xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev_cache.c (revision 1babaf948dd28d81d79cf3ec089d6edc111ed4a8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa.h>
28 #include <sys/vdev_impl.h>
29 #include <sys/zio.h>
30 #include <sys/kstat.h>
31 
32 /*
33  * Virtual device read-ahead caching.
34  *
35  * This file implements a simple LRU read-ahead cache.  When the DMU reads
36  * a given block, it will often want other, nearby blocks soon thereafter.
37  * We take advantage of this by reading a larger disk region and caching
38  * the result.  In the best case, this can turn 128 back-to-back 512-byte
39  * reads into a single 64k read followed by 127 cache hits; this reduces
40  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
41  * read into a 64k read, which doesn't affect latency all that much but is
42  * terribly wasteful of bandwidth.  A more intelligent version of the cache
43  * could keep track of access patterns and not do read-ahead unless it sees
44  * at least two temporally close I/Os to the same region.  Currently, only
45  * metadata I/O is inflated.  A futher enhancement could take advantage of
46  * more semantic information about the I/O.  And it could use something
47  * faster than an AVL tree; that was chosen solely for convenience.
48  *
49  * There are five cache operations: allocate, fill, read, write, evict.
50  *
51  * (1) Allocate.  This reserves a cache entry for the specified region.
52  *     We separate the allocate and fill operations so that multiple threads
53  *     don't generate I/O for the same cache miss.
54  *
55  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
56  *     places the data in the previously allocated cache entry.
57  *
58  * (3) Read.  Read data from the cache.
59  *
60  * (4) Write.  Update cache contents after write completion.
61  *
62  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
63  *     if the total cache size exceeds zfs_vdev_cache_size.
64  */
65 
66 /*
67  * These tunables are for performance analysis.
68  */
69 /*
70  * All i/os smaller than zfs_vdev_cache_max will be turned into
71  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
72  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
73  * vdev's vdev_cache.
74  *
75  * TODO: Note that with the current ZFS code, it turns out that the
76  * vdev cache is not helpful, and in some cases actually harmful.  It
77  * is better if we disable this.  Once some time has passed, we should
78  * actually remove this to simplify the code.  For now we just disable
79  * it by setting the zfs_vdev_cache_size to zero.  Note that Solaris 11
80  * has made these same changes.
81  */
82 int zfs_vdev_cache_max = 1<<14;			/* 16KB */
83 int zfs_vdev_cache_size = 0;
84 int zfs_vdev_cache_bshift = 16;
85 
86 #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
87 
88 kstat_t	*vdc_ksp = NULL;
89 
90 typedef struct vdc_stats {
91 	kstat_named_t vdc_stat_delegations;
92 	kstat_named_t vdc_stat_hits;
93 	kstat_named_t vdc_stat_misses;
94 } vdc_stats_t;
95 
96 static vdc_stats_t vdc_stats = {
97 	{ "delegations",	KSTAT_DATA_UINT64 },
98 	{ "hits",		KSTAT_DATA_UINT64 },
99 	{ "misses",		KSTAT_DATA_UINT64 }
100 };
101 
102 #define	VDCSTAT_BUMP(stat)	atomic_add_64(&vdc_stats.stat.value.ui64, 1);
103 
104 static int
105 vdev_cache_offset_compare(const void *a1, const void *a2)
106 {
107 	const vdev_cache_entry_t *ve1 = a1;
108 	const vdev_cache_entry_t *ve2 = a2;
109 
110 	if (ve1->ve_offset < ve2->ve_offset)
111 		return (-1);
112 	if (ve1->ve_offset > ve2->ve_offset)
113 		return (1);
114 	return (0);
115 }
116 
117 static int
118 vdev_cache_lastused_compare(const void *a1, const void *a2)
119 {
120 	const vdev_cache_entry_t *ve1 = a1;
121 	const vdev_cache_entry_t *ve2 = a2;
122 
123 	if (ve1->ve_lastused < ve2->ve_lastused)
124 		return (-1);
125 	if (ve1->ve_lastused > ve2->ve_lastused)
126 		return (1);
127 
128 	/*
129 	 * Among equally old entries, sort by offset to ensure uniqueness.
130 	 */
131 	return (vdev_cache_offset_compare(a1, a2));
132 }
133 
134 /*
135  * Evict the specified entry from the cache.
