1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue */ 61 int zfs_scrub_limit = 70; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 uint64_t c; 88 89 for (c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the replaceable or attachable device size. 99 * If the parent is a mirror or raidz, the replaceable size is the minimum 100 * psize of all its children. For the rest, just return our own psize. 101 * 102 * e.g. 103 * psize rsize 104 * root - - 105 * mirror/raidz - - 106 * disk1 20g 20g 107 * disk2 40g 20g 108 * disk3 80g 80g 109 */ 110 uint64_t 111 vdev_get_rsize(vdev_t *vd) 112 { 113 vdev_t *pvd, *cvd; 114 uint64_t c, rsize; 115 116 pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL or the root, just return our own psize. 120 */ 121 if (pvd == NULL || pvd->vdev_parent == NULL) 122 return (vd->vdev_psize); 123 124 rsize = 0; 125 126 for (c = 0; c < pvd->vdev_children; c++) { 127 cvd = pvd->vdev_child[c]; 128 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 129 } 130 131 return (rsize); 132 } 133 134 vdev_t * 135 vdev_lookup_top(spa_t *spa, uint64_t vdev) 136 { 137 vdev_t *rvd = spa->spa_root_vdev; 138 139 if (vdev < rvd->vdev_children) 140 return (rvd->vdev_child[vdev]); 141 142 return (NULL); 143 } 144 145 vdev_t * 146 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 147 { 148 int c; 149 vdev_t *mvd; 150 151 if (vd->vdev_guid == guid) 152 return (vd); 153 154 for (c = 0; c < vd->vdev_children; c++) 155 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 156 NULL) 157 return (mvd); 158 159 return (NULL); 160 } 161 162 void 163 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 164 { 165 size_t oldsize, newsize; 166 uint64_t id = cvd->vdev_id; 167 vdev_t **newchild; 168 169 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 170 ASSERT(cvd->vdev_parent == NULL); 171 172 cvd->vdev_parent = pvd; 173 174 if (pvd == NULL) 175 return; 176 177 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 178 179 oldsize = pvd->vdev_children * sizeof (vdev_t *); 180 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 181 newsize = pvd->vdev_children * sizeof (vdev_t *); 182 183 newchild = kmem_zalloc(newsize, KM_SLEEP); 184 if (pvd->vdev_child != NULL) { 185 bcopy(pvd->vdev_child, newchild, oldsize); 186 kmem_free(pvd->vdev_child, oldsize); 187 } 188 189 pvd->vdev_child = newchild; 190 pvd->vdev_child[id] = cvd; 191 192 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 193 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 194 195 /* 196 * Walk up all ancestors to update guid sum. 197 */ 198 for (; pvd != NULL; pvd = pvd->vdev_parent) 199 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 200 201 if (cvd->vdev_ops->vdev_op_leaf) 202 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 203 } 204 205 void 206 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 207 { 208 int c; 209 uint_t id = cvd->vdev_id; 210 211 ASSERT(cvd->vdev_parent == pvd); 212 213 if (pvd == NULL) 214 return; 215 216 ASSERT(id < pvd->vdev_children); 217 ASSERT(pvd->vdev_child[id] == cvd); 218 219 pvd->vdev_child[id] = NULL; 220 cvd->vdev_parent = NULL; 221 222 for (c = 0; c < pvd->vdev_children; c++) 223 if (pvd->vdev_child[c]) 224 break; 225 226 if (c == pvd->vdev_children) { 227 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 228 pvd->vdev_child = NULL; 229 pvd->vdev_children = 0; 230 } 231 232 /* 233 * Walk up all ancestors to update guid sum. 234 */ 235 for (; pvd != NULL; pvd = pvd->vdev_parent) 236 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 237 238 if (cvd->vdev_ops->vdev_op_leaf) 239 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 240 } 241 242 /* 243 * Remove any holes in the child array. 244 */ 245 void 246 vdev_compact_children(vdev_t *pvd) 247 { 248 vdev_t **newchild, *cvd; 249 int oldc = pvd->vdev_children; 250 int newc, c; 251 252 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 253 254 for (c = newc = 0; c < oldc; c++) 255 if (pvd->vdev_child[c]) 256 newc++; 257 258 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 259 260 for (c = newc = 0; c < oldc; c++) { 261 if ((cvd = pvd->vdev_child[c]) != NULL) { 262 newchild[newc] = cvd; 263 cvd->vdev_id = newc++; 264 } 265 } 266 267 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 268 pvd->vdev_child = newchild; 269 pvd->vdev_children = newc; 270 } 271 272 /* 273 * Allocate and minimally initialize a vdev_t. 274 */ 275 static vdev_t * 276 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 277 { 278 vdev_t *vd; 279 280 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 281 282 if (spa->spa_root_vdev == NULL) { 283 ASSERT(ops == &vdev_root_ops); 284 spa->spa_root_vdev = vd; 285 } 286 287 if (guid == 0) { 288 if (spa->spa_root_vdev == vd) { 289 /* 290 * The root vdev's guid will also be the pool guid, 291 * which must be unique among all pools. 292 */ 293 while (guid == 0 || spa_guid_exists(guid, 0)) 294 guid = spa_get_random(-1ULL); 295 } else { 296 /* 297 * Any other vdev's guid must be unique within the pool. 298 */ 299 while (guid == 0 || 300 spa_guid_exists(spa_guid(spa), guid)) 301 guid = spa_get_random(-1ULL); 302 } 303 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 304 } 305 306 vd->vdev_spa = spa; 307 vd->vdev_id = id; 308 vd->vdev_guid = guid; 309 vd->vdev_guid_sum = guid; 310 vd->vdev_ops = ops; 311 vd->vdev_state = VDEV_STATE_CLOSED; 312 313 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 314 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 315 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 316 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 317 txg_list_create(&vd->vdev_ms_list, 318 offsetof(struct metaslab, ms_txg_node)); 319 txg_list_create(&vd->vdev_dtl_list, 320 offsetof(struct vdev, vdev_dtl_node)); 321 vd->vdev_stat.vs_timestamp = gethrtime(); 322 vdev_queue_init(vd); 323 vdev_cache_init(vd); 324 325 return (vd); 326 } 327 328 /* 329 * Allocate a new vdev. The 'alloctype' is used to control whether we are 330 * creating a new vdev or loading an existing one - the behavior is slightly 331 * different for each case. 332 */ 333 int 334 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 335 int alloctype) 336 { 337 vdev_ops_t *ops; 338 char *type; 339 uint64_t guid = 0, islog, nparity; 340 vdev_t *vd; 341 342 ASSERT(spa_config_held(spa, RW_WRITER)); 343 344 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 345 return (EINVAL); 346 347 if ((ops = vdev_getops(type)) == NULL) 348 return (EINVAL); 349 350 /* 351 * If this is a load, get the vdev guid from the nvlist. 352 * Otherwise, vdev_alloc_common() will generate one for us. 353 */ 354 if (alloctype == VDEV_ALLOC_LOAD) { 355 uint64_t label_id; 356 357 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 358 label_id != id) 359 return (EINVAL); 360 361 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 362 return (EINVAL); 363 } else if (alloctype == VDEV_ALLOC_SPARE) { 364 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 365 return (EINVAL); 366 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 368 return (EINVAL); 369 } 370 371 /* 372 * The first allocated vdev must be of type 'root'. 373 */ 374 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 375 return (EINVAL); 376 377 /* 378 * Determine whether we're a log vdev. 379 */ 380 islog = 0; 381 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 382 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 383 return (ENOTSUP); 384 385 /* 386 * Set the nparity property for RAID-Z vdevs. 