xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev_disk.c (revision e4d060fb4c00d44cd578713eb9a921f594b733b8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/refcount.h>
29 #include <sys/vdev_disk.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/fs/zfs.h>
32 #include <sys/zio.h>
33 #include <sys/sunldi.h>
34 #include <sys/fm/fs/zfs.h>
35 
36 /*
37  * Virtual device vector for disks.
38  */
39 
40 extern ldi_ident_t zfs_li;
41 
42 typedef struct vdev_disk_buf {
43 	buf_t	vdb_buf;
44 	zio_t	*vdb_io;
45 } vdev_disk_buf_t;
46 
47 static int
48 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift)
49 {
50 	spa_t *spa = vd->vdev_spa;
51 	vdev_disk_t *dvd;
52 	struct dk_minfo dkm;
53 	int error;
54 	dev_t dev;
55 	int otyp;
56 
57 	/*
58 	 * We must have a pathname, and it must be absolute.
59 	 */
60 	if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') {
61 		vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
62 		return (EINVAL);
63 	}
64 
65 	/*
66 	 * Reopen the device if it's not currently open. Otherwise,
67 	 * just update the physical size of the device.
68 	 */
69 	if (vd->vdev_tsd != NULL) {
70 		ASSERT(vd->vdev_reopening);
71 		dvd = vd->vdev_tsd;
72 		goto skip_open;
73 	}
74 
75 	dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP);
76 
77 	/*
78 	 * When opening a disk device, we want to preserve the user's original
79 	 * intent.  We always want to open the device by the path the user gave
80 	 * us, even if it is one of multiple paths to the save device.  But we
81 	 * also want to be able to survive disks being removed/recabled.
82 	 * Therefore the sequence of opening devices is:
83 	 *
84 	 * 1. Try opening the device by path.  For legacy pools without the
85 	 *    'whole_disk' property, attempt to fix the path by appending 's0'.
86 	 *
87 	 * 2. If the devid of the device matches the stored value, return
88 	 *    success.
89 	 *
90 	 * 3. Otherwise, the device may have moved.  Try opening the device
91 	 *    by the devid instead.
92 	 */
93 	if (vd->vdev_devid != NULL) {
94 		if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid,
95 		    &dvd->vd_minor) != 0) {
96 			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
97 			return (EINVAL);
98 		}
99 	}
100 
101 	error = EINVAL;		/* presume failure */
102 
103 	if (vd->vdev_path != NULL) {
104 		ddi_devid_t devid;
105 
106 		if (vd->vdev_wholedisk == -1ULL) {
107 			size_t len = strlen(vd->vdev_path) + 3;
108 			char *buf = kmem_alloc(len, KM_SLEEP);
109 			ldi_handle_t lh;
110 
111 			(void) snprintf(buf, len, "%ss0", vd->vdev_path);
112 
113 			if (ldi_open_by_name(buf, spa_mode(spa), kcred,
114 			    &lh, zfs_li) == 0) {
115 				spa_strfree(vd->vdev_path);
116 				vd->vdev_path = buf;
117 				vd->vdev_wholedisk = 1ULL;
118 				(void) ldi_close(lh, spa_mode(spa), kcred);
119 			} else {
120 				kmem_free(buf, len);
121 			}
122 		}
123 
124 		error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred,
125 		    &dvd->vd_lh, zfs_li);
126 
127 		/*
128 		 * Compare the devid to the stored value.
129 		 */
130 		if (error == 0 && vd->vdev_devid != NULL &&
131 		    ldi_get_devid(dvd->vd_lh, &devid) == 0) {
132 			if (ddi_devid_compare(devid, dvd->vd_devid) != 0) {
133 				error = EINVAL;
134 				(void) ldi_close(dvd->vd_lh, spa_mode(spa),
135 				    kcred);
136 				dvd->vd_lh = NULL;
137 			}
138 			ddi_devid_free(devid);
139 		}
140 
141 		/*
142 		 * If we succeeded in opening the device, but 'vdev_wholedisk'
143 		 * is not yet set, then this must be a slice.
144 		 */
145 		if (error == 0 && vd->vdev_wholedisk == -1ULL)
146 			vd->vdev_wholedisk = 0;
147 	}
148 
149 	/*
150 	 * If we were unable to open by path, or the devid check fails, open by
151 	 * devid instead.