136  */
137 static void
138 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
139 {
140 	ASSERT(MUTEX_HELD(&vc->vc_lock));
141 	ASSERT(ve->ve_fill_io == NULL);
142 	ASSERT(ve->ve_data != NULL);
143 
144 	avl_remove(&vc->vc_lastused_tree, ve);
145 	avl_remove(&vc->vc_offset_tree, ve);
146 	zio_buf_free(ve->ve_data, VCBS);
147 	kmem_free(ve, sizeof (vdev_cache_entry_t));
148 }
149 
150 /*
151  * Allocate an entry in the cache.  At the point we don't have the data,
152  * we're just creating a placeholder so that multiple threads don't all
153  * go off and read the same blocks.
154  */
155 static vdev_cache_entry_t *
156 vdev_cache_allocate(zio_t *zio)
157 {
158 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
159 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
160 	vdev_cache_entry_t *ve;
161 
162 	ASSERT(MUTEX_HELD(&vc->vc_lock));
163 
164 	if (zfs_vdev_cache_size == 0)
165 		return (NULL);
166 
167 	/*
168 	 * If adding a new entry would exceed the cache size,
169 	 * evict the oldest entry (LRU).
170 	 */
171 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
172 	    zfs_vdev_cache_size) {
173 		ve = avl_first(&vc->vc_lastused_tree);
174 		if (ve->ve_fill_io != NULL)
175 			return (NULL);
176 		ASSERT(ve->ve_hits != 0);
177 		vdev_cache_evict(vc, ve);
178 	}
179 
180 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
181 	ve->ve_offset = offset;
182 	ve->ve_lastused = ddi_get_lbolt();
183 	ve->ve_data = zio_buf_alloc(VCBS);
184 
185 	avl_add(&vc->vc_offset_tree, ve);
186 	avl_add(&vc->vc_lastused_tree, ve);
187 
188 	return (ve);
189 }
190 
191 static void
192 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
193 {
194 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
195 
196 	ASSERT(MUTEX_HELD(&vc->vc_lock));
197 	ASSERT(ve->ve_fill_io == NULL);
198 
199 	if (ve->ve_lastused != ddi_get_lbolt()) {
200 		avl_remove(&vc->vc_lastused_tree, ve);
201 		ve->ve_lastused = ddi_get_lbolt();
202 		avl_add(&vc->vc_lastused_tree, ve);
203 	}
204 
205 	ve->ve_hits++;
206 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
207 }
208 
209 /*
210  * Fill a previously allocated cache entry with data.
211  */
212 static void
213 vdev_cache_fill(zio_t *fio)
214 {
215 	vdev_t *vd = fio->io_vd;
216 	vdev_cache_t *vc = &vd->vdev_cache;
217 	vdev_cache_entry_t *ve = fio->io_private;
218 	zio_t *pio;
219 
220 	ASSERT(fio->io_size == VCBS);
221 
222 	/*
223 	 * Add data to the cache.
224 	 */
225 	mutex_enter(&vc->vc_lock);
226 
227 	ASSERT(ve->ve_fill_io == fio);
228 	ASSERT(ve->ve_offset == fio->io_offset);
229 	ASSERT(ve->ve_data == fio->io_data);
230 
231 	ve->ve_fill_io = NULL;
232 
233 	/*
234 	 * Even if this cache line was invalidated by a missed write update,
235 	 * any reads that were queued up before the missed update are still
236 	 * valid, so we can satisfy them from this line before we evict it.
237 	 */
238 	while ((pio = zio_walk_parents(fio)) != NULL)
239 		vdev_cache_hit(vc, ve, pio);
240 
241 	if (fio->io_error || ve->ve_missed_update)
242 		vdev_cache_evict(vc, ve);
243 
244 	mutex_exit(&vc->vc_lock);
245 }
246 
247 /*
248  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
249  */
250 int
251 vdev_cache_read(zio_t *zio)
252 {
253 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
254 	vdev_cache_entry_t *ve, ve_search;
255 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
256 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
257 	zio_t *fio;
258 
259 	ASSERT(zio->io_type == ZIO_TYPE_READ);
260 
261 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
262 		return (EINVAL);
263 
264 	if (zio->io_size > zfs_vdev_cache_max)
265 		return (EOVERFLOW);
266 
267 	/*
268 	 * If the I/O straddles two or more cache blocks, don't cache it.