387 */ 388 nparity = -1ULL; 389 if (ops == &vdev_raidz_ops) { 390 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 391 &nparity) == 0) { 392 /* 393 * Currently, we can only support 2 parity devices. 394 */ 395 if (nparity == 0 || nparity > 2) 396 return (EINVAL); 397 /* 398 * Older versions can only support 1 parity device. 399 */ 400 if (nparity == 2 && 401 spa_version(spa) < SPA_VERSION_RAID6) 402 return (ENOTSUP); 403 } else { 404 /* 405 * We require the parity to be specified for SPAs that 406 * support multiple parity levels. 407 */ 408 if (spa_version(spa) >= SPA_VERSION_RAID6) 409 return (EINVAL); 410 /* 411 * Otherwise, we default to 1 parity device for RAID-Z. 412 */ 413 nparity = 1; 414 } 415 } else { 416 nparity = 0; 417 } 418 ASSERT(nparity != -1ULL); 419 420 vd = vdev_alloc_common(spa, id, guid, ops); 421 422 vd->vdev_islog = islog; 423 vd->vdev_nparity = nparity; 424 425 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 426 vd->vdev_path = spa_strdup(vd->vdev_path); 427 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 428 vd->vdev_devid = spa_strdup(vd->vdev_devid); 429 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 430 &vd->vdev_physpath) == 0) 431 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 432 433 /* 434 * Set the whole_disk property. If it's not specified, leave the value 435 * as -1. 436 */ 437 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 438 &vd->vdev_wholedisk) != 0) 439 vd->vdev_wholedisk = -1ULL; 440 441 /* 442 * Look for the 'not present' flag. This will only be set if the device 443 * was not present at the time of import. 444 */ 445 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 446 &vd->vdev_not_present); 447 448 /* 449 * Get the alignment requirement. 450 */ 451 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 452 453 /* 454 * If we're a top-level vdev, try to load the allocation parameters. 455 */ 456 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 457 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 458 &vd->vdev_ms_array); 459 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 460 &vd->vdev_ms_shift); 461 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 462 &vd->vdev_asize); 463 } 464 465 /* 466 * If we're a leaf vdev, try to load the DTL object and other state. 467 */ 468 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 470 &vd->vdev_dtl.smo_object); 471 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 472 &vd->vdev_offline); 473 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 474 &vd->vdev_unspare); 475 /* 476 * When importing a pool, we want to ignore the persistent fault 477 * state, as the diagnosis made on another system may not be 478 * valid in the current context. 479 */ 480 if (spa->spa_load_state == SPA_LOAD_OPEN) { 481 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 482 &vd->vdev_faulted); 483 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 484 &vd->vdev_degraded); 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 486 &vd->vdev_removed); 487 } 488 } 489 490 /* 491 * Add ourselves to the parent's list of children. 492 */ 493 vdev_add_child(parent, vd); 494 495 *vdp = vd; 496 497 return (0); 498 } 499 500 void 501 vdev_free(vdev_t *vd) 502 { 503 int c; 504 spa_t *spa = vd->vdev_spa; 505 506 /* 507 * vdev_free() implies closing the vdev first. This is simpler than 508 * trying to ensure complicated semantics for all callers. 509 */ 510 vdev_close(vd); 511 512 513 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 514 515 /* 516 * Free all children. 517 */ 518 for (c = 0; c < vd->vdev_children; c++) 519 vdev_free(vd->vdev_child[c]); 520 521 ASSERT(vd->vdev_child == NULL); 522 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 523 524 /* 525 * Discard allocation state. 526 */ 527 if (vd == vd->vdev_top) 528 vdev_metaslab_fini(vd); 529 530 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 531 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 532 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 533 534 /* 535 * Remove this vdev from its parent's child list. 536 */ 537 vdev_remove_child(vd->vdev_parent, vd); 538 539 ASSERT(vd->vdev_parent == NULL); 540 541 /* 542 * Clean up vdev structure. 543 */ 544 vdev_queue_fini(vd); 545 vdev_cache_fini(vd); 546 547 if (vd->vdev_path) 548 spa_strfree(vd->vdev_path); 549 if (vd->vdev_devid) 550 spa_strfree(vd->vdev_devid); 551 if (vd->vdev_physpath) 552 spa_strfree(vd->vdev_physpath); 553 554 if (vd->vdev_isspare) 555 spa_spare_remove(vd); 556 if (vd->vdev_isl2cache) 557 spa_l2cache_remove(vd); 558 559 txg_list_destroy(&vd->vdev_ms_list); 560 txg_list_destroy(&vd->vdev_dtl_list); 561 mutex_enter(&vd->vdev_dtl_lock); 562 space_map_unload(&vd->vdev_dtl_map); 563 space_map_destroy(&vd->vdev_dtl_map); 564 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 565 space_map_destroy(&vd->vdev_dtl_scrub); 566 mutex_exit(&vd->vdev_dtl_lock); 567 mutex_destroy(&vd->vdev_dtl_lock); 568 mutex_destroy(&vd->vdev_stat_lock); 569 570 if (vd == spa->spa_root_vdev) 571 spa->spa_root_vdev = NULL; 572 573 kmem_free(vd, sizeof (vdev_t)); 574 } 575 576 /* 577 * Transfer top-level vdev state from svd to tvd. 578 */ 579 static void 580 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 581 { 582 spa_t *spa = svd->vdev_spa; 583 metaslab_t *msp; 584 vdev_t *vd; 585 int t; 586 587 ASSERT(tvd == tvd->vdev_top); 588 589 tvd->vdev_ms_array = svd->vdev_ms_array; 590 tvd->vdev_ms_shift = svd->vdev_ms_shift; 591 tvd->vdev_ms_count = svd->vdev_ms_count; 592 593 svd->vdev_ms_array = 0; 594 svd->vdev_ms_shift = 0; 595 svd->vdev_ms_count = 0; 596 597 tvd->vdev_mg = svd->vdev_mg; 598 tvd->vdev_ms = svd->vdev_ms; 599 600 svd->vdev_mg = NULL; 601 svd->vdev_ms = NULL; 602 603 if (tvd->vdev_mg != NULL) 604 tvd->vdev_mg->mg_vd = tvd; 605 606 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 607 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 608 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 609 610 svd->vdev_stat.vs_alloc = 0; 611 svd->vdev_stat.vs_space = 0; 612 svd->vdev_stat.vs_dspace = 0; 613 614 for (t = 0; t < TXG_SIZE; t++) { 615 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 616 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 617 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 618 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 619 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 620 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 621 } 622 623 if (list_link_active(&svd->vdev_dirty_node)) { 624 vdev_config_clean(svd); 625 vdev_config_dirty(tvd); 626 } 627 628 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 629 svd->vdev_deflate_ratio = 0; 630 631 tvd->vdev_islog = svd->vdev_islog; 632 svd->vdev_islog = 0; 633 } 634 635 static void 636 vdev_top_update(vdev_t *tvd, vdev_t *vd) 637 { 638 int c; 639 640 if (vd == NULL) 641 return; 642 643 vd->vdev_top = tvd; 644 645 for (c = 0; c < vd->vdev_children; c++) 646 vdev_top_update(tvd, vd->vdev_child[c]); 647 } 648 649 /* 650 * Add a mirror/replacing vdev above an existing vdev. 651 */ 652 vdev_t * 653 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 654 { 655 spa_t *spa = cvd->vdev_spa; 656 vdev_t *pvd = cvd->vdev_parent; 657 vdev_t *mvd; 658 659 ASSERT(spa_config_held(spa, RW_WRITER)); 660 661 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 662 663 mvd->vdev_asize = cvd->vdev_asize; 664 mvd->vdev_ashift = cvd->vdev_ashift; 665 