xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev.c (revision f3312ec0e8acbd249df97358fb8c3ca92f4e089c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/space_reftree.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 #include <sys/zil.h>
45 #include <sys/dsl_scan.h>
46 
47 /*
48  * Virtual device management.
49  */
50 
51 static vdev_ops_t *vdev_ops_table[] = {
52 	&vdev_root_ops,
53 	&vdev_raidz_ops,
54 	&vdev_mirror_ops,
55 	&vdev_replacing_ops,
56 	&vdev_spare_ops,
57 	&vdev_disk_ops,
58 	&vdev_file_ops,
59 	&vdev_missing_ops,
60 	&vdev_hole_ops,
61 	NULL
62 };
63 
64 /* maximum scrub/resilver I/O queue per leaf vdev */
65 int zfs_scrub_limit = 10;
66 
67 /*
68  * Given a vdev type, return the appropriate ops vector.
69  */
70 static vdev_ops_t *
71 vdev_getops(const char *type)
72 {
73 	vdev_ops_t *ops, **opspp;
74 
75 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
76 		if (strcmp(ops->vdev_op_type, type) == 0)
77 			break;
78 
79 	return (ops);
80 }
81 
82 /*
83  * Default asize function: return the MAX of psize with the asize of
84  * all children.  This is what's used by anything other than RAID-Z.
85  */
86 uint64_t
87 vdev_default_asize(vdev_t *vd, uint64_t psize)
88 {
89 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
90 	uint64_t csize;
91 
92 	for (int c = 0; c < vd->vdev_children; c++) {
93 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
94 		asize = MAX(asize, csize);
95 	}
96 
97 	return (asize);
98 }
99 
100 /*
101  * Get the minimum allocatable size. We define the allocatable size as
102  * the vdev's asize rounded to the nearest metaslab. This allows us to
103  * replace or attach devices which don't have the same physical size but
104  * can still satisfy the same number of allocations.
105  */
106 uint64_t
107 vdev_get_min_asize(vdev_t *vd)
108 {
109 	vdev_t *pvd = vd->vdev_parent;
110 
111 	/*
112 	 * If our parent is NULL (inactive spare or cache) or is the root,
113 	 * just return our own asize.
114 	 */
115 	if (pvd == NULL)
116 		return (vd->vdev_asize);
117 
118 	/*
119 	 * The top-level vdev just returns the allocatable size rounded
120 	 * to the nearest metaslab.
121 	 */
122 	if (vd == vd->vdev_top)
123 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
124 
125 	/*
126 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
127 	 * so each child must provide at least 1/Nth of its asize.
128 	 */
129 	if (pvd->vdev_ops == &vdev_raidz_ops)
130 		return (pvd->vdev_min_asize / pvd->vdev_children);
131 
132 	return (pvd->vdev_min_asize);
133 }
134 
135 void
136 vdev_set_min_asize(vdev_t *vd)
137 {
138 	vd->vdev_min_asize = vdev_get_min_asize(vd);
139 
140 	for (int c = 0; c < vd->vdev_children; c++)
141 		vdev_set_min_asize(vd->vdev_child[c]);
142 }
143 
144 vdev_t *
145 vdev_lookup_top(spa_t *spa, uint64_t vdev)
146 {
147 	vdev_t *rvd = spa->spa_root_vdev;
148 
149 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
150 
151 	if (vdev < rvd->vdev_children) {
152 		ASSERT(rvd->vdev_child[vdev] != NULL);
153 		return (rvd->vdev_child[vdev]);
154 	}
155 
156 	return (NULL);
157 }
158 
159 vdev_t *
160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
161 {
162 	vdev_t *mvd;
163 
164 	if (vd->vdev_guid == guid)
165 		return (vd);
166 
167 	for (int c = 0; c < vd->vdev_children; c++)
168 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
169 		    NULL)
170 			return (mvd);
171 
172 	return (NULL);
173 }
174 
175 void
176 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
177 {
178 	size_t oldsize, newsize;
179 	uint64_t id = cvd->vdev_id;
180 	vdev_t **newchild;
181 
182 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
183 	ASSERT(cvd->vdev_parent == NULL);
184 
185 	cvd->vdev_parent = pvd;
186 
187 	if (pvd == NULL)
188 		return;
189 
190 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
191 
192 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
193 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
194 	newsize = pvd->vdev_children * sizeof (vdev_t *);
195 
196 	newchild = kmem_zalloc(newsize, KM_SLEEP);
197 	if (pvd->vdev_child != NULL) {
198 		bcopy(pvd->vdev_child, newchild, oldsize);
199 		kmem_free(pvd->vdev_child, oldsize);
200 	}
201 
202 	pvd->vdev_child = newchild;
203 	pvd->vdev_child[id] = cvd;
204 
205 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
206 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
207 
208 	/*
209 	 * Walk up all ancestors to update guid sum.