269 	 */
270 	if (P2BOUNDARY(zio->io_offset, zio->io_size, VCBS))
271 		return (EXDEV);
272 
273 	ASSERT(cache_phase + zio->io_size <= VCBS);
274 
275 	mutex_enter(&vc->vc_lock);
276 
277 	ve_search.ve_offset = cache_offset;
278 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
279 
280 	if (ve != NULL) {
281 		if (ve->ve_missed_update) {
282 			mutex_exit(&vc->vc_lock);
283 			return (ESTALE);
284 		}
285 
286 		if ((fio = ve->ve_fill_io) != NULL) {
287 			zio_vdev_io_bypass(zio);
288 			zio_add_child(zio, fio);
289 			mutex_exit(&vc->vc_lock);
290 			VDCSTAT_BUMP(vdc_stat_delegations);
291 			return (0);
292 		}
293 
294 		vdev_cache_hit(vc, ve, zio);
295 		zio_vdev_io_bypass(zio);
296 
297 		mutex_exit(&vc->vc_lock);
298 		VDCSTAT_BUMP(vdc_stat_hits);
299 		return (0);
300 	}
301 
302 	ve = vdev_cache_allocate(zio);
303 
304 	if (ve == NULL) {
305 		mutex_exit(&vc->vc_lock);
306 		return (ENOMEM);
307 	}
308 
309 	fio = zio_vdev_delegated_io(zio->io_vd, cache_offset,
310 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
311 	    ZIO_FLAG_DONT_CACHE, vdev_cache_fill, ve);
312 
313 	ve->ve_fill_io = fio;
314 	zio_vdev_io_bypass(zio);
315 	zio_add_child(zio, fio);
316 
317 	mutex_exit(&vc->vc_lock);
318 	zio_nowait(fio);
319 	VDCSTAT_BUMP(vdc_stat_misses);
320 
321 	return (0);
322 }
323 
324 /*
325  * Update cache contents upon write completion.
326  */
327 void
328 vdev_cache_write(zio_t *zio)
329 {
330 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
331 	vdev_cache_entry_t *ve, ve_search;
332 	uint64_t io_start = zio->io_offset;
333 	uint64_t io_end = io_start + zio->io_size;
334 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
335 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
336 	avl_index_t where;
337 
338 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
339 
340 	mutex_enter(&vc->vc_lock);
341 
342 	ve_search.ve_offset = min_offset;
343 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
344 
345 	if (ve == NULL)
346 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
347 
348 	while (ve != NULL && ve->ve_offset < max_offset) {
349 		uint64_t start = MAX(ve->ve_offset, io_start);
350 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
351 
352 		if (ve->ve_fill_io != NULL) {
353 			ve->ve_missed_update = 1;
354 		} else {
355 			bcopy((char *)zio->io_data + start - io_start,
356 			    ve->ve_data + start - ve->ve_offset, end - start);
357 		}
358 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
359 	}
360 	mutex_exit(&vc->vc_lock);
361 }
362 
363 void
364 vdev_cache_purge(vdev_t *vd)
365 {
366 	vdev_cache_t *vc = &vd->vdev_cache;
367 	vdev_cache_entry_t *ve;
368 
369 	mutex_enter(&vc->vc_lock);
370 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
371 		vdev_cache_evict(vc, ve);
372 	mutex_exit(&vc->vc_lock);
373 }
374 
375 void
376 vdev_cache_init(vdev_t *vd)
377 {
378 	vdev_cache_t *vc = &vd->vdev_cache;
379 
380 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
381 
382 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
383 	    sizeof (vdev_cache_entry_t),
384 	    offsetof(struct vdev_cache_entry, ve_offset_node));
385 
386 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
387 	    sizeof (vdev_cache_entry_t),
388 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
389 }
390 
391 void
392 vdev_cache_fini(vdev_t *vd)
393 {
394 	vdev_cache_t *vc = &vd->vdev_cache;
395 
396 	vdev_cache_purge(vd);
397 
398 	avl_destroy(&vc->vc_offset_tree);
399 	avl_destroy(&vc->vc_lastused_tree);
400 
401 	mutex_destroy(&vc->vc_lock);
402 }
403 
404 void
405 vdev_cache_stat_init(void)
406 {
407 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
408 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
409 	    KSTAT_FLAG_VIRTUAL);
410 	if (vdc_ksp != NULL) {
411 		vdc_ksp->ks_data = &vdc_stats;
412 		kstat_install(vdc_ksp);
413 	}
414 }
415 
416 void
417 vdev_cache_stat_fini(void)
418 {
419 	if (vdc_ksp != NULL) {
420 		kstat_delete(vdc_ksp);
421 		vdc_ksp = NULL;
422 	}
423 }
424