mvd->vdev_state = cvd->vdev_state; 666 667 vdev_remove_child(pvd, cvd); 668 vdev_add_child(pvd, mvd); 669 cvd->vdev_id = mvd->vdev_children; 670 vdev_add_child(mvd, cvd); 671 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 672 673 if (mvd == mvd->vdev_top) 674 vdev_top_transfer(cvd, mvd); 675 676 return (mvd); 677 } 678 679 /* 680 * Remove a 1-way mirror/replacing vdev from the tree. 681 */ 682 void 683 vdev_remove_parent(vdev_t *cvd) 684 { 685 vdev_t *mvd = cvd->vdev_parent; 686 vdev_t *pvd = mvd->vdev_parent; 687 688 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 689 690 ASSERT(mvd->vdev_children == 1); 691 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 692 mvd->vdev_ops == &vdev_replacing_ops || 693 mvd->vdev_ops == &vdev_spare_ops); 694 cvd->vdev_ashift = mvd->vdev_ashift; 695 696 vdev_remove_child(mvd, cvd); 697 vdev_remove_child(pvd, mvd); 698 cvd->vdev_id = mvd->vdev_id; 699 vdev_add_child(pvd, cvd); 700 /* 701 * If we created a new toplevel vdev, then we need to change the child's 702 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 703 * detached an offline device, and when we go to import the pool we'll 704 * think we have two toplevel vdevs, instead of a different version of 705 * the same toplevel vdev. 706 */ 707 if (cvd->vdev_top == cvd) { 708 pvd->vdev_guid_sum -= cvd->vdev_guid; 709 cvd->vdev_guid_sum -= cvd->vdev_guid; 710 cvd->vdev_guid = mvd->vdev_guid; 711 cvd->vdev_guid_sum += mvd->vdev_guid; 712 pvd->vdev_guid_sum += cvd->vdev_guid; 713 } 714 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 715 716 if (cvd == cvd->vdev_top) 717 vdev_top_transfer(mvd, cvd); 718 719 ASSERT(mvd->vdev_children == 0); 720 vdev_free(mvd); 721 } 722 723 int 724 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 725 { 726 spa_t *spa = vd->vdev_spa; 727 objset_t *mos = spa->spa_meta_objset; 728 metaslab_class_t *mc; 729 uint64_t m; 730 uint64_t oldc = vd->vdev_ms_count; 731 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 732 metaslab_t **mspp; 733 int error; 734 735 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 736 return (0); 737 738 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 739 740 ASSERT(oldc <= newc); 741 742 if (vd->vdev_islog) 743 mc = spa->spa_log_class; 744 else 745 mc = spa->spa_normal_class; 746 747 if (vd->vdev_mg == NULL) 748 vd->vdev_mg = metaslab_group_create(mc, vd); 749 750 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 751 752 if (oldc != 0) { 753 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 754 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 755 } 756 757 vd->vdev_ms = mspp; 758 vd->vdev_ms_count = newc; 759 760 for (m = oldc; m < newc; m++) { 761 space_map_obj_t smo = { 0, 0, 0 }; 762 if (txg == 0) { 763 uint64_t object = 0; 764 error = dmu_read(mos, vd->vdev_ms_array, 765 m * sizeof (uint64_t), sizeof (uint64_t), &object); 766 if (error) 767 return (error); 768 if (object != 0) { 769 dmu_buf_t *db; 770 error = dmu_bonus_hold(mos, object, FTAG, &db); 771 if (error) 772 return (error); 773 ASSERT3U(db->db_size, >=, sizeof (smo)); 774 bcopy(db->db_data, &smo, sizeof (smo)); 775 ASSERT3U(smo.smo_object, ==, object); 776 dmu_buf_rele(db, FTAG); 777 } 778 } 779 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 780 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 781 } 782 783 return (0); 784 } 785 786 void 787 vdev_metaslab_fini(vdev_t *vd) 788 { 789 uint64_t m; 790 uint64_t count = vd->vdev_ms_count; 791 792 if (vd->vdev_ms != NULL) { 793 for (m = 0; m < count; m++) 794 if (vd->vdev_ms[m] != NULL) 795 metaslab_fini(vd->vdev_ms[m]); 796 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 797 vd->vdev_ms = NULL; 798 } 799 } 800 801 int 802 vdev_probe(vdev_t *vd) 803 { 804 if (vd == NULL) 805 return (EINVAL); 806 807 /* 808 * Right now we only support status checks on the leaf vdevs. 809 */ 810 if (vd->vdev_ops->vdev_op_leaf) 811 return (vd->vdev_ops->vdev_op_probe(vd)); 812 813 return (0); 814 } 815 816 /* 817 * Prepare a virtual device for access. 818 */ 819 int 820 vdev_open(vdev_t *vd) 821 { 822 int error; 823 int c; 824 uint64_t osize = 0; 825 uint64_t asize, psize; 826 uint64_t ashift = 0; 827 828 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 829 vd->vdev_state == VDEV_STATE_CANT_OPEN || 830 vd->vdev_state == VDEV_STATE_OFFLINE); 831 832 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 833 vd->vdev_fault_arg >>= 1; 834 else 835 vd->vdev_fault_mode = VDEV_FAULT_NONE; 836 837 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 838 839 if (!vd->vdev_removed && vd->vdev_faulted) { 840 ASSERT(vd->vdev_children == 0); 841 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 842 VDEV_AUX_ERR_EXCEEDED); 843 return (ENXIO); 844 } else if (vd->vdev_offline) { 845 ASSERT(vd->vdev_children == 0); 846 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 847 return (ENXIO); 848 } 849 850 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 851 852 if (zio_injection_enabled && error == 0) 853 error = zio_handle_device_injection(vd, ENXIO); 854 855 if (error) { 856 if (vd->vdev_removed && 857 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 858 vd->vdev_removed = B_FALSE; 859 860 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 861 vd->vdev_stat.vs_aux); 862 return (error); 863 } 864 865 vd->vdev_removed = B_FALSE; 866 867 if (vd->vdev_degraded) { 868 ASSERT(vd->vdev_children == 0); 869 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 870 VDEV_AUX_ERR_EXCEEDED); 871 } else { 872 vd->vdev_state = VDEV_STATE_HEALTHY; 873 } 874 875 for (c = 0; c < vd->vdev_children; c++) 876 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 877 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 878 VDEV_AUX_NONE); 879 break; 880 } 881 882 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 883 884 if (vd->vdev_children == 0) { 885 if (osize < SPA_MINDEVSIZE) { 886 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 887 VDEV_AUX_TOO_SMALL); 888 return (EOVERFLOW); 889 } 890 psize = osize; 891 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 892 } else { 893 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 894 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 895 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 896 VDEV_AUX_TOO_SMALL); 897 return (EOVERFLOW); 898 } 899 psize = 0; 900 asize = osize; 901 } 902 903 vd->vdev_psize = psize; 904 905 if (vd->vdev_asize == 0) { 906 /* 907 * This is the first-ever open, so use the computed values. 908 * For testing purposes, a higher ashift can be requested. 909 */ 910 vd->vdev_asize = asize; 911 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 912 } else { 913 /* 914 * Make sure the alignment requirement hasn't increased. 915 */ 916 if (ashift > vd->vdev_top->vdev_ashift) { 917 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 918 VDEV_AUX_BAD_LABEL); 919 return (EINVAL); 920 } 921 922 /* 923 * Make sure the device hasn't shrunk. 924 */ 925 if (asize < vd->vdev_asize) { 926 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 927 VDEV_AUX_BAD_LABEL); 928 return (EINVAL); 929 } 930 931 /* 932 * If all children are healthy and the asize has increased, 933 * then we've experienced dynamic LUN growth. 934 */ 935 if (vd->vdev_state == VDEV_STATE_HEALTHY && 936 asize > vd->vdev_asize) { 937 vd->vdev_asize = asize; 938 } 939 } 940 941 /* 942 * Ensure we can issue some IO before declaring the 943 * vdev open for business. 