t *vd = zio->io_vd; 524 vdev_disk_t *dvd = vd->vdev_tsd; 525 vdev_buf_t *vb; 526 struct dk_callback *dkc; 527 buf_t *bp; 528 int error; 529 530 if (zio->io_type == ZIO_TYPE_IOCTL) { 531 /* XXPOLICY */ 532 if (!vdev_readable(vd)) { 533 zio->io_error = SET_ERROR(ENXIO); 534 return (ZIO_PIPELINE_CONTINUE); 535 } 536 537 switch (zio->io_cmd) { 538 539 case DKIOCFLUSHWRITECACHE: 540 541 if (zfs_nocacheflush) 542 break; 543 544 if (vd->vdev_nowritecache) { 545 zio->io_error = SET_ERROR(ENOTSUP); 546 break; 547 } 548 549 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 550 zio->io_vsd_ops = &vdev_disk_vsd_ops; 551 552 dkc->dkc_callback = vdev_disk_ioctl_done; 553 dkc->dkc_flag = FLUSH_VOLATILE; 554 dkc->dkc_cookie = zio; 555 556 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 557 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 558 559 if (error == 0) { 560 /* 561 * The ioctl will be done asychronously, 562 * and will call vdev_disk_ioctl_done() 563 * upon completion. 564 */ 565 return (ZIO_PIPELINE_STOP); 566 } 567 568 if (error == ENOTSUP || error == ENOTTY) { 569 /* 570 * If we get ENOTSUP or ENOTTY, we know that 571 * no future attempts will ever succeed. 572 * In this case we set a persistent bit so 573 * that we don't bother with the ioctl in the 574 * future. 575 */ 576 vd->vdev_nowritecache = B_TRUE; 577 } 578 zio->io_error = error; 579 580 break; 581 582 default: 583 zio->io_error = SET_ERROR(ENOTSUP); 584 } 585 586 return (ZIO_PIPELINE_CONTINUE); 587 } 588 589 vb = kmem_alloc(sizeof (vdev_buf_t), KM_SLEEP); 590 591 vb->vb_io = zio; 592 bp = &vb->vb_buf; 593 594 bioinit(bp); 595 bp->b_flags = B_BUSY | B_NOCACHE | 596 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 597 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 598 bp->b_flags |= B_FAILFAST; 599 bp->b_bcount = zio->io_size; 600 bp->b_un.b_addr = zio->io_data; 601 bp->b_lblkno = lbtodb(zio->io_offset); 602 bp->b_bufsize = zio->io_size; 603 bp->b_iodone = (int (*)())vdev_disk_io_intr; 604 605 /* ldi_strategy() will return non-zero only on programming errors */ 606 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 607 608 return (ZIO_PIPELINE_STOP); 609 } 610 611 static void 612 vdev_disk_io_done(zio_t *zio) 613 { 614 vdev_t *vd = zio->io_vd; 615 616 /* 617 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 618 * the device has been removed. If this is the case, then we trigger an 619 * asynchronous removal of the device. Otherwise, probe the device and 620 * make sure it's still accessible. 621 */ 622 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 623 vdev_disk_t *dvd = vd->vdev_tsd; 624 int state = DKIO_NONE; 625 626 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 627 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 628 /* 629 * We post the resource as soon as possible, instead of 630 * when the async removal actually happens, because the 631 * DE is using this information to discard previous I/O 632 * errors. 633 */ 634 zfs_post_remove(zio->io_spa, vd); 635 vd->vdev_remove_wanted = B_TRUE; 636 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 637 } else if (!vd->vdev_delayed_close) { 638 vd->vdev_delayed_close = B_TRUE; 639 } 640 } 641 } 642 643 vdev_ops_t vdev_disk_ops = { 644 vdev_disk_open, 645 vdev_disk_close, 646 vdev_default_asize, 647 vdev_disk_io_start, 648 vdev_disk_io_done, 649 NULL, 650 vdev_disk_hold, 651 vdev_disk_rele, 652 VDEV_TYPE_DISK, /* name of this vdev type */ 653 B_TRUE /* leaf vdev */ 654 }; 655 656 /* 657 * Given the root disk device devid or pathname, read the label from 658 * the device, and construct a configuration nvlist. 659 */ 660 int 661 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 662 { 663 ldi_handle_t vd_lh; 664 vdev_label_t *label; 665 uint64_t s, size; 666 int l; 667 ddi_devid_t tmpdevid; 668 int error = -1; 669 char *minor_name; 670 671 /* 672 * Read the device label and build the nvlist. 673 */ 674 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 675 &minor_name) == 0) { 676 error = ldi_open_by_devid(tmpdevid, minor_name, 677 FREAD, kcred, &vd_lh, zfs_li); 678 ddi_devid_free(tmpdevid); 679 ddi_devid_str_free(minor_name); 680 } 681 682 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 683 zfs_li))) 684 return (error); 685 686 if (ldi_get_size(vd_lh, &s)) { 687 (void) ldi_close(vd_lh, FREAD, kcred); 688 return (SET_ERROR(EIO)); 689 } 690 691 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 692 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 693 694 *config = NULL; 695 for (l = 0; l < VDEV_LABELS; l++) { 696 uint64_t offset, state, txg = 0; 697 698 /* read vdev label */ 699 offset = vdev_label_offset(size, l, 0); 700 if (vdev_disk_ldi_physio(vd_lh, (caddr_t)label, 701 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 702 continue; 703 704 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 705 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 706 *config = NULL; 707 continue; 708 } 709 710 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 711 &state) != 0 || state >= POOL_STATE_DESTROYED) { 712 nvlist_free(*config); 713 *config = NULL; 714 continue; 715 } 716 717 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 718 &txg) != 0 || txg == 0) { 719 nvlist_free(*config); 720 *config = NULL; 721 continue; 722 } 723 724 break; 725 } 726 727 kmem_free(label, sizeof (vdev_label_t)); 728 (void) ldi_close(vd_lh, FREAD, kcred); 729 if (*config == NULL) 730 error = SET_ERROR(EIDRM); 731 732 return (error); 733 } 734