1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa.h> 30 #include <sys/vdev_disk.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/fs/zfs.h> 33 #include <sys/zio.h> 34 #include <sys/sunldi.h> 35 36 /* 37 * Virtual device vector for disks. 38 */ 39 40 extern ldi_ident_t zfs_li; 41 42 typedef struct vdev_disk_buf { 43 buf_t vdb_buf; 44 zio_t *vdb_io; 45 } vdev_disk_buf_t; 46 47 static int 48 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift) 49 { 50 vdev_disk_t *dvd; 51 struct dk_minfo dkm; 52 int error; 53 dev_t dev; 54 char *physpath, *minorname; 55 int otyp; 56 57 /* 58 * We must have a pathname, and it must be absolute. 59 */ 60 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 61 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 62 return (EINVAL); 63 } 64 65 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 66 67 /* 68 * When opening a disk device, we want to preserve the user's original 69 * intent. We always want to open the device by the path the user gave 70 * us, even if it is one of multiple paths to the save device. But we 71 * also want to be able to survive disks being removed/recabled. 72 * Therefore the sequence of opening devices is: 73 * 74 * 1. Try opening the device by path. For legacy pools without the 75 * 'whole_disk' property, attempt to fix the path by appending 's0'. 76 * 77 * 2. If the devid of the device matches the stored value, return 78 * success. 79 * 80 * 3. Otherwise, the device may have moved. Try opening the device 81 * by the devid instead. 82 * 83 */ 84 if (vd->vdev_devid != NULL) { 85 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 86 &dvd->vd_minor) != 0) { 87 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 88 return (EINVAL); 89 } 90 } 91 92 error = EINVAL; /* presume failure */ 93 94 if (vd->vdev_path != NULL) { 95 ddi_devid_t devid; 96 97 if (vd->vdev_wholedisk == -1ULL) { 98 size_t len = strlen(vd->vdev_path) + 3; 99 char *buf = kmem_alloc(len, KM_SLEEP); 100 ldi_handle_t lh; 101 102 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 103 104 if (ldi_open_by_name(buf, spa_mode, kcred, 105 &lh, zfs_li) == 0) { 106 spa_strfree(vd->vdev_path); 107 vd->vdev_path = buf; 108 vd->vdev_wholedisk = 1ULL; 109 (void) ldi_close(lh, spa_mode, kcred); 110 } else { 111 kmem_free(buf, len); 112 } 113 } 114 115 error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred, 116 &dvd->vd_lh, zfs_li); 117 118 /* 119 * Compare the devid to the stored value. 120 */ 121 if (error == 0 && vd->vdev_devid != NULL && 122 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 123 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 124 error = EINVAL; 125 (void) ldi_close(dvd->vd_lh, spa_mode, kcred); 126 dvd->vd_lh = NULL; 127 } 128 ddi_devid_free(devid); 129 } 130 131 /* 132 * If we succeeded in opening the device, but 'vdev_wholedisk' 133 * is not yet set, then this must be a slice. 134 */ 135 if (error == 0 && vd->vdev_wholedisk == -1ULL) 136 vd->vdev_wholedisk = 0; 137 } 138 139 /* 140 * If we were unable to open by path, or the devid check fails, open by 141 * devid instead. 142 */ 143 if (error != 0 && vd->vdev_devid != NULL) 144 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 145 spa_mode, kcred, &dvd->vd_lh, zfs_li); 146 147 /* 148 * If all else fails, then try opening by physical path (if available) 149 * or the logical path (if we failed due to the devid check). While not 150 * as reliable as the devid, this will give us something, and the higher 151 * level vdev validation will prevent us from opening the wrong device. 