944 */ 945 error = vdev_probe(vd); 946 if (error) { 947 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 948 VDEV_AUX_OPEN_FAILED); 949 return (error); 950 } 951 952 /* 953 * If this is a top-level vdev, compute the raidz-deflation 954 * ratio. Note, we hard-code in 128k (1<<17) because it is the 955 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 956 * changes, this algorithm must never change, or we will 957 * inconsistently account for existing bp's. 958 */ 959 if (vd->vdev_top == vd) { 960 vd->vdev_deflate_ratio = (1<<17) / 961 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 962 } 963 964 /* 965 * This allows the ZFS DE to close cases appropriately. If a device 966 * goes away and later returns, we want to close the associated case. 967 * But it's not enough to simply post this only when a device goes from 968 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 969 * back, we also need to close the case (otherwise we will try to replay 970 * it). So we have to post this notifier every time. Since this only 971 * occurs during pool open or error recovery, this should not be an 972 * issue. 973 */ 974 zfs_post_ok(vd->vdev_spa, vd); 975 976 return (0); 977 } 978 979 /* 980 * Called once the vdevs are all opened, this routine validates the label 981 * contents. This needs to be done before vdev_load() so that we don't 982 * inadvertently do repair I/Os to the wrong device. 983 * 984 * This function will only return failure if one of the vdevs indicates that it 985 * has since been destroyed or exported. This is only possible if 986 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 987 * will be updated but the function will return 0. 988 */ 989 int 990 vdev_validate(vdev_t *vd) 991 { 992 spa_t *spa = vd->vdev_spa; 993 int c; 994 nvlist_t *label; 995 uint64_t guid; 996 uint64_t state; 997 998 for (c = 0; c < vd->vdev_children; c++) 999 if (vdev_validate(vd->vdev_child[c]) != 0) 1000 return (EBADF); 1001 1002 /* 1003 * If the device has already failed, or was marked offline, don't do 1004 * any further validation. Otherwise, label I/O will fail and we will 1005 * overwrite the previous state. 1006 */ 1007 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 1008 1009 if ((label = vdev_label_read_config(vd)) == NULL) { 1010 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1011 VDEV_AUX_BAD_LABEL); 1012 return (0); 1013 } 1014 1015 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1016 &guid) != 0 || guid != spa_guid(spa)) { 1017 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1018 VDEV_AUX_CORRUPT_DATA); 1019 nvlist_free(label); 1020 return (0); 1021 } 1022 1023 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1024 &guid) != 0 || guid != vd->vdev_guid) { 1025 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1026 VDEV_AUX_CORRUPT_DATA); 1027 nvlist_free(label); 1028 return (0); 1029 } 1030 1031 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1032 &state) != 0) { 1033 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1034 VDEV_AUX_CORRUPT_DATA); 1035 nvlist_free(label); 1036 return (0); 1037 } 1038 1039 nvlist_free(label); 1040 1041 if (spa->spa_load_state == SPA_LOAD_OPEN && 1042 state != POOL_STATE_ACTIVE) 1043 return (EBADF); 1044 } 1045 1046 /* 1047 * If we were able to open and validate a vdev that was previously 1048 * marked permanently unavailable, clear that state now. 1049 */ 1050 if (vd->vdev_not_present) 1051 vd->vdev_not_present = 0; 1052 1053 return (0); 1054 } 1055 1056 /* 1057 * Close a virtual device. 1058 */ 1059 void 1060 vdev_close(vdev_t *vd) 1061 { 1062 vd->vdev_ops->vdev_op_close(vd); 1063 1064 vdev_cache_purge(vd); 1065 1066 /* 1067 * We record the previous state before we close it, so that if we are 1068 * doing a reopen(), we don't generate FMA ereports if we notice that 1069 * it's still faulted. 1070 */ 1071 vd->vdev_prevstate = vd->vdev_state; 1072 1073 if (vd->vdev_offline) 1074 vd->vdev_state = VDEV_STATE_OFFLINE; 1075 else 1076 vd->vdev_state = VDEV_STATE_CLOSED; 1077 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1078 } 1079 1080 void 1081 vdev_reopen(vdev_t *vd) 1082 { 1083 spa_t *spa = vd->vdev_spa; 1084 1085 ASSERT(spa_config_held(spa, RW_WRITER)); 1086 1087 vdev_close(vd); 1088 (void) vdev_open(vd); 1089 1090 /* 1091 * Call vdev_validate() here to make sure we have the same device. 1092 * Otherwise, a device with an invalid label could be successfully 1093 * opened in response to vdev_reopen(). 1094 */ 1095 (void) vdev_validate(vd); 1096 1097 /* 1098 * Reassess parent vdev's health. 1099 */ 1100 vdev_propagate_state(vd); 1101 } 1102 1103 int 1104 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1105 { 1106 int error; 1107 1108 /* 1109 * Normally, partial opens (e.g. of a mirror) are allowed. 1110 * For a create, however, we want to fail the request if 1111 * there are any components we can't open. 1112 */ 1113 error = vdev_open(vd); 1114 1115 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1116 vdev_close(vd); 1117 return (error ? error : ENXIO); 1118 } 1119 1120 /* 1121 * Recursively initialize all labels. 1122 */ 1123 if ((error = vdev_label_init(vd, txg, isreplacing ? 1124 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1125 vdev_close(vd); 1126 return (error); 1127 } 1128 1129 return (0); 1130 } 1131 1132 /* 1133 * The is the latter half of vdev_create(). It is distinct because it 1134 * involves initiating transactions in order to do metaslab creation. 1135 * For creation, we want to try to create all vdevs at once and then undo it 1136 * if anything fails; this is much harder if we have pending transactions. 1137 */ 1138 void 1139 vdev_init(vdev_t *vd, uint64_t txg) 1140 { 1141 /* 1142 * Aim for roughly 200 metaslabs per vdev. 1143 */ 1144 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1145 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1146 1147 /* 1148 * Initialize the vdev's metaslabs. This can't fail because 1149 * there's nothing to read when creating all new metaslabs. 1150 */ 1151 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1152 } 1153 1154 void 1155 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1156 { 1157 ASSERT(vd == vd->vdev_top); 1158 ASSERT(ISP2(flags)); 1159 1160 if (flags & VDD_METASLAB) 1161 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1162 1163 if (flags & VDD_DTL) 1164 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1165 1166 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1167 } 1168 1169 void 1170 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1171 { 1172 mutex_enter(sm->sm_lock); 1173 if (!space_map_contains(sm, txg, size)) 1174 space_map_add(sm, txg, size); 1175 mutex_exit(sm->sm_lock); 1176 } 1177 1178 int 1179 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1180 { 1181 int dirty; 1182 1183 /* 1184 * Quick test without the lock -- covers the common case that 1185 * there are no dirty time segments. 1186 */ 1187 if (sm->sm_space == 0) 1188 return (0); 1189 1190 mutex_enter(sm->sm_lock); 1191 dirty = space_map_contains(sm, txg, size); 1192 mutex_exit(sm->sm_lock); 1193 1194 return (dirty); 1195 } 1196 1197 /* 1198 * Reassess DTLs after a config change or scrub completion. 1199 */ 1200 void 1201 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1202 { 1203 spa_t *spa = vd->vdev_spa; 1204 int c; 1205 1206 ASSERT(spa_config_held(spa, RW_WRITER)); 1207 1208 if (vd->vdev_children == 0) { 1209 mutex_enter(&vd->vdev_dtl_lock); 1210 /* 1211 * We're successfully scrubbed everything up to scrub_txg. 1212 * Therefore, excise all old DTLs up to that point, then 1213 * fold in the DTLs for everything we couldn't scrub. 