210 	 */
211 	for (; pvd != NULL; pvd = pvd->vdev_parent)
212 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
213 }
214 
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 	int c;
219 	uint_t id = cvd->vdev_id;
220 
221 	ASSERT(cvd->vdev_parent == pvd);
222 
223 	if (pvd == NULL)
224 		return;
225 
226 	ASSERT(id < pvd->vdev_children);
227 	ASSERT(pvd->vdev_child[id] == cvd);
228 
229 	pvd->vdev_child[id] = NULL;
230 	cvd->vdev_parent = NULL;
231 
232 	for (c = 0; c < pvd->vdev_children; c++)
233 		if (pvd->vdev_child[c])
234 			break;
235 
236 	if (c == pvd->vdev_children) {
237 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 		pvd->vdev_child = NULL;
239 		pvd->vdev_children = 0;
240 	}
241 
242 	/*
243 	 * Walk up all ancestors to update guid sum.
244 	 */
245 	for (; pvd != NULL; pvd = pvd->vdev_parent)
246 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 }
248 
249 /*
250  * Remove any holes in the child array.
251  */
252 void
253 vdev_compact_children(vdev_t *pvd)
254 {
255 	vdev_t **newchild, *cvd;
256 	int oldc = pvd->vdev_children;
257 	int newc;
258 
259 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
260 
261 	for (int c = newc = 0; c < oldc; c++)
262 		if (pvd->vdev_child[c])
263 			newc++;
264 
265 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
266 
267 	for (int c = newc = 0; c < oldc; c++) {
268 		if ((cvd = pvd->vdev_child[c]) != NULL) {
269 			newchild[newc] = cvd;
270 			cvd->vdev_id = newc++;
271 		}
272 	}
273 
274 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
275 	pvd->vdev_child = newchild;
276 	pvd->vdev_children = newc;
277 }
278 
279 /*
280  * Allocate and minimally initialize a vdev_t.
281  */
282 vdev_t *
283 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
284 {
285 	vdev_t *vd;
286 
287 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
288 
289 	if (spa->spa_root_vdev == NULL) {
290 		ASSERT(ops == &vdev_root_ops);
291 		spa->spa_root_vdev = vd;
292 		spa->spa_load_guid = spa_generate_guid(NULL);
293 	}
294 
295 	if (guid == 0 && ops != &vdev_hole_ops) {
296 		if (spa->spa_root_vdev == vd) {
297 			/*
298 			 * The root vdev's guid will also be the pool guid,
299 			 * which must be unique among all pools.
300 			 */
301 			guid = spa_generate_guid(NULL);
302 		} else {
303 			/*
304 			 * Any other vdev's guid must be unique within the pool.