152 	 */
153 	if (error != 0 && vd->vdev_devid != NULL)
154 		error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor,
155 		    spa_mode(spa), kcred, &dvd->vd_lh, zfs_li);
156 
157 	/*
158 	 * If all else fails, then try opening by physical path (if available)
159 	 * or the logical path (if we failed due to the devid check).  While not
160 	 * as reliable as the devid, this will give us something, and the higher
161 	 * level vdev validation will prevent us from opening the wrong device.
162 	 */
163 	if (error) {
164 		if (vd->vdev_physpath != NULL &&
165 		    (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV)
166 			error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa),
167 			    kcred, &dvd->vd_lh, zfs_li);
168 
169 		/*
170 		 * Note that we don't support the legacy auto-wholedisk support
171 		 * as above.  This hasn't been used in a very long time and we
172 		 * don't need to propagate its oddities to this edge condition.
173 		 */
174 		if (error && vd->vdev_path != NULL)
175 			error = ldi_open_by_name(vd->vdev_path, spa_mode(spa),
176 			    kcred, &dvd->vd_lh, zfs_li);
177 	}
178 
179 	if (error) {
180 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
181 		return (error);
182 	}
183 
184 	/*
185 	 * Once a device is opened, verify that the physical device path (if
186 	 * available) is up to date.
187 	 */
188 	if (ldi_get_dev(dvd->vd_lh, &dev) == 0 &&
189 	    ldi_get_otyp(dvd->vd_lh, &otyp) == 0) {
190 		char *physpath, *minorname;
191 
192 		physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP);
193 		minorname = NULL;
194 		if (ddi_dev_pathname(dev, otyp, physpath) == 0 &&
195 		    ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 &&
196 		    (vd->vdev_physpath == NULL ||
197 		    strcmp(vd->vdev_physpath, physpath) != 0)) {
198 			if (vd->vdev_physpath)
199 				spa_strfree(vd->vdev_physpath);
200 			(void) strlcat(physpath, ":", MAXPATHLEN);
201 			(void) strlcat(physpath, minorname, MAXPATHLEN);
202 			vd->vdev_physpath = spa_strdup(physpath);
203 		}
204 		if (minorname)
205 			kmem_free(minorname, strlen(minorname) + 1);
206 		kmem_free(physpath, MAXPATHLEN);
207 	}
208 
209 skip_open:
210 	/*
211 	 * Determine the actual size of the device.
212 	 */
213 	if (ldi_get_size(dvd->vd_lh, psize) != 0) {
214 		vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED;
215 		return (EINVAL);
216 	}
217 
218 	/*
219 	 * If we own the whole disk, try to enable disk write caching.
220 	 * We ignore errors because it's OK if we can't do it.
221 	 */
222 	if (vd->vdev_wholedisk == 1) {
223 		int wce = 1;
224 		(void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce,
225 		    FKIOCTL, kcred, NULL);
226 	}
227 
228 	/*
229 	 * Determine the device's minimum transfer size.
230 	 * If the ioctl isn't supported, assume DEV_BSIZE.
231 	 */
232 	if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm,
233 	    FKIOCTL, kcred, NULL) != 0)
234 		dkm.dki_lbsize = DEV_BSIZE;
235 
236 	*ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1;
237 
238 	/*
239 	 * Clear the nowritecache bit, so that on a vdev_reopen() we will
240 	 * try again.
241 	 */
242 	vd->vdev_nowritecache = B_FALSE;
243 
244 	return (0);
245 }
246 
247 static void
248 vdev_disk_close(vdev_t *vd)
249 {
250 	vdev_disk_t *dvd = vd->vdev_tsd;
251 
252 	if (vd->vdev_reopening || dvd == NULL)
253 		return;
254 
255 	if (dvd->vd_minor != NULL)
256 		ddi_devid_str_free(dvd->vd_minor);
257 
258 	if (dvd->vd_devid != NULL)
259 		ddi_devid_free(dvd->vd_devid);
260 
261 	if (dvd->vd_lh != NULL)
262 		(void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred);
263 
264 	kmem_free(dvd, sizeof (vdev_disk_t));
265 	vd->vdev_tsd = NULL;
266 }
267 
268 int
269 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size,
270     uint64_t offset, int flags)
271 {
272 	buf_t *bp;
273 	int error = 0;
274 
275 	if (vd_lh == NULL)
276 		return (EINVAL);
277 
278 	ASSERT(flags & B_READ || flags & B_WRITE);
279 
280 	bp = getrbuf(KM_SLEEP);
281 	bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST;
282 	bp->b_bcount = size;
283 	bp->b_un.b_addr = (void *)data;
284 	bp->b_lblkno = lbtodb(offset);
285 	bp->b_bufsize = size;
286 
287 	error = ldi_strategy(vd_lh, bp);
288 	ASSERT(error == 0);
289 	if ((error = biowait(bp)) == 0 && bp->b_resid != 0)
290 		error = EIO;
291 	freerbuf(bp);
292 
293 	return (error);
294 }
295 
296 static void
297 vdev_disk_io_intr(buf_t *bp)
298 {
299 	vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp;
300 	zio_t *zio = vdb->vdb_io;
301 
302 	/*
303 	 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO.