1214 */ 1215 if (scrub_txg != 0) { 1216 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1217 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1218 } 1219 if (scrub_done) 1220 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1221 mutex_exit(&vd->vdev_dtl_lock); 1222 if (txg != 0) 1223 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1224 return; 1225 } 1226 1227 /* 1228 * Make sure the DTLs are always correct under the scrub lock. 1229 */ 1230 if (vd == spa->spa_root_vdev) 1231 mutex_enter(&spa->spa_scrub_lock); 1232 1233 mutex_enter(&vd->vdev_dtl_lock); 1234 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1235 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1236 mutex_exit(&vd->vdev_dtl_lock); 1237 1238 for (c = 0; c < vd->vdev_children; c++) { 1239 vdev_t *cvd = vd->vdev_child[c]; 1240 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1241 mutex_enter(&vd->vdev_dtl_lock); 1242 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1243 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1244 mutex_exit(&vd->vdev_dtl_lock); 1245 } 1246 1247 if (vd == spa->spa_root_vdev) 1248 mutex_exit(&spa->spa_scrub_lock); 1249 } 1250 1251 static int 1252 vdev_dtl_load(vdev_t *vd) 1253 { 1254 spa_t *spa = vd->vdev_spa; 1255 space_map_obj_t *smo = &vd->vdev_dtl; 1256 objset_t *mos = spa->spa_meta_objset; 1257 dmu_buf_t *db; 1258 int error; 1259 1260 ASSERT(vd->vdev_children == 0); 1261 1262 if (smo->smo_object == 0) 1263 return (0); 1264 1265 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1266 return (error); 1267 1268 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1269 bcopy(db->db_data, smo, sizeof (*smo)); 1270 dmu_buf_rele(db, FTAG); 1271 1272 mutex_enter(&vd->vdev_dtl_lock); 1273 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1274 mutex_exit(&vd->vdev_dtl_lock); 1275 1276 return (error); 1277 } 1278 1279 void 1280 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1281 { 1282 spa_t *spa = vd->vdev_spa; 1283 space_map_obj_t *smo = &vd->vdev_dtl; 1284 space_map_t *sm = &vd->vdev_dtl_map; 1285 objset_t *mos = spa->spa_meta_objset; 1286 space_map_t smsync; 1287 kmutex_t smlock; 1288 dmu_buf_t *db; 1289 dmu_tx_t *tx; 1290 1291 dprintf("%s in txg %llu pass %d\n", 1292 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1293 1294 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1295 1296 if (vd->vdev_detached) { 1297 if (smo->smo_object != 0) { 1298 int err = dmu_object_free(mos, smo->smo_object, tx); 1299 ASSERT3U(err, ==, 0); 1300 smo->smo_object = 0; 1301 } 1302 dmu_tx_commit(tx); 1303 dprintf("detach %s committed in txg %llu\n", 1304 vdev_description(vd), txg); 1305 return; 1306 } 1307 1308 if (smo->smo_object == 0) { 1309 ASSERT(smo->smo_objsize == 0); 1310 ASSERT(smo->smo_alloc == 0); 1311 smo->smo_object = dmu_object_alloc(mos, 1312 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1313 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1314 ASSERT(smo->smo_object != 0); 1315 vdev_config_dirty(vd->vdev_top); 1316 } 1317 1318 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1319 1320 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1321 &smlock); 1322 1323 mutex_enter(&smlock); 1324 1325 mutex_enter(&vd->vdev_dtl_lock); 1326 space_map_walk(sm, space_map_add, &smsync); 1327 mutex_exit(&vd->vdev_dtl_lock); 1328 1329 space_map_truncate(smo, mos, tx); 1330 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1331 1332 space_map_destroy(&smsync); 1333 1334 mutex_exit(&smlock); 1335 mutex_destroy(&smlock); 1336 1337 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1338 dmu_buf_will_dirty(db, tx); 1339 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1340 bcopy(smo, db->db_data, sizeof (*smo)); 1341 dmu_buf_rele(db, FTAG); 1342 1343 dmu_tx_commit(tx); 1344 } 1345 1346 void 1347 vdev_load(vdev_t *vd) 1348 { 1349 int c; 1350 1351 /* 1352 * Recursively load all children. 1353 */ 1354 for (c = 0; c < vd->vdev_children; c++) 1355 vdev_load(vd->vdev_child[c]); 1356 1357 /* 1358 * If this is a top-level vdev, initialize its metaslabs. 1359 */ 1360 if (vd == vd->vdev_top && 1361 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1362 vdev_metaslab_init(vd, 0) != 0)) 1363 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1364 VDEV_AUX_CORRUPT_DATA); 1365 1366 /* 1367 * If this is a leaf vdev, load its DTL. 1368 */ 1369 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1370 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1371 VDEV_AUX_CORRUPT_DATA); 1372 } 1373 1374 /* 1375 * The special vdev case is used for hot spares and l2cache devices. Its 1376 * sole purpose it to set the vdev state for the associated vdev. To do this, 1377 * we make sure that we can open the underlying device, then try to read the 1378 * label, and make sure that the label is sane and that it hasn't been 1379 * repurposed to another pool. 1380 */ 1381 int 1382 vdev_validate_aux(vdev_t *vd) 1383 { 1384 nvlist_t *label; 1385 uint64_t guid, version; 1386 uint64_t state; 1387 1388 if ((label = vdev_label_read_config(vd)) == NULL) { 1389 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1390 VDEV_AUX_CORRUPT_DATA); 1391 return (-1); 1392 } 1393 1394 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1395 version > SPA_VERSION || 1396 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1397 guid != vd->vdev_guid || 1398 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1399 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1400 VDEV_AUX_CORRUPT_DATA); 1401 nvlist_free(label); 1402 return (-1); 1403 } 1404 1405 /* 1406 * We don't actually check the pool state here. If it's in fact in 1407 * use by another pool, we update this fact on the fly when requested. 1408 */ 1409 nvlist_free(label); 1410 return (0); 1411 } 1412 1413 void 1414 vdev_sync_done(vdev_t *vd, uint64_t txg) 1415 { 1416 metaslab_t *msp; 1417 1418 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1419 1420 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1421 metaslab_sync_done(msp, txg); 1422 } 1423 1424 void 1425 vdev_sync(vdev_t *vd, uint64_t txg) 1426 { 1427 spa_t *spa = vd->vdev_spa; 1428 vdev_t *lvd; 1429 metaslab_t *msp; 1430 dmu_tx_t *tx; 1431 1432 dprintf("%s txg %llu pass %d\n", 1433 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1434 1435 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1436 ASSERT(vd == vd->vdev_top); 1437 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1438 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1439 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1440 ASSERT(vd->vdev_ms_array != 0); 1441 vdev_config_dirty(vd); 1442 dmu_tx_commit(tx); 1443 } 1444 1445 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1446 metaslab_sync(msp, txg); 1447 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1448 } 1449 1450 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1451 vdev_dtl_sync(lvd, txg); 1452 1453 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1454 } 1455 1456 uint64_t 1457 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1458 { 1459 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1460 } 1461 1462 void 1463 vdev_io_start(zio_t *zio) 1464 { 1465 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1466 } 1467 1468 void 1469 vdev_io_done(zio_t *zio) 1470 { 1471 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1472 } 1473 1474 const char * 1475 vdev_description(vdev_t *vd) 1476 { 1477 if (vd == NULL || vd->vdev_ops == NULL) 1478 return ("<unknown>"); 1479 1480 if (vd->vdev_path != NULL) 1481 return (vd->vdev_path); 1482 1483 if (vd->vdev_parent == NULL) 1484 return (spa_name(vd->vdev_spa)); 1485 1486 return (vd->vdev_ops->vdev_op_type); 1487 } 1488 1489 /* 1490 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1491 * not be opened, and no I/O is attempted. 