1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/refcount.h> 29 #include <sys/vdev_disk.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/fs/zfs.h> 32 #include <sys/zio.h> 33 #include <sys/sunldi.h> 34 #include <sys/fm/fs/zfs.h> 35 36 /* 37 * Virtual device vector for disks. 38 */ 39 40 extern ldi_ident_t zfs_li; 41 42 typedef struct vdev_disk_buf { 43 buf_t vdb_buf; 44 zio_t *vdb_io; 45 } vdev_disk_buf_t; 46 47 static int 48 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift) 49 { 50 spa_t *spa = vd->vdev_spa; 51 vdev_disk_t *dvd; 52 struct dk_minfo dkm; 53 int error; 54 dev_t dev; 55 int otyp; 56 57 /* 58 * We must have a pathname, and it must be absolute. 59 */ 60 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 61 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 62 return (EINVAL); 63 } 64 65 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 66 67 /* 68 * When opening a disk device, we want to preserve the user's original 69 * intent. We always want to open the device by the path the user gave 70 * us, even if it is one of multiple paths to the save device. But we 71 * also want to be able to survive disks being removed/recabled. 72 * Therefore the sequence of opening devices is: 73 * 74 * 1. Try opening the device by path. For legacy pools without the 75 * 'whole_disk' property, attempt to fix the path by appending 's0'. 76 * 77 * 2. If the devid of the device matches the stored value, return 78 * success. 79 * 80 * 3. Otherwise, the device may have moved. Try opening the device 81 * by the devid instead. 82 * 83 * If the vdev is part of the root pool, we avoid opening it by path 84 * unless we're adding (i.e. attaching) it to the vdev namespace. 85 * We do this because there is no /dev path available early in boot, 86 * and if we try to open the device by path at a later point, we can 87 * deadlock when devfsadm attempts to open the underlying backing store 88 * file. 89 */ 90 if (vd->vdev_devid != NULL) { 91 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 92 &dvd->vd_minor) != 0) { 93 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 94 return (EINVAL); 95 } 96 } 97 98 error = EINVAL; /* presume failure */ 99 100 if (vd->vdev_path != NULL && (!spa_is_root(spa) || 101 spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE) == NULL)) { 102 ddi_devid_t devid; 103 104 if (vd->vdev_wholedisk == -1ULL) { 105 size_t len = strlen(vd->vdev_path) + 3; 106 char *buf = kmem_alloc(len, KM_SLEEP); 107 ldi_handle_t lh; 108 109 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 110 111 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 112 &lh, zfs_li) == 0) { 113 spa_strfree(vd->vdev_path); 114 vd->vdev_path = buf; 115 vd->vdev_wholedisk = 1ULL; 116 (void) ldi_close(lh, spa_mode(spa), kcred); 117 } else { 118 kmem_free(buf, len); 119 } 120 } 121 122 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 123 &dvd->vd_lh, zfs_li); 124 125 /* 126 * Compare the devid to the stored value. 127 */ 128 if (error == 0 && vd->vdev_devid != NULL && 129 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 130 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 131 error = EINVAL; 132 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 133 kcred); 134 dvd->vd_lh = NULL; 135 } 136 ddi_devid_free(devid); 137 } 138 139 /* 140 * If we succeeded in opening the device, but 'vdev_wholedisk' 141 * is not yet set, then this must be a slice. 142 */ 143 if (error == 0 && vd->vdev_wholedisk == -1ULL) 144 vd->vdev_wholedisk = 0; 145 } 146 147 /* 148 * If we were unable to open by path, or the devid check fails, open by 149 * devid instead. 150 */ 151 if (error != 0 && vd->vdev_devid != NULL) 152 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 153 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 154 155 /* 156 * If all else fails, then try opening by physical path (if available) 157 * or the logical path (if we failed due to the devid check). While not 158 * as reliable as the devid, this will give us something, and the higher 159 * level vdev validation will prevent us from opening the wrong device. 160 */ 161 if (error) { 162 if (vd->vdev_physpath != NULL && 163 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 164 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 165 kcred, &dvd->vd_lh, zfs_li); 166 167 /* 168 * Note that we don't support the legacy auto-wholedisk support 169 * as above. This hasn't been used in a very long time and we 170 * don't need to propagate its oddities to this edge condition. 