305 			 */
306 			guid = spa_generate_guid(spa);
307 		}
308 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
309 	}
310 
311 	vd->vdev_spa = spa;
312 	vd->vdev_id = id;
313 	vd->vdev_guid = guid;
314 	vd->vdev_guid_sum = guid;
315 	vd->vdev_ops = ops;
316 	vd->vdev_state = VDEV_STATE_CLOSED;
317 	vd->vdev_ishole = (ops == &vdev_hole_ops);
318 
319 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
320 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
321 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
322 	for (int t = 0; t < DTL_TYPES; t++) {
323 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
324 		    &vd->vdev_dtl_lock);
325 	}
326 	txg_list_create(&vd->vdev_ms_list,
327 	    offsetof(struct metaslab, ms_txg_node));
328 	txg_list_create(&vd->vdev_dtl_list,
329 	    offsetof(struct vdev, vdev_dtl_node));
330 	vd->vdev_stat.vs_timestamp = gethrtime();
331 	vdev_queue_init(vd);
332 	vdev_cache_init(vd);
333 
334 	return (vd);
335 }
336 
337 /*
338  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
339  * creating a new vdev or loading an existing one - the behavior is slightly
340  * different for each case.
341  */
342 int
343 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
344     int alloctype)
345 {
346 	vdev_ops_t *ops;
347 	char *type;
348 	uint64_t guid = 0, islog, nparity;
349 	vdev_t *vd;
350 
351 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
352 
353 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
354 		return (SET_ERROR(EINVAL));
355 
356 	if ((ops = vdev_getops(type)) == NULL)
357 		return (SET_ERROR(EINVAL));
358 
359 	/*
360 	 * If this is a load, get the vdev guid from the nvlist.
361 	 * Otherwise, vdev_alloc_common() will generate one for us.
362 	 */
363 	if (alloctype == VDEV_ALLOC_LOAD) {
364 		uint64_t label_id;
365 
366 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
367 		    label_id != id)
368 			return (SET_ERROR(EINVAL));
369 
370 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
371 			return (SET_ERROR(EINVAL));
372 	} else if (alloctype == VDEV_ALLOC_SPARE) {
373 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
374 			return (SET_ERROR(EINVAL));
375 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
376 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
377 			return (SET_ERROR(EINVAL));
378 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
379 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
380 			return (SET_ERROR(EINVAL));
381 	}
382 
383 	/*
384 	 * The first allocated vdev must be of type 'root'.
385 	 */
386 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
387 		return (SET_ERROR(EINVAL));
388 
389 	/*
390 	 * Determine whether we're a log vdev.
391 	 */
392 	islog = 0;
393 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
394 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
395 		return (SET_ERROR(ENOTSUP));
396 
397 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
398 		return (SET_ERROR(ENOTSUP));
399 
400 	/*
401 	 * Set the nparity property for RAID-Z vdevs.
402 	 */
403 	nparity = -1ULL;
404 	if (ops == &vdev_raidz_ops) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
406 		    &nparity) == 0) {
407 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
408 				return (SET_ERROR(EINVAL));
409 			/*
410 			 * Previous versions could only support 1 or 2 parity
411 			 * device.
412 			 */
413 			if (nparity > 1 &&
414 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
415 				return (SET_ERROR(ENOTSUP));
416 			if (nparity > 2 &&
417 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
418 				return (SET_ERROR(ENOTSUP));
419 		} else {
420 			/*
421 			 * We require the parity to be specified for SPAs that
422 			 * support multiple parity levels.
423 			 */
424 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
425 				return (SET_ERROR(EINVAL));
426 			/*
427 			 * Otherwise, we default to 1 parity device for RAID-Z.
428 			 */
429 			nparity = 1;
430 		}
431 	} else {
432 		nparity = 0;
433 	}
434 	ASSERT(nparity != -1ULL);
435 
436 	vd = vdev_alloc_common(spa, id, guid, ops);
437 
438 	vd->vdev_islog = islog;
439 	vd->vdev_nparity = nparity;
440 
441 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
442 		vd->vdev_path = spa_strdup(vd->vdev_path);
443 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
444 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
445 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
446 	    &vd->vdev_physpath) == 0)
447 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
448 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
449 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
450 
451 	/*
452 	 * Set the whole_disk property.  If it's not specified, leave the value
453 	 * as -1.