1492 */ 1493 int 1494 vdev_fault(spa_t *spa, uint64_t guid) 1495 { 1496 vdev_t *rvd, *vd; 1497 uint64_t txg; 1498 1499 /* 1500 * Disregard a vdev fault request if the pool has 1501 * experienced a complete failure. 1502 * 1503 * XXX - We do this here so that we don't hold the 1504 * spa_namespace_lock in the event that we can't get 1505 * the RW_WRITER spa_config_lock. 1506 */ 1507 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1508 return (EIO); 1509 1510 txg = spa_vdev_enter(spa); 1511 1512 rvd = spa->spa_root_vdev; 1513 1514 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1515 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1516 if (!vd->vdev_ops->vdev_op_leaf) 1517 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1518 1519 /* 1520 * Faulted state takes precedence over degraded. 1521 */ 1522 vd->vdev_faulted = 1ULL; 1523 vd->vdev_degraded = 0ULL; 1524 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, 1525 VDEV_AUX_ERR_EXCEEDED); 1526 1527 /* 1528 * If marking the vdev as faulted cause the toplevel vdev to become 1529 * unavailable, then back off and simply mark the vdev as degraded 1530 * instead. 1531 */ 1532 if (vdev_is_dead(vd->vdev_top)) { 1533 vd->vdev_degraded = 1ULL; 1534 vd->vdev_faulted = 0ULL; 1535 1536 /* 1537 * If we reopen the device and it's not dead, only then do we 1538 * mark it degraded. 1539 */ 1540 vdev_reopen(vd); 1541 1542 if (vdev_readable(vd)) { 1543 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1544 VDEV_AUX_ERR_EXCEEDED); 1545 } 1546 } 1547 1548 vdev_config_dirty(vd->vdev_top); 1549 1550 (void) spa_vdev_exit(spa, NULL, txg, 0); 1551 1552 return (0); 1553 } 1554 1555 /* 1556 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1557 * user that something is wrong. The vdev continues to operate as normal as far 1558 * as I/O is concerned. 1559 */ 1560 int 1561 vdev_degrade(spa_t *spa, uint64_t guid) 1562 { 1563 vdev_t *rvd, *vd; 1564 uint64_t txg; 1565 1566 /* 1567 * Disregard a vdev fault request if the pool has 1568 * experienced a complete failure. 1569 * 1570 * XXX - We do this here so that we don't hold the 1571 * spa_namespace_lock in the event that we can't get 1572 * the RW_WRITER spa_config_lock. 1573 */ 1574 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1575 return (EIO); 1576 1577 txg = spa_vdev_enter(spa); 1578 1579 rvd = spa->spa_root_vdev; 1580 1581 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1582 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1583 if (!vd->vdev_ops->vdev_op_leaf) 1584 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1585 1586 /* 1587 * If the vdev is already faulted, then don't do anything. 1588 */ 1589 if (vd->vdev_faulted || vd->vdev_degraded) { 1590 (void) spa_vdev_exit(spa, NULL, txg, 0); 1591 return (0); 1592 } 1593 1594 vd->vdev_degraded = 1ULL; 1595 if (!vdev_is_dead(vd)) 1596 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1597 VDEV_AUX_ERR_EXCEEDED); 1598 vdev_config_dirty(vd->vdev_top); 1599 1600 (void) spa_vdev_exit(spa, NULL, txg, 0); 1601 1602 return (0); 1603 } 1604 1605 /* 1606 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1607 * any attached spare device should be detached when the device finishes 1608 * resilvering. Second, the online should be treated like a 'test' online case, 1609 * so no FMA events are generated if the device fails to open. 1610 */ 1611 int 1612 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, 1613 vdev_state_t *newstate) 1614 { 1615 vdev_t *rvd, *vd; 1616 uint64_t txg; 1617 1618 /* 1619 * Disregard a vdev fault request if the pool has 1620 * experienced a complete failure. 1621 * 1622 * XXX - We do this here so that we don't hold the 1623 * spa_namespace_lock in the event that we can't get 1624 * the RW_WRITER spa_config_lock. 1625 */ 1626 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1627 return (EIO); 1628 1629 txg = spa_vdev_enter(spa); 1630 1631 rvd = spa->spa_root_vdev; 1632 1633 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1634 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1635 1636 if (!vd->vdev_ops->vdev_op_leaf) 1637 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1638 1639 vd->vdev_offline = B_FALSE; 1640 vd->vdev_tmpoffline = B_FALSE; 1641 vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ? 1642 B_TRUE : B_FALSE; 1643 vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ? 1644 B_TRUE : B_FALSE; 1645 vdev_reopen(vd->vdev_top); 1646 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1647 1648 if (newstate) 1649 *newstate = vd->vdev_state; 1650 if ((flags & ZFS_ONLINE_UNSPARE) && 1651 !vdev_is_dead(vd) && vd->vdev_parent && 1652 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1653 vd->vdev_parent->vdev_child[0] == vd) 1654 vd->vdev_unspare = B_TRUE; 1655 1656 vdev_config_dirty(vd->vdev_top); 1657 1658 (void) spa_vdev_exit(spa, NULL, txg, 0); 1659 1660 /* 1661 * Must hold spa_namespace_lock in order to post resilver sysevent 1662 * w/pool name. 1663 */ 1664 mutex_enter(&spa_namespace_lock); 1665 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1666 mutex_exit(&spa_namespace_lock); 1667 1668 return (0); 1669 } 1670 1671 int 1672 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1673 { 1674 vdev_t *rvd, *vd; 1675 uint64_t txg; 1676 1677 /* 1678 * Disregard a vdev fault request if the pool has 1679 * experienced a complete failure. 1680 * 1681 * XXX - We do this here so that we don't hold the 1682 * spa_namespace_lock in the event that we can't get 1683 * the RW_WRITER spa_config_lock. 1684 */ 1685 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1686 return (EIO); 1687 1688 txg = spa_vdev_enter(spa); 1689 1690 rvd = spa->spa_root_vdev; 1691 1692 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1693 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1694 1695 if (!vd->vdev_ops->vdev_op_leaf) 1696 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1697 1698 /* 1699 * If the device isn't already offline, try to offline it. 1700 */ 1701 if (!vd->vdev_offline) { 1702 /* 1703 * If this device's top-level vdev has a non-empty DTL, 1704 * don't allow the device to be offlined. 1705 * 1706 * XXX -- make this more precise by allowing the offline 1707 * as long as the remaining devices don't have any DTL holes. 1708 */ 1709 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1710 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1711 1712 /* 1713 * Offline this device and reopen its top-level vdev. 1714 * If this action results in the top-level vdev becoming 1715 * unusable, undo it and fail the request. 1716 */ 1717 vd->vdev_offline = B_TRUE; 1718 vdev_reopen(vd->vdev_top); 1719 if (vdev_is_dead(vd->vdev_top)) { 1720 vd->vdev_offline = B_FALSE; 1721 vdev_reopen(vd->vdev_top); 1722 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1723 } 1724 } 1725 1726 vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ? 