1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/refcount.h> 29 #include <sys/vdev_disk.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/fs/zfs.h> 32 #include <sys/zio.h> 33 #include <sys/sunldi.h> 34 #include <sys/fm/fs/zfs.h> 35 36 /* 37 * Virtual device vector for disks. 38 */ 39 40 extern ldi_ident_t zfs_li; 41 42 typedef struct vdev_disk_buf { 43 buf_t vdb_buf; 44 zio_t *vdb_io; 45 } vdev_disk_buf_t; 46 47 static int 48 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift) 49 { 50 spa_t *spa = vd->vdev_spa; 51 vdev_disk_t *dvd; 52 struct dk_minfo dkm; 53 int error; 54 dev_t dev; 55 int otyp; 56 57 /* 58 * We must have a pathname, and it must be absolute. 59 */ 60 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 61 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 62 return (EINVAL); 63 } 64 65 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 66 67 /* 68 * When opening a disk device, we want to preserve the user's original 69 * intent. We always want to open the device by the path the user gave 70 * us, even if it is one of multiple paths to the save device. But we 71 * also want to be able to survive disks being removed/recabled. 72 * Therefore the sequence of opening devices is: 73 * 74 * 1. Try opening the device by path. For legacy pools without the 75 * 'whole_disk' property, attempt to fix the path by appending 's0'. 76 * 77 * 2. If the devid of the device matches the stored value, return 78 * success. 79 * 80 * 3. Otherwise, the device may have moved. Try opening the device 81 * by the devid instead. 82 * 83 * If the vdev is part of the root pool, we avoid opening it by path 84 * unless we're adding (i.e. attaching) it to the vdev namespace. 85 * We do this because there is no /dev path available early in boot, 86 * and if we try to open the device by path at a later point, we can 87 * deadlock when devfsadm attempts to open the underlying backing store 88 * file. 89 */ 90 if (vd->vdev_devid != NULL) { 91 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 92 &dvd->vd_minor) != 0) { 93 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 94 return (EINVAL); 95 } 96 } 97 98 error = EINVAL; /* presume failure */ 99 100 if (vd->vdev_path != NULL && (!spa_is_root(spa) || 101 spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE) == NULL)) { 102 ddi_devid_t devid; 103 104 if (vd->vdev_wholedisk == -1ULL) { 105 size_t len = strlen(vd->vdev_path) + 3; 106 char *buf = kmem_alloc(len, KM_SLEEP); 107 ldi_handle_t lh; 108 109 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 110 111 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 112 &lh, zfs_li) == 0) { 113 spa_strfree(vd->vdev_path); 114 vd->vdev_path = buf; 115 vd->vdev_wholedisk = 1ULL; 116 (void) ldi_close(lh, spa_mode(spa), kcred); 117 } else { 118 kmem_free(buf, len); 119 } 120 } 121 122 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 123 &dvd->vd_lh, zfs_li); 124 125 /* 126 * Compare the devid to the stored value. 127 */ 128 if (error == 0 && vd->vdev_devid != NULL && 129 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 130 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 131 error = EINVAL; 132 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 133 kcred); 134 dvd->vd_lh = NULL; 135 } 136 ddi_devid_free(devid); 137 } 138 139 /* 140 * If we succeeded in opening the device, but 'vdev_wholedisk' 141 * is not yet set, then this must be a slice. 142 */ 143 if (error == 0 && vd->vdev_wholedisk == -1ULL) 144 vd->vdev_wholedisk = 0; 145 } 146 147 /* 148 * If we were unable to open by path, or the devid check fails, open by 149 * devid instead. 150 */ 151 if (error != 0 && vd->vdev_devid != NULL) 152 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 153 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 154 155 /* 156 * If all else fails, then try opening by physical path (if available) 157 * or the logical path (if we failed due to the devid check). While not 158 * as reliable as the devid, this will give us something, and the higher 159 * level vdev validation will prevent us from opening the wrong device. 160 */ 161 if (error) { 162 if (vd->vdev_physpath != NULL && 163 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 164 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 165 kcred, &dvd->vd_lh, zfs_li); 166 167 /* 168 * Note that we don't support the legacy auto-wholedisk support 169 * as above. This hasn't been used in a very long time and we 170 * don't need to propagate its oddities to this edge condition. 