454 	 */
455 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
456 	    &vd->vdev_wholedisk) != 0)
457 		vd->vdev_wholedisk = -1ULL;
458 
459 	/*
460 	 * Look for the 'not present' flag.  This will only be set if the device
461 	 * was not present at the time of import.
462 	 */
463 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
464 	    &vd->vdev_not_present);
465 
466 	/*
467 	 * Get the alignment requirement.
468 	 */
469 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
470 
471 	/*
472 	 * Retrieve the vdev creation time.
473 	 */
474 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
475 	    &vd->vdev_crtxg);
476 
477 	/*
478 	 * If we're a top-level vdev, try to load the allocation parameters.
479 	 */
480 	if (parent && !parent->vdev_parent &&
481 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
482 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
483 		    &vd->vdev_ms_array);
484 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
485 		    &vd->vdev_ms_shift);
486 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
487 		    &vd->vdev_asize);
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
489 		    &vd->vdev_removing);
490 	}
491 
492 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
493 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
494 		    alloctype == VDEV_ALLOC_ADD ||
495 		    alloctype == VDEV_ALLOC_SPLIT ||
496 		    alloctype == VDEV_ALLOC_ROOTPOOL);
497 		vd->vdev_mg = metaslab_group_create(islog ?
498 		    spa_log_class(spa) : spa_normal_class(spa), vd);
499 	}
500 
501 	/*
502 	 * If we're a leaf vdev, try to load the DTL object and other state.
503 	 */
504 	if (vd->vdev_ops->vdev_op_leaf &&
505 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
506 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
507 		if (alloctype == VDEV_ALLOC_LOAD) {
508 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
509 			    &vd->vdev_dtl_object);
510 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
511 			    &vd->vdev_unspare);
512 		}
513 
514 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
515 			uint64_t spare = 0;
516 
517 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
518 			    &spare) == 0 && spare)
519 				spa_spare_add(vd);
520 		}
521 
522 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
523 		    &vd->vdev_offline);
524 
525 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
526 		    &vd->vdev_resilver_txg);
527 
528 		/*
529 		 * When importing a pool, we want to ignore the persistent fault
530 		 * state, as the diagnosis made on another system may not be
531 		 * valid in the current context.  Local vdevs will
532 		 * remain in the faulted state.
533 		 */
534 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
535 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
536 			    &vd->vdev_faulted);
537 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
538 			    &vd->vdev_degraded);
539 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
540 			    &vd->vdev_removed);
541 
542 			if (vd->vdev_faulted || vd->vdev_degraded) {
543 				char *aux;
544 
545 				vd->vdev_label_aux =
546 				    VDEV_AUX_ERR_EXCEEDED;
547 				if (nvlist_lookup_string(nv,
548 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
549 				    strcmp(aux, "external") == 0)
550 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
551 			}
552 		}
553 	}
554 
555 	/*
556 	 * Add ourselves to the parent's list of children.
557 	 */
558 	vdev_add_child(parent, vd);
559 
560 	*vdp = vd;
561 
562 	return (0);
563 }
564 
565 void
566 vdev_free(vdev_t *vd)
567 {
568 	spa_t *spa = vd->vdev_spa;
569 
570 	/*
571 	 * vdev_free() implies closing the vdev first.  This is simpler than
572 	 * trying to ensure complicated semantics for all callers.
573 	 */
574 	vdev_close(vd);
575 
576 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
577 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
578 
579 	/*
580 	 * Free all children.
581 	 */
582 	for (int c = 0; c < vd->vdev_children; c++)
583 		vdev_free(vd->vdev_child[c]);
584 
585 	ASSERT(vd->vdev_child == NULL);
586 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
587 
588 	/*
589 	 * Discard allocation state.
590 	 */
591 	if (vd->vdev_mg != NULL) {
592 		vdev_metaslab_fini(vd);
593 		metaslab_group_destroy(vd->vdev_mg);
594 	}
595 
596 	ASSERT0(vd->vdev_stat.vs_space);
597 	ASSERT0(vd->vdev_stat.vs_dspace);
598 	ASSERT0(vd->vdev_stat.vs_alloc);
599 
600 	/*
601 	 * Remove this vdev from its parent's child list.