1727 B_TRUE : B_FALSE; 1728 1729 vdev_config_dirty(vd->vdev_top); 1730 1731 return (spa_vdev_exit(spa, NULL, txg, 0)); 1732 } 1733 1734 /* 1735 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1736 * vdev_offline(), we assume the spa config is locked. We also clear all 1737 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1738 * If reopen is specified then attempt to reopen the vdev if the vdev is 1739 * faulted or degraded. 1740 */ 1741 void 1742 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted) 1743 { 1744 int c; 1745 1746 if (vd == NULL) 1747 vd = spa->spa_root_vdev; 1748 1749 vd->vdev_stat.vs_read_errors = 0; 1750 vd->vdev_stat.vs_write_errors = 0; 1751 vd->vdev_stat.vs_checksum_errors = 0; 1752 vd->vdev_is_failing = B_FALSE; 1753 1754 for (c = 0; c < vd->vdev_children; c++) 1755 vdev_clear(spa, vd->vdev_child[c], reopen_wanted); 1756 1757 /* 1758 * If we're in the FAULTED state, then clear the persistent state and 1759 * attempt to reopen the device. We also mark the vdev config dirty, so 1760 * that the new faulted state is written out to disk. 1761 */ 1762 if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded)) { 1763 vd->vdev_faulted = vd->vdev_degraded = 0; 1764 vdev_reopen(vd); 1765 vdev_config_dirty(vd->vdev_top); 1766 1767 if (vd->vdev_faulted) 1768 spa_async_request(spa, SPA_ASYNC_RESILVER); 1769 1770 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 1771 } 1772 } 1773 1774 int 1775 vdev_readable(vdev_t *vd) 1776 { 1777 /* XXPOLICY */ 1778 return (!vdev_is_dead(vd)); 1779 } 1780 1781 int 1782 vdev_writeable(vdev_t *vd) 1783 { 1784 return (!vdev_is_dead(vd) && !vd->vdev_is_failing); 1785 } 1786 1787 int 1788 vdev_is_dead(vdev_t *vd) 1789 { 1790 return (vd->vdev_state < VDEV_STATE_DEGRADED); 1791 } 1792 1793 int 1794 vdev_error_inject(vdev_t *vd, zio_t *zio) 1795 { 1796 int error = 0; 1797 1798 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1799 return (0); 1800 1801 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1802 return (0); 1803 1804 switch (vd->vdev_fault_mode) { 1805 case VDEV_FAULT_RANDOM: 1806 if (spa_get_random(vd->vdev_fault_arg) == 0) 1807 error = EIO; 1808 break; 1809 1810 case VDEV_FAULT_COUNT: 1811 if ((int64_t)--vd->vdev_fault_arg <= 0) 1812 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1813 error = EIO; 1814 break; 1815 } 1816 1817 return (error); 1818 } 1819 1820 /* 1821 * Get statistics for the given vdev. 1822 */ 1823 void 1824 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1825 { 1826 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1827 int c, t; 1828 1829 mutex_enter(&vd->vdev_stat_lock); 1830 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1831 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1832 vs->vs_state = vd->vdev_state; 1833 vs->vs_rsize = vdev_get_rsize(vd); 1834 mutex_exit(&vd->vdev_stat_lock); 1835 1836 /* 1837 * If we're getting stats on the root vdev, aggregate the I/O counts 1838 * over all top-level vdevs (i.e. the direct children of the root). 1839 */ 1840 if (vd == rvd) { 1841 for (c = 0; c < rvd->vdev_children; c++) { 1842 vdev_t *cvd = rvd->vdev_child[c]; 1843 vdev_stat_t *cvs = &cvd->vdev_stat; 1844 1845 mutex_enter(&vd->vdev_stat_lock); 1846 for (t = 0; t < ZIO_TYPES; t++) { 1847 vs->vs_ops[t] += cvs->vs_ops[t]; 1848 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1849 } 1850 vs->vs_read_errors += cvs->vs_read_errors; 1851 vs->vs_write_errors += cvs->vs_write_errors; 1852 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1853 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1854 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1855 mutex_exit(&vd->vdev_stat_lock); 1856 } 1857 } 1858 } 1859 1860 void 1861 vdev_clear_stats(vdev_t *vd) 1862 { 1863 mutex_enter(&vd->vdev_stat_lock); 1864 vd->vdev_stat.vs_space = 0; 1865 vd->vdev_stat.vs_dspace = 0; 1866 vd->vdev_stat.vs_alloc = 0; 1867 mutex_exit(&vd->vdev_stat_lock); 1868 } 1869 1870 void 1871 vdev_stat_update(zio_t *zio) 1872 { 1873 vdev_t *vd = zio->io_vd; 1874 vdev_t *pvd; 1875 uint64_t txg = zio->io_txg; 1876 vdev_stat_t *vs = &vd->vdev_stat; 1877 zio_type_t type = zio->io_type; 1878 int flags = zio->io_flags; 1879 1880 if (zio->io_error == 0) { 1881 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1882 mutex_enter(&vd->vdev_stat_lock); 1883 vs->vs_ops[type]++; 1884 vs->vs_bytes[type] += zio->io_size; 1885 mutex_exit(&vd->vdev_stat_lock); 1886 } 1887 if ((flags & ZIO_FLAG_IO_REPAIR) && 1888 zio->io_delegate_list == NULL) { 1889 mutex_enter(&vd->vdev_stat_lock); 1890 if (flags & ZIO_FLAG_SCRUB_THREAD) 1891 vs->vs_scrub_repaired += zio->io_size; 1892 else 1893 vs->vs_self_healed += zio->io_size; 1894 mutex_exit(&vd->vdev_stat_lock); 1895 } 1896 return; 1897 } 1898 1899 if (flags & ZIO_FLAG_SPECULATIVE) 1900 return; 1901 1902 if (vdev_readable(vd)) { 1903 mutex_enter(&vd->vdev_stat_lock); 1904 if (type == ZIO_TYPE_READ) { 1905 if (zio->io_error == ECKSUM) 1906 vs->vs_checksum_errors++; 1907 else 1908 vs->vs_read_errors++; 1909 } 1910 if (type == ZIO_TYPE_WRITE) 1911 vs->vs_write_errors++; 1912 mutex_exit(&vd->vdev_stat_lock); 1913 } 1914 1915 if (type == ZIO_TYPE_WRITE) { 1916 if (txg == 0 || vd->vdev_children != 0) 1917 return; 1918 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1919 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1920 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1921 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1922 } 1923 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1924 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1925 return; 1926 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1927 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1928 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1929 } 1930 } 1931 } 1932 1933 void 1934 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1935 { 1936 int c; 1937 vdev_stat_t *vs = &vd->vdev_stat; 1938 1939 for (c = 0; c < vd->vdev_children; c++) 1940 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1941 1942 mutex_enter(&vd->vdev_stat_lock); 1943 1944 if (type == POOL_SCRUB_NONE) { 1945 /* 1946 * Update completion and end time. Leave everything else alone 1947 * so we can report what happened during the previous scrub. 1948 */ 1949 vs->vs_scrub_complete = complete; 1950 vs->vs_scrub_end = gethrestime_sec(); 1951 } else { 1952 vs->vs_scrub_type = type; 1953 vs->vs_scrub_complete = 0; 1954 vs->vs_scrub_examined = 0; 1955 vs->vs_scrub_repaired = 0; 1956 vs->vs_scrub_errors = 0; 1957 vs->vs_scrub_start = gethrestime_sec(); 1958 vs->vs_scrub_end = 0; 1959 } 1960 1961 mutex_exit(&vd->vdev_stat_lock); 1962 } 1963 1964 /* 1965 * Update the in-core space usage stats for this vdev and the root vdev. 1966 */ 1967 void 1968 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 1969 boolean_t update_root) 1970 { 1971 int64_t dspace_delta = space_delta; 1972 spa_t *spa = vd->vdev_spa; 1973 vdev_t *rvd = spa->spa_root_vdev; 1974 1975 ASSERT(vd == vd->vdev_top); 1976 1977 /* 1978 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 1979 * factor. We must calculate this here and not at the root vdev 1980 * because the root vdev's psize-to-asize is simply the max of its 1981 * childrens', thus not accurate enough for us. 1982 */ 1983 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1984 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1985 vd->vdev_deflate_ratio; 1986 1987 mutex_enter(&vd->vdev_stat_lock); 1988 vd->vdev_stat.vs_space += space_delta; 1989 vd->vdev_stat.vs_alloc += alloc_delta; 1990 vd->vdev_stat.vs_dspace += dspace_delta; 1991 mutex_exit(&vd->vdev_stat_lock); 1992 1993 if (update_root) { 1994 ASSERT(rvd == vd->vdev_parent); 1995 ASSERT(vd->vdev_ms_count != 0); 1996 1997 /* 1998 * Don't count non-normal (e.g. intent log) space as part of 1999 * the pool's capacity. 