171 */ 172 if (error && vd->vdev_path != NULL && (!spa_is_root(spa) || 173 spa_lookup_by_guid(spa, vd->vdev_guid, B_FALSE) == NULL)) 174 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 175 kcred, &dvd->vd_lh, zfs_li); 176 } 177 178 if (error) { 179 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 180 return (error); 181 } 182 183 /* 184 * Once a device is opened, verify that the physical device path (if 185 * available) is up to date. 186 */ 187 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 188 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 189 char *physpath, *minorname; 190 191 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 192 minorname = NULL; 193 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 194 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 195 (vd->vdev_physpath == NULL || 196 strcmp(vd->vdev_physpath, physpath) != 0)) { 197 if (vd->vdev_physpath) 198 spa_strfree(vd->vdev_physpath); 199 (void) strlcat(physpath, ":", MAXPATHLEN); 200 (void) strlcat(physpath, minorname, MAXPATHLEN); 201 vd->vdev_physpath = spa_strdup(physpath); 202 } 203 if (minorname) 204 kmem_free(minorname, strlen(minorname) + 1); 205 kmem_free(physpath, MAXPATHLEN); 206 } 207 208 /* 209 * Determine the actual size of the device. 210 */ 211 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 212 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 213 return (EINVAL); 214 } 215 216 /* 217 * If we own the whole disk, try to enable disk write caching. 218 * We ignore errors because it's OK if we can't do it. 219 */ 220 if (vd->vdev_wholedisk == 1) { 221 int wce = 1; 222 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 223 FKIOCTL, kcred, NULL); 224 } 225 226 /* 227 * Determine the device's minimum transfer size. 228 * If the ioctl isn't supported, assume DEV_BSIZE. 229 */ 230 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm, 231 FKIOCTL, kcred, NULL) != 0) 232 dkm.dki_lbsize = DEV_BSIZE; 233 234 *ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1; 235 236 /* 237 * Clear the nowritecache bit, so that on a vdev_reopen() we will 238 * try again. 239 */ 240 vd->vdev_nowritecache = B_FALSE; 241 242 return (0); 243 } 244 245 static void 246 vdev_disk_close(vdev_t *vd) 247 { 248 vdev_disk_t *dvd = vd->vdev_tsd; 249 250 if (dvd == NULL) 251 return; 252 253 if (dvd->vd_minor != NULL) 254 ddi_devid_str_free(dvd->vd_minor); 255 256 if (dvd->vd_devid != NULL) 257 ddi_devid_free(dvd->vd_devid); 258 259 if (dvd->vd_lh != NULL) 260 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 261 262 kmem_free(dvd, sizeof (vdev_disk_t)); 263 vd->vdev_tsd = NULL; 264 } 265 266 int 267 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size, 268 uint64_t offset, int flags) 269 { 270 buf_t *bp; 271 int error = 0; 272 273 if (vd_lh == NULL) 274 return (EINVAL); 275 276 ASSERT(flags & B_READ || flags & B_WRITE); 277 278 bp = getrbuf(KM_SLEEP); 279 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 280 bp->b_bcount = size; 281 bp->b_un.b_addr = (void *)data; 282 bp->b_lblkno = lbtodb(offset); 283 bp->b_bufsize = size; 284 285 error = ldi_strategy(vd_lh, bp); 286 ASSERT(error == 0); 287 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 288 error = EIO; 289 freerbuf(bp); 290 291 return (error); 292 } 293 294 static void 295 vdev_disk_io_intr(buf_t *bp) 296 { 297 vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; 298 zio_t *zio = vdb->vdb_io; 299 300 /* 301 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 302 * Rather than teach the rest of the stack about other error 303 * possibilities (EFAULT, etc), we normalize the error value here. 304 */ 305 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 306 307 if (zio->io_error == 0 && bp->b_resid != 0) 308 zio->io_error = EIO; 309 310 kmem_free(vdb, sizeof (vdev_disk_buf_t)); 311 312 zio_interrupt(zio); 313 } 314 315 static void 316 vdev_disk_ioctl_free(zio_t *zio) 317 { 318 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 319 } 320 321 static const zio_vsd_ops_t vdev_disk_vsd_ops = { 322 vdev_disk_ioctl_free, 323 zio_vsd_default_cksum_report 324 }; 325 326 static void 327 vdev_disk_ioctl_done(void *zio_arg, int error) 328 { 329 zio_t *zio = zio_arg; 330 331 zio->io_error = error; 332 333 zio_interrupt(zio); 334 } 335 336 static int 337 vdev_disk_io_start(zio_t *zio) 338 { 339 vdev_t *vd = zio->io_vd; 340 vdev_disk_t *dvd = vd->vdev_tsd; 341 vdev_disk_buf_t *vdb; 342 struct dk_callback *dkc; 343 buf_t *bp; 344 int error; 345 346 if (zio->io_type == ZIO_TYPE_IOCTL) { 347 /* XXPOLICY */ 348 if (!vdev_readable(vd)) { 349 zio->io_error = ENXIO; 350 return (ZIO_PIPELINE_CONTINUE); 351 } 352 353 switch (zio->io_cmd) { 354 355 case DKIOCFLUSHWRITECACHE: 356 357 if (zfs_nocacheflush) 358 break; 359 360 if (vd->vdev_nowritecache) { 361 zio->io_error = ENOTSUP; 362 break; 363 } 364 365 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 366 zio->io_vsd_ops = &vdev_disk_vsd_ops; 367 368 dkc->dkc_callback = vdev_disk_ioctl_done; 369 dkc->dkc_flag = FLUSH_VOLATILE; 370 dkc->dkc_cookie = zio; 371 372 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 373 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 374 375 if (error == 0) { 376 /* 377 * The ioctl will be done asychronously, 378 * and will call vdev_disk_ioctl_done() 379 * upon completion. 