171 */ 172 if (error && vd->vdev_path != NULL && (!spa_is_root(spa) || 173 spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE) == NULL)) 174 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 175 kcred, &dvd->vd_lh, zfs_li); 176 } 177 178 if (error) { 179 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 180 return (error); 181 } 182 183 /* 184 * Once a device is opened, verify that the physical device path (if 185 * available) is up to date. 186 */ 187 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 188 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 189 char *physpath, *minorname; 190 191 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 192 minorname = NULL; 193 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 194 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 195 (vd->vdev_physpath == NULL || 196 strcmp(vd->vdev_physpath, physpath) != 0)) { 197 if (vd->vdev_physpath) 198 spa_strfree(vd->vdev_physpath); 199 (void) strlcat(physpath, ":", MAXPATHLEN); 200 (void) strlcat(physpath, minorname, MAXPATHLEN); 201 vd->vdev_physpath = spa_strdup(physpath); 202 } 203 if (minorname) 204 kmem_free(minorname, strlen(minorname) + 1); 205 kmem_free(physpath, MAXPATHLEN); 206 } 207 208 /* 209 * Determine the actual size of the device. 210 */ 211 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 212 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 213 return (EINVAL); 214 } 215 216 /* 217 * If we own the whole disk, try to enable disk write caching. 218 * We ignore errors because it's OK if we can't do it. 219 */ 220 if (vd->vdev_wholedisk == 1) { 221 int wce = 1; 222 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 223 FKIOCTL, kcred, NULL); 224 } 225 226 /* 227 * Determine the device's minimum transfer size. 228 * If the ioctl isn't supported, assume DEV_BSIZE. 229 */ 230 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm, 231 FKIOCTL, kcred, NULL) != 0) 232 dkm.dki_lbsize = DEV_BSIZE; 233 234 *ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1; 235 236 /* 237 * Clear the nowritecache bit, so that on a vdev_reopen() we will 238 * try again. 239 */ 240 vd->vdev_nowritecache = B_FALSE; 241 242 return (0); 243 } 244 245 static void 246 vdev_disk_close(vdev_t *vd) 247 { 248 vdev_disk_t *dvd = vd->vdev_tsd; 249 250 if (dvd == NULL) 251 return; 252 253 if (dvd->vd_minor != NULL) 254 ddi_devid_str_free(dvd->vd_minor); 255 256 if (dvd->vd_devid != NULL) 257 ddi_devid_free(dvd->vd_devid); 258 259 if (dvd->vd_lh != NULL) 260 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 261 262 kmem_free(dvd, sizeof (vdev_disk_t)); 263 vd->vdev_tsd = NULL; 264 } 265 266 int 267 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size, 268 uint64_t offset, int flags) 269 { 270 buf_t *bp; 271 int error = 0; 272 273 if (vd_lh == NULL) 274 return (EINVAL); 275 276 ASSERT(flags & B_READ || flags & B_WRITE); 277 278 bp = getrbuf(KM_SLEEP); 279 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 280 bp->b_bcount = size; 281 bp->b_un.b_addr = (void *)data; 282 bp->b_lblkno = lbtodb(offset); 283 bp->b_bufsize = size; 284 285 error = ldi_strategy(vd_lh, bp); 286 ASSERT(error == 0); 287 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 288 error = EIO; 289 freerbuf(bp); 290 291 return (error); 292 } 293 294 static void 295 vdev_disk_io_intr(buf_t *bp) 296 { 297 vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; 298 zio_t *zio = vdb->vdb_io; 299 300 /* 301 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 302 * Rather than teach the rest of the stack about other error 303 * possibilities (EFAULT, etc), we normalize the error value here. 304 */ 305 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 306 307 if (zio->io_error == 0 && bp->b_resid != 0) 308 zio->io_error = EIO; 309 310 kmem_free(vdb, sizeof (vdev_disk_buf_t)); 311 312 zio_interrupt(zio); 313 } 314 315 static void 316 vdev_disk_ioctl_free(zio_t *zio) 317 { 318 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 319 } 320 321 static void 322 vdev_disk_ioctl_done(void *zio_arg, int error) 323 { 324 zio_t *zio = zio_arg; 325 326 zio->io_error = error; 327 328 zio_interrupt(zio); 329 } 330 331 static int 332 vdev_disk_io_start(zio_t *zio) 333 { 334 vdev_t *vd = zio->io_vd; 335 vdev_disk_t *dvd = vd->vdev_tsd; 336 vdev_disk_buf_t *vdb; 337 struct dk_callback *dkc; 338 buf_t *bp; 339 int error; 340 341 if (zio->io_type == ZIO_TYPE_IOCTL) { 342 /* XXPOLICY */ 343 if (!vdev_readable(vd)) { 344 zio->io_error = ENXIO; 345 return (ZIO_PIPELINE_CONTINUE); 346 } 347 348 switch (zio->io_cmd) { 349 350 case DKIOCFLUSHWRITECACHE: 351 352 if (zfs_nocacheflush) 353 break; 354 355 if (vd->vdev_nowritecache) { 356 zio->io_error = ENOTSUP; 357 break; 358 } 359 360 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 361 zio->io_vsd_free = vdev_disk_ioctl_free; 362 363 dkc->dkc_callback = vdev_disk_ioctl_done; 364 dkc->dkc_flag = FLUSH_VOLATILE; 365 dkc->dkc_cookie = zio; 366 367 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 368 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 369 370 if (error == 0) { 371 /* 372 * The ioctl will be done asychronously, 373 * and will call vdev_disk_ioctl_done() 374 * upon completion. 