2000 */ 2001 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2002 return; 2003 2004 mutex_enter(&rvd->vdev_stat_lock); 2005 rvd->vdev_stat.vs_space += space_delta; 2006 rvd->vdev_stat.vs_alloc += alloc_delta; 2007 rvd->vdev_stat.vs_dspace += dspace_delta; 2008 mutex_exit(&rvd->vdev_stat_lock); 2009 } 2010 } 2011 2012 /* 2013 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2014 * so that it will be written out next time the vdev configuration is synced. 2015 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2016 */ 2017 void 2018 vdev_config_dirty(vdev_t *vd) 2019 { 2020 spa_t *spa = vd->vdev_spa; 2021 vdev_t *rvd = spa->spa_root_vdev; 2022 int c; 2023 2024 /* 2025 * The dirty list is protected by the config lock. The caller must 2026 * either hold the config lock as writer, or must be the sync thread 2027 * (which holds the lock as reader). There's only one sync thread, 2028 * so this is sufficient to ensure mutual exclusion. 2029 */ 2030 ASSERT(spa_config_held(spa, RW_WRITER) || 2031 dsl_pool_sync_context(spa_get_dsl(spa))); 2032 2033 if (vd == rvd) { 2034 for (c = 0; c < rvd->vdev_children; c++) 2035 vdev_config_dirty(rvd->vdev_child[c]); 2036 } else { 2037 ASSERT(vd == vd->vdev_top); 2038 2039 if (!list_link_active(&vd->vdev_dirty_node)) 2040 list_insert_head(&spa->spa_dirty_list, vd); 2041 } 2042 } 2043 2044 void 2045 vdev_config_clean(vdev_t *vd) 2046 { 2047 spa_t *spa = vd->vdev_spa; 2048 2049 ASSERT(spa_config_held(spa, RW_WRITER) || 2050 dsl_pool_sync_context(spa_get_dsl(spa))); 2051 2052 ASSERT(list_link_active(&vd->vdev_dirty_node)); 2053 list_remove(&spa->spa_dirty_list, vd); 2054 } 2055 2056 void 2057 vdev_propagate_state(vdev_t *vd) 2058 { 2059 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2060 int degraded = 0, faulted = 0; 2061 int corrupted = 0; 2062 int c; 2063 vdev_t *child; 2064 2065 if (vd->vdev_children > 0) { 2066 for (c = 0; c < vd->vdev_children; c++) { 2067 child = vd->vdev_child[c]; 2068 if (vdev_is_dead(child) && !vdev_readable(child)) 2069 faulted++; 2070 else if (child->vdev_state <= VDEV_STATE_DEGRADED) 2071 degraded++; 2072 2073 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2074 corrupted++; 2075 } 2076 2077 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2078 2079 /* 2080 * Root special: if there is a toplevel vdev that cannot be 2081 * opened due to corrupted metadata, then propagate the root 2082 * vdev's aux state as 'corrupt' rather than 'insufficient 2083 * replicas'. 2084 */ 2085 if (corrupted && vd == rvd && 2086 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2087 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2088 VDEV_AUX_CORRUPT_DATA); 2089 } 2090 2091 if (vd->vdev_parent && !vd->vdev_islog) 2092 vdev_propagate_state(vd->vdev_parent); 2093 } 2094 2095 /* 2096 * Set a vdev's state. If this is during an open, we don't update the parent 2097 * state, because we're in the process of opening children depth-first. 2098 * Otherwise, we propagate the change to the parent. 2099 * 2100 * If this routine places a device in a faulted state, an appropriate ereport is 2101 * generated. 2102 */ 2103 void 2104 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2105 { 2106 uint64_t save_state; 2107 2108 if (state == vd->vdev_state) { 2109 vd->vdev_stat.vs_aux = aux; 2110 return; 2111 } 2112 2113 save_state = vd->vdev_state; 2114 2115 vd->vdev_state = state; 2116 vd->vdev_stat.vs_aux = aux; 2117 2118 /* 2119 * If we are setting the vdev state to anything but an open state, then 2120 * always close the underlying device. Otherwise, we keep accessible 2121 * but invalid devices open forever. We don't call vdev_close() itself, 2122 * because that implies some extra checks (offline, etc) that we don't 2123 * want here. This is limited to leaf devices, because otherwise 2124 * closing the device will affect other children. 2125 */ 2126 if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf) 2127 vd->vdev_ops->vdev_op_close(vd); 2128 2129 if (vd->vdev_removed && 2130 state == VDEV_STATE_CANT_OPEN && 2131 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2132 /* 2133 * If the previous state is set to VDEV_STATE_REMOVED, then this 2134 * device was previously marked removed and someone attempted to 2135 * reopen it. If this failed due to a nonexistent device, then 2136 * keep the device in the REMOVED state. We also let this be if 2137 * it is one of our special test online cases, which is only 2138 * attempting to online the device and shouldn't generate an FMA 2139 * fault. 2140 */ 2141 vd->vdev_state = VDEV_STATE_REMOVED; 2142 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2143 } else if (state == VDEV_STATE_REMOVED) { 2144 /* 2145 * Indicate to the ZFS DE that this device has been removed, and 2146 * any recent errors should be ignored. 2147 */ 2148 zfs_post_remove(vd->vdev_spa, vd); 2149 vd->vdev_removed = B_TRUE; 2150 } else if (state == VDEV_STATE_CANT_OPEN) { 2151 /* 2152 * If we fail to open a vdev during an import, we mark it as 2153 * "not available", which signifies that it was never there to 2154 * begin with. Failure to open such a device is not considered 2155 * an error. 2156 */ 2157 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 2158 vd->vdev_ops->vdev_op_leaf) 2159 vd->vdev_not_present = 1; 2160 2161 /* 2162 * Post the appropriate ereport. If the 'prevstate' field is 2163 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2164 * that this is part of a vdev_reopen(). In this case, we don't 2165 * want to post the ereport if the device was already in the 2166 * CANT_OPEN state beforehand. 2167 * 2168 * If the 'checkremove' flag is set, then this is an attempt to 2169 * online the device in response to an insertion event. If we 2170 * hit this case, then we have detected an insertion event for a 2171 * faulted or offline device that wasn't in the removed state. 2172 * In this scenario, we don't post an ereport because we are 2173 * about to replace the device, or attempt an online with 2174 * vdev_forcefault, which will generate the fault for us. 2175 */ 2176 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2177 !vd->vdev_not_present && !vd->vdev_checkremove && 2178 vd != vd->vdev_spa->spa_root_vdev) { 2179 const char *class; 2180 2181 switch (aux) { 2182 case VDEV_AUX_OPEN_FAILED: 2183 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2184 break; 2185 case VDEV_AUX_CORRUPT_DATA: 2186 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2187 break; 2188 case VDEV_AUX_NO_REPLICAS: 2189 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2190 break; 2191 case VDEV_AUX_BAD_GUID_SUM: 2192 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2193 break; 2194 case VDEV_AUX_TOO_SMALL: 2195 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2196 break; 2197 case VDEV_AUX_BAD_LABEL: 2198 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2199 break; 2200 default: 2201 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2202 } 2203 2204 zfs_ereport_post(class, vd->vdev_spa, 2205 vd, NULL, save_state, 0); 2206 } 2207 2208 /* Erase any notion of persistent removed state */ 2209 vd->vdev_removed = B_FALSE; 2210 } else { 2211 vd->vdev_removed = B_FALSE; 2212 } 2213 2214 if (!isopen) 2215 vdev_propagate_state(vd); 2216 } 2217