152 */ 153 if (error) { 154 if (vd->vdev_physpath != NULL && 155 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != ENODEV) 156 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode, 157 kcred, &dvd->vd_lh, zfs_li); 158 159 /* 160 * Note that we don't support the legacy auto-wholedisk support 161 * as above. This hasn't been used in a very long time and we 162 * don't need to propagate its oddities to this edge condition. 163 */ 164 if (error && vd->vdev_path != NULL) 165 error = ldi_open_by_name(vd->vdev_path, spa_mode, kcred, 166 &dvd->vd_lh, zfs_li); 167 } 168 169 if (error) { 170 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 171 return (error); 172 } 173 174 /* 175 * Once a device is opened, verify that the physical device path (if 176 * available) is up to date. 177 */ 178 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 179 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 180 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 181 minorname = NULL; 182 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 183 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 184 (vd->vdev_physpath == NULL || 185 strcmp(vd->vdev_physpath, physpath) != 0)) { 186 if (vd->vdev_physpath) 187 spa_strfree(vd->vdev_physpath); 188 (void) strlcat(physpath, ":", MAXPATHLEN); 189 (void) strlcat(physpath, minorname, MAXPATHLEN); 190 vd->vdev_physpath = spa_strdup(physpath); 191 } 192 if (minorname) 193 kmem_free(minorname, strlen(minorname) + 1); 194 kmem_free(physpath, MAXPATHLEN); 195 } 196 197 /* 198 * Determine the actual size of the device. 199 */ 200 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 201 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 202 return (EINVAL); 203 } 204 205 /* 206 * If we own the whole disk, try to enable disk write caching. 207 * We ignore errors because it's OK if we can't do it. 208 */ 209 if (vd->vdev_wholedisk == 1) { 210 int wce = 1; 211 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 212 FKIOCTL, kcred, NULL); 213 } 214 215 /* 216 * Determine the device's minimum transfer size. 217 * If the ioctl isn't supported, assume DEV_BSIZE. 218 */ 219 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm, 220 FKIOCTL, kcred, NULL) != 0) 221 dkm.dki_lbsize = DEV_BSIZE; 222 223 *ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1; 224 225 /* 226 * Clear the nowritecache bit, so that on a vdev_reopen() we will 227 * try again. 228 */ 229 vd->vdev_nowritecache = B_FALSE; 230 231 return (0); 232 } 233 234 static void 235 vdev_disk_close(vdev_t *vd) 236 { 237 vdev_disk_t *dvd = vd->vdev_tsd; 238 239 if (dvd == NULL) 240 return; 241 242 if (dvd->vd_minor != NULL) 243 ddi_devid_str_free(dvd->vd_minor); 244 245 if (dvd->vd_devid != NULL) 246 ddi_devid_free(dvd->vd_devid); 247 248 if (dvd->vd_lh != NULL) 249 (void) ldi_close(dvd->vd_lh, spa_mode, kcred); 250 251 kmem_free(dvd, sizeof (vdev_disk_t)); 252 vd->vdev_tsd = NULL; 253 } 254 255 static void 256 vdev_disk_io_intr(buf_t *bp) 257 { 258 vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; 259 zio_t *zio = vdb->vdb_io; 260 261 if ((zio->io_error = geterror(bp)) == 0 && bp->b_resid != 0) 262 zio->io_error = EIO; 263 264 kmem_free(vdb, sizeof (vdev_disk_buf_t)); 265 266 zio_next_stage_async(zio); 267 } 268 269 static void 270 vdev_disk_ioctl_done(void *zio_arg, int error) 271 { 272 zio_t *zio = zio_arg; 273 274 zio->io_error = error; 275 276 zio_next_stage_async(zio); 277 } 278 279 static void 280 vdev_disk_io_start(zio_t *zio) 281 { 282 vdev_t *vd = zio->io_vd; 283 vdev_disk_t *dvd = vd->vdev_tsd; 284 vdev_disk_buf_t *vdb; 285 buf_t *bp; 286 int flags, error; 287 288 if (zio->io_type == ZIO_TYPE_IOCTL) { 289 zio_vdev_io_bypass(zio); 290 291 /* XXPOLICY */ 292 if (vdev_is_dead(vd)) { 293 zio->io_error = ENXIO; 294 zio_next_stage_async(zio); 295 return; 296 } 297 298 switch (zio->io_cmd) { 299 300 case DKIOCFLUSHWRITECACHE: 301 302 if (zfs_nocacheflush) 303 break; 304 305 if (vd->vdev_nowritecache) { 306 zio->io_error = ENOTSUP; 307 break; 308 } 309 310 zio->io_dk_callback.dkc_callback = vdev_disk_ioctl_done; 311 zio->io_dk_callback.dkc_flag = FLUSH_VOLATILE; 312 zio->io_dk_callback.dkc_cookie = zio; 313 314 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 315 (uintptr_t)&zio->io_dk_callback, 316 FKIOCTL, kcred, NULL); 317 318 if (error == 0) { 319 /* 320 * The ioctl will be done asychronously, 321 * and will call vdev_disk_ioctl_done() 322 * upon completion. 323 */ 324 return; 325 } else if (error == ENOTSUP || error == ENOTTY) { 326 /* 327 * If we get ENOTSUP or ENOTTY, we know that 328 * no future attempts will ever succeed. 329 * In this case we set a persistent bit so 330 * that we don't bother with the ioctl in the 331 * future. 332 */ 333 vd->vdev_nowritecache = B_TRUE; 334 } 335 zio->io_error = error; 336 337 break; 338 339 default: 340 zio->io_error = ENOTSUP; 341 } 342 343 zio_next_stage_async(zio); 344 return; 345 } 346 347 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio) == 0) 348 return; 349 350 if ((zio = vdev_queue_io(zio)) == NULL) 351 return; 352 353 flags = (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 354 flags |= B_BUSY | B_NOCACHE; 355 if (zio->io_flags & ZIO_FLAG_FAILFAST) 356 flags |= B_FAILFAST; 357 358 vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); 359 360 vdb->vdb_io = zio; 361 bp = &vdb->vdb_buf; 362 363 bioinit(bp); 364 bp->b_flags = flags; 365 bp->b_bcount = zio->io_size; 366 bp->b_un.b_addr = zio->io_data; 367 bp->b_lblkno = lbtodb(zio->io_offset); 368 bp->b_bufsize = zio->io_size; 369 bp->b_iodone = (int (*)())vdev_disk_io_intr; 370 371 /* XXPOLICY */ 372 error = vdev_is_dead(vd) ? ENXIO : vdev_error_inject(vd, zio); 373 if (error) { 374 zio->io_error = error; 375 bioerror(bp, error); 376 bp->b_resid = bp->b_bcount; 377 bp->b_iodone(bp); 378 return; 379 } 380 381 error = ldi_strategy(dvd->vd_lh, bp); 382 /* ldi_strategy() will return non-zero only on programming errors */ 383 ASSERT(error == 0); 384 } 385 386 static void 387 vdev_disk_io_done(zio_t *zio) 388 { 389 vdev_t *vd = zio->io_vd; 390 vdev_disk_t *dvd = vd->vdev_tsd; 391 int state; 392 393 vdev_queue_io_done(zio); 394 395 if (zio->io_type == ZIO_TYPE_WRITE) 396 vdev_cache_write(zio); 397 398 if (zio_injection_enabled && zio->io_error == 0) 399 zio->io_error = zio_handle_device_injection(zio->io_vd, EIO); 400 401 /* 402 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 403 * the device has been removed. If this is the case, then we trigger an 404 * asynchronous removal of the device. 405 */ 406 if (zio->io_error == EIO) { 407 state = DKIO_NONE; 408 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 409 FKIOCTL, kcred, NULL) == 0 && 410 state != DKIO_INSERTED) { 411 vd->vdev_remove_wanted = B_TRUE; 412 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 413 } 414 } 415 416 zio_next_stage(zio); 417 } 418 419 vdev_ops_t vdev_disk_ops = { 420 vdev_disk_open, 421 vdev_disk_close, 422 vdev_default_asize, 423 vdev_disk_io_start, 424 vdev_disk_io_done, 425 NULL, 426 VDEV_TYPE_DISK, /* name of this vdev type */ 427 B_TRUE /* leaf vdev */ 428 }; 429