602 	 */
603 	vdev_remove_child(vd->vdev_parent, vd);
604 
605 	ASSERT(vd->vdev_parent == NULL);
606 
607 	/*
608 	 * Clean up vdev structure.
609 	 */
610 	vdev_queue_fini(vd);
611 	vdev_cache_fini(vd);
612 
613 	if (vd->vdev_path)
614 		spa_strfree(vd->vdev_path);
615 	if (vd->vdev_devid)
616 		spa_strfree(vd->vdev_devid);
617 	if (vd->vdev_physpath)
618 		spa_strfree(vd->vdev_physpath);
619 	if (vd->vdev_fru)
620 		spa_strfree(vd->vdev_fru);
621 
622 	if (vd->vdev_isspare)
623 		spa_spare_remove(vd);
624 	if (vd->vdev_isl2cache)
625 		spa_l2cache_remove(vd);
626 
627 	txg_list_destroy(&vd->vdev_ms_list);
628 	txg_list_destroy(&vd->vdev_dtl_list);
629 
630 	mutex_enter(&vd->vdev_dtl_lock);
631 	space_map_close(vd->vdev_dtl_sm);
632 	for (int t = 0; t < DTL_TYPES; t++) {
633 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
634 		range_tree_destroy(vd->vdev_dtl[t]);
635 	}
636 	mutex_exit(&vd->vdev_dtl_lock);
637 
638 	mutex_destroy(&vd->vdev_dtl_lock);
639 	mutex_destroy(&vd->vdev_stat_lock);
640 	mutex_destroy(&vd->vdev_probe_lock);
641 
642 	if (vd == spa->spa_root_vdev)
643 		spa->spa_root_vdev = NULL;
644 
645 	kmem_free(vd, sizeof (vdev_t));
646 }
647 
648 /*
649  * Transfer top-level vdev state from svd to tvd.
650  */
651 static void
652 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
653 {
654 	spa_t *spa = svd->vdev_spa;
655 	metaslab_t *msp;
656 	vdev_t *vd;
657 	int t;
658 
659 	ASSERT(tvd == tvd->vdev_top);
660 
661 	tvd->vdev_ms_array = svd->vdev_ms_array;
662 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
663 	tvd->vdev_ms_count = svd->vdev_ms_count;
664 
665 	svd->vdev_ms_array = 0;
666 	svd->vdev_ms_shift = 0;
667 	svd->vdev_ms_count = 0;
668 
669 	if (tvd->vdev_mg)
670 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
671 	tvd->vdev_mg = svd->vdev_mg;
672 	tvd->vdev_ms = svd->vdev_ms;
673 
674 	svd->vdev_mg = NULL;
675 	svd->vdev_ms = NULL;
676 
677 	if (tvd->vdev_mg != NULL)
678 		tvd->vdev_mg->mg_vd = tvd;
679 
680 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
681 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
682 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
683 
684 	svd->vdev_stat.vs_alloc = 0;
685 	svd->vdev_stat.vs_space = 0;
686 	svd->vdev_stat.vs_dspace = 0;
687 
688 	for (t = 0; t < TXG_SIZE; t++) {
689 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
690 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
691 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
692 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
693 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
694 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
695 	}
696 
697 	if (list_link_active(&svd->vdev_config_dirty_node)) {
698 		vdev_config_clean(svd);
699 		vdev_config_dirty(tvd);
700 	}
701 
702 	if (list_link_active(&svd->vdev_state_dirty_node)) {
703 		vdev_state_clean(svd);
704 		vdev_state_dirty(tvd);
705 	}
706 
707 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
708 	svd->vdev_deflate_ratio = 0;
709 
710 	tvd->vdev_islog = svd->vdev_islog;
711 	svd->vdev_islog = 0;
712 }
713 
714 static void
715 vdev_top_update(vdev_t *tvd, vdev_t *vd)
716 {
717 	if (vd == NULL)
718 		return;
719 
720 	vd->vdev_top = tvd;
721 
722 	for (int c = 0; c < vd->vdev_children; c++)
723 		vdev_top_update(tvd, vd->vdev_child[c]);
724 }
725 
726 /*
727  * Add a mirror/replacing vdev above an existing vdev.