380 */ 381 return (ZIO_PIPELINE_STOP); 382 } 383 384 if (error == ENOTSUP || error == ENOTTY) { 385 /* 386 * If we get ENOTSUP or ENOTTY, we know that 387 * no future attempts will ever succeed. 388 * In this case we set a persistent bit so 389 * that we don't bother with the ioctl in the 390 * future. 391 */ 392 vd->vdev_nowritecache = B_TRUE; 393 } 394 zio->io_error = error; 395 396 break; 397 398 default: 399 zio->io_error = ENOTSUP; 400 } 401 402 return (ZIO_PIPELINE_CONTINUE); 403 } 404 405 vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); 406 407 vdb->vdb_io = zio; 408 bp = &vdb->vdb_buf; 409 410 bioinit(bp); 411 bp->b_flags = B_BUSY | B_NOCACHE | 412 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 413 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 414 bp->b_flags |= B_FAILFAST; 415 bp->b_bcount = zio->io_size; 416 bp->b_un.b_addr = zio->io_data; 417 bp->b_lblkno = lbtodb(zio->io_offset); 418 bp->b_bufsize = zio->io_size; 419 bp->b_iodone = (int (*)())vdev_disk_io_intr; 420 421 /* ldi_strategy() will return non-zero only on programming errors */ 422 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 423 424 return (ZIO_PIPELINE_STOP); 425 } 426 427 static void 428 vdev_disk_io_done(zio_t *zio) 429 { 430 vdev_t *vd = zio->io_vd; 431 432 /* 433 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 434 * the device has been removed. If this is the case, then we trigger an 435 * asynchronous removal of the device. Otherwise, probe the device and 436 * make sure it's still accessible. 437 */ 438 if (zio->io_error == EIO && !vd->vdev_remove_wanted) { 439 vdev_disk_t *dvd = vd->vdev_tsd; 440 int state = DKIO_NONE; 441 442 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 443 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 444 /* 445 * We post the resource as soon as possible, instead of 446 * when the async removal actually happens, because the 447 * DE is using this information to discard previous I/O 448 * errors. 449 */ 450 zfs_post_remove(zio->io_spa, vd); 451 vd->vdev_remove_wanted = B_TRUE; 452 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 453 } 454 } 455 } 456 457 vdev_ops_t vdev_disk_ops = { 458 vdev_disk_open, 459 vdev_disk_close, 460 vdev_default_asize, 461 vdev_disk_io_start, 462 vdev_disk_io_done, 463 NULL, 464 VDEV_TYPE_DISK, /* name of this vdev type */ 465 B_TRUE /* leaf vdev */ 466 }; 467 468 /* 469 * Given the root disk device devid or pathname, read the label from 470 * the device, and construct a configuration nvlist. 471 */ 472 int 473 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 474 { 475 ldi_handle_t vd_lh; 476 vdev_label_t *label; 477 uint64_t s, size; 478 int l; 479 ddi_devid_t tmpdevid; 480 int error = -1; 481 char *minor_name; 482 483 /* 484 * Read the device label and build the nvlist. 485 */ 486 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 487 &minor_name) == 0) { 488 error = ldi_open_by_devid(tmpdevid, minor_name, 489 FREAD, kcred, &vd_lh, zfs_li); 490 ddi_devid_free(tmpdevid); 491 ddi_devid_str_free(minor_name); 492 } 493 494 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 495 zfs_li))) 496 return (error); 497 498 if (ldi_get_size(vd_lh, &s)) { 499 (void) ldi_close(vd_lh, FREAD, kcred); 500 return (EIO); 501 } 502 503 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 504 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 505 506 *config = NULL; 507 for (l = 0; l < VDEV_LABELS; l++) { 508 uint64_t offset, state, txg = 0; 509 510 /* read vdev label */ 511 offset = vdev_label_offset(size, l, 0); 512 if (vdev_disk_physio(vd_lh, (caddr_t)label, 513 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 514 continue; 515 516 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 517 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 518 *config = NULL; 519 continue; 520 } 521 522 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 523 &state) != 0 || state >= POOL_STATE_DESTROYED) { 524 nvlist_free(*config); 525 *config = NULL; 526 continue; 527 } 528 529 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 530 &txg) != 0 || txg == 0) { 531 nvlist_free(*config); 532 *config = NULL; 533 continue; 534 } 535 536 break; 537 } 538 539 kmem_free(label, sizeof (vdev_label_t)); 540 (void) ldi_close(vd_lh, FREAD, kcred); 541 if (*config == NULL) 542 error = EIDRM; 543 544 return (error); 545 } 546