304 	 * Rather than teach the rest of the stack about other error
305 	 * possibilities (EFAULT, etc), we normalize the error value here.
306 	 */
307 	zio->io_error = (geterror(bp) != 0 ? EIO : 0);
308 
309 	if (zio->io_error == 0 && bp->b_resid != 0)
310 		zio->io_error = EIO;
311 
312 	kmem_free(vdb, sizeof (vdev_disk_buf_t));
313 
314 	zio_interrupt(zio);
315 }
316 
317 static void
318 vdev_disk_ioctl_free(zio_t *zio)
319 {
320 	kmem_free(zio->io_vsd, sizeof (struct dk_callback));
321 }
322 
323 static const zio_vsd_ops_t vdev_disk_vsd_ops = {
324 	vdev_disk_ioctl_free,
325 	zio_vsd_default_cksum_report
326 };
327 
328 static void
329 vdev_disk_ioctl_done(void *zio_arg, int error)
330 {
331 	zio_t *zio = zio_arg;
332 
333 	zio->io_error = error;
334 
335 	zio_interrupt(zio);
336 }
337 
338 static int
339 vdev_disk_io_start(zio_t *zio)
340 {
341 	vdev_t *vd = zio->io_vd;
342 	vdev_disk_t *dvd = vd->vdev_tsd;
343 	vdev_disk_buf_t *vdb;
344 	struct dk_callback *dkc;
345 	buf_t *bp;
346 	int error;
347 
348 	if (zio->io_type == ZIO_TYPE_IOCTL) {
349 		/* XXPOLICY */
350 		if (!vdev_readable(vd)) {
351 			zio->io_error = ENXIO;
352 			return (ZIO_PIPELINE_CONTINUE);
353 		}
354 
355 		switch (zio->io_cmd) {
356 
357 		case DKIOCFLUSHWRITECACHE:
358 
359 			if (zfs_nocacheflush)
360 				break;
361 
362 			if (vd->vdev_nowritecache) {
363 				zio->io_error = ENOTSUP;
364 				break;
365 			}
366 
367 			zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP);
368 			zio->io_vsd_ops = &vdev_disk_vsd_ops;
369 
370 			dkc->dkc_callback = vdev_disk_ioctl_done;
371 			dkc->dkc_flag = FLUSH_VOLATILE;
372 			dkc->dkc_cookie = zio;
373 
374 			error = ldi_ioctl(dvd->vd_lh, zio->io_cmd,
375 			    (uintptr_t)dkc, FKIOCTL, kcred, NULL);
376 
377 			if (error == 0) {
378 				/*
379 				 * The ioctl will be done asychronously,
380 				 * and will call vdev_disk_ioctl_done()
381 				 * upon completion.
382 				 */
383 				return (ZIO_PIPELINE_STOP);
384 			}
385 
386 			if (error == ENOTSUP || error == ENOTTY) {
387 				/*
388 				 * If we get ENOTSUP or ENOTTY, we know that
389 				 * no future attempts will ever succeed.
390 				 * In this case we set a persistent bit so
391 				 * that we don't bother with the ioctl in the
392 				 * future.