375 */ 376 return (ZIO_PIPELINE_STOP); 377 } 378 379 if (error == ENOTSUP || error == ENOTTY) { 380 /* 381 * If we get ENOTSUP or ENOTTY, we know that 382 * no future attempts will ever succeed. 383 * In this case we set a persistent bit so 384 * that we don't bother with the ioctl in the 385 * future. 386 */ 387 vd->vdev_nowritecache = B_TRUE; 388 } 389 zio->io_error = error; 390 391 break; 392 393 default: 394 zio->io_error = ENOTSUP; 395 } 396 397 return (ZIO_PIPELINE_CONTINUE); 398 } 399 400 vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); 401 402 vdb->vdb_io = zio; 403 bp = &vdb->vdb_buf; 404 405 bioinit(bp); 406 bp->b_flags = B_BUSY | B_NOCACHE | 407 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 408 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 409 bp->b_flags |= B_FAILFAST; 410 bp->b_bcount = zio->io_size; 411 bp->b_un.b_addr = zio->io_data; 412 bp->b_lblkno = lbtodb(zio->io_offset); 413 bp->b_bufsize = zio->io_size; 414 bp->b_iodone = (int (*)())vdev_disk_io_intr; 415 416 /* ldi_strategy() will return non-zero only on programming errors */ 417 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 418 419 return (ZIO_PIPELINE_STOP); 420 } 421 422 static void 423 vdev_disk_io_done(zio_t *zio) 424 { 425 vdev_t *vd = zio->io_vd; 426 427 /* 428 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 429 * the device has been removed. If this is the case, then we trigger an 430 * asynchronous removal of the device. Otherwise, probe the device and 431 * make sure it's still accessible. 432 */ 433 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 434 vdev_disk_t *dvd = vd->vdev_tsd; 435 int state = DKIO_NONE; 436 437 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 438 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 439 /* 440 * We post the resource as soon as possible, instead of 441 * when the async removal actually happens, because the 442 * DE is using this information to discard previous I/O 443 * errors. 444 */ 445 zfs_post_remove(zio->io_spa, vd); 446 vd->vdev_remove_wanted = B_TRUE; 447 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 448 } 449 } 450 } 451 452 vdev_ops_t vdev_disk_ops = { 453 vdev_disk_open, 454 vdev_disk_close, 455 vdev_default_asize, 456 vdev_disk_io_start, 457 vdev_disk_io_done, 458 NULL, 459 VDEV_TYPE_DISK, /* name of this vdev type */ 460 B_TRUE /* leaf vdev */ 461 }; 462 463 /* 464 * Given the root disk device devid or pathname, read the label from 465 * the device, and construct a configuration nvlist. 466 */ 467 int 468 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 469 { 470 ldi_handle_t vd_lh; 471 vdev_label_t *label; 472 uint64_t s, size; 473 int l; 474 ddi_devid_t tmpdevid; 475 int error = -1; 476 char *minor_name; 477 478 /* 479 * Read the device label and build the nvlist. 480 */ 481 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 482 &minor_name) == 0) { 483 error = ldi_open_by_devid(tmpdevid, minor_name, 484 FREAD, kcred, &vd_lh, zfs_li); 485 ddi_devid_free(tmpdevid); 486 ddi_devid_str_free(minor_name); 487 } 488 489 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 490 zfs_li))) 491 return (error); 492 493 if (ldi_get_size(vd_lh, &s)) { 494 (void) ldi_close(vd_lh, FREAD, kcred); 495 return (EIO); 496 } 497 498 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 499 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 500 501 *config = NULL; 502 for (l = 0; l < VDEV_LABELS; l++) { 503 uint64_t offset, state, txg = 0; 504 505 /* read vdev label */ 506 offset = vdev_label_offset(size, l, 0); 507 if (vdev_disk_physio(vd_lh, (caddr_t)label, 508 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 509 continue; 510 511 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 512 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 513 *config = NULL; 514 continue; 515 } 516 517 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 518 &state) != 0 || state >= POOL_STATE_DESTROYED) { 519 nvlist_free(*config); 520 *config = NULL; 521 continue; 522 } 523 524 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 525 &txg) != 0 || txg == 0) { 526 nvlist_free(*config); 527 *config = NULL; 528 continue; 529 } 530 531 break; 532 } 533 534 kmem_free(label, sizeof (vdev_label_t)); 535 (void) ldi_close(vd_lh, FREAD, kcred); 536 if (*config == NULL) 537 error = EIDRM; 538 539 return (error); 540 } 541