393 				 */
394 				vd->vdev_nowritecache = B_TRUE;
395 			}
396 			zio->io_error = error;
397 
398 			break;
399 
400 		default:
401 			zio->io_error = ENOTSUP;
402 		}
403 
404 		return (ZIO_PIPELINE_CONTINUE);
405 	}
406 
407 	vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP);
408 
409 	vdb->vdb_io = zio;
410 	bp = &vdb->vdb_buf;
411 
412 	bioinit(bp);
413 	bp->b_flags = B_BUSY | B_NOCACHE |
414 	    (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE);
415 	if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD)))
416 		bp->b_flags |= B_FAILFAST;
417 	bp->b_bcount = zio->io_size;
418 	bp->b_un.b_addr = zio->io_data;
419 	bp->b_lblkno = lbtodb(zio->io_offset);
420 	bp->b_bufsize = zio->io_size;
421 	bp->b_iodone = (int (*)())vdev_disk_io_intr;
422 
423 	/* ldi_strategy() will return non-zero only on programming errors */
424 	VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0);
425 
426 	return (ZIO_PIPELINE_STOP);
427 }
428 
429 static void
430 vdev_disk_io_done(zio_t *zio)
431 {
432 	vdev_t *vd = zio->io_vd;
433 
434 	/*
435 	 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if
436 	 * the device has been removed.  If this is the case, then we trigger an
437 	 * asynchronous removal of the device. Otherwise, probe the device and
438 	 * make sure it's still accessible.
439 	 */
440 	if (zio->io_error == EIO && !vd->vdev_remove_wanted) {
441 		vdev_disk_t *dvd = vd->vdev_tsd;
442 		int state = DKIO_NONE;
443 
444 		if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state,
445 		    FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) {
446 			/*
447 			 * We post the resource as soon as possible, instead of
448 			 * when the async removal actually happens, because the
449 			 * DE is using this information to discard previous I/O
450 			 * errors.
451 			 */
452 			zfs_post_remove(zio->io_spa, vd);
453 			vd->vdev_remove_wanted = B_TRUE;
454 			spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE);
455 		}
456 	}
457 }
458 
459 vdev_ops_t vdev_disk_ops = {
460 	vdev_disk_open,
461 	vdev_disk_close,
462 	vdev_default_asize,
463 	vdev_disk_io_start,
464 	vdev_disk_io_done,
465 	NULL,
466 	VDEV_TYPE_DISK,		/* name of this vdev type */
467 	B_TRUE			/* leaf vdev */
468 };
469 
470 /*
471  * Given the root disk device devid or pathname, read the label from
472  * the device, and construct a configuration nvlist.
473  */
474 int
475 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config)
476 {
477 	ldi_handle_t vd_lh;
478 	vdev_label_t *label;
479 	uint64_t s, size;
480 	int l;
481 	ddi_devid_t tmpdevid;
482 	int error = -1;
483 	char *minor_name;
484 
485 	/*
486 	 * Read the device label and build the nvlist.
487 	 */
488 	if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid,
489 	    &minor_name) == 0) {
490 		error = ldi_open_by_devid(tmpdevid, minor_name,
491 		    FREAD, kcred, &vd_lh, zfs_li);
492 		ddi_devid_free(tmpdevid);
493 		ddi_devid_str_free(minor_name);
494 	}
495 
496 	if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh,
497 	    zfs_li)))
498 		return (error);
499 
500 	if (ldi_get_size(vd_lh, &s)) {
501 		(void) ldi_close(vd_lh, FREAD, kcred);
502 		return (EIO);
503 	}
504 
505 	size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t);
506 	label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP);
507 
508 	*config = NULL;
509 	for (l = 0; l < VDEV_LABELS; l++) {
510 		uint64_t offset, state, txg = 0;
511 
512 		/* read vdev label */
513 		offset = vdev_label_offset(size, l, 0);
514 		if (vdev_disk_physio(vd_lh, (caddr_t)label,
515 		    VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0)
516 			continue;
517 
518 		if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
519 		    sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) {
520 			*config = NULL;
521 			continue;
522 		}
523 
524 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
525 		    &state) != 0 || state >= POOL_STATE_DESTROYED) {
526 			nvlist_free(*config);
527 			*config = NULL;
528 			continue;
529 		}
530 
531 		if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
532 		    &txg) != 0 || txg == 0) {
533 			nvlist_free(*config);
534 			*config = NULL;
535 			continue;
536 		}
537 
538 		break;
539 	}
540 
541 	kmem_free(label, sizeof (vdev_label_t));
542 	(void) ldi_close(vd_lh, FREAD, kcred);
543 	if (*config == NULL)
544 		error = EIDRM;
545 
546 	return (error);
547 }
548