728  */
729 vdev_t *
730 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
731 {
732 	spa_t *spa = cvd->vdev_spa;
733 	vdev_t *pvd = cvd->vdev_parent;
734 	vdev_t *mvd;
735 
736 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
737 
738 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
739 
740 	mvd->vdev_asize = cvd->vdev_asize;
741 	mvd->vdev_min_asize = cvd->vdev_min_asize;
742 	mvd->vdev_max_asize = cvd->vdev_max_asize;
743 	mvd->vdev_ashift = cvd->vdev_ashift;
744 	mvd->vdev_state = cvd->vdev_state;
745 	mvd->vdev_crtxg = cvd->vdev_crtxg;
746 
747 	vdev_remove_child(pvd, cvd);
748 	vdev_add_child(pvd, mvd);
749 	cvd->vdev_id = mvd->vdev_children;
750 	vdev_add_child(mvd, cvd);
751 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
752 
753 	if (mvd == mvd->vdev_top)
754 		vdev_top_transfer(cvd, mvd);
755 
756 	return (mvd);
757 }
758 
759 /*
760  * Remove a 1-way mirror/replacing vdev from the tree.
761  */
762 void
763 vdev_remove_parent(vdev_t *cvd)
764 {
765 	vdev_t *mvd = cvd->vdev_parent;
766 	vdev_t *pvd = mvd->vdev_parent;
767 
768 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
769 
770 	ASSERT(mvd->vdev_children == 1);
771 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
772 	    mvd->vdev_ops == &vdev_replacing_ops ||
773 	    mvd->vdev_ops == &vdev_spare_ops);
774 	cvd->vdev_ashift = mvd->vdev_ashift;
775 
776 	vdev_remove_child(mvd, cvd);
777 	vdev_remove_child(pvd, mvd);
778 
779 	/*
780 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
781 	 * Otherwise, we could have detached an offline device, and when we
782 	 * go to import the pool we'll think we have two top-level vdevs,
783 	 * instead of a different version of the same top-level vdev.
784 	 */
785 	if (mvd->vdev_top == mvd) {
786 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
787 		cvd->vdev_orig_guid = cvd->vdev_guid;
788 		cvd->vdev_guid += guid_delta;
789 		cvd->vdev_guid_sum += guid_delta;
790 	}
791 	cvd->vdev_id = mvd->vdev_id;
792 	vdev_add_child(pvd, cvd);
793 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
794 
795 	if (cvd == cvd->vdev_top)
796 		vdev_top_transfer(mvd, cvd);
797 
798 	ASSERT(mvd->vdev_children == 0);
799 	vdev_free(mvd);
800 }
801 
802 int
803 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
804 {
805 	spa_t *spa = vd->vdev_spa;
806 	objset_t *mos = spa->spa_meta_objset;
807 	uint64_t m;
808 	uint64_t oldc = vd->vdev_ms_count;
809 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
810 	metaslab_t **mspp;
811 	int error;
812 
813 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
814 
815 	/*
816 	 * This vdev is not being allocated from yet or is a hole.
817 	 */
818 	if (vd->vdev_ms_shift == 0)
819 		return (0);
820 
821 	ASSERT(!vd->vdev_ishole);
822 
823 	/*
824 	 * Compute the raidz-deflation ratio.  Note, we hard-code
825 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
826 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
827 	 * or we will inconsistently account for existing bp's.
828 	 */
829 	vd->vdev_deflate_ratio = (1 << 17) /
830 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
831 
832 	ASSERT(oldc <= newc);
833 
834 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
835 
836 	if (oldc != 0) {
837 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
838 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
839 	}
840 
841 	vd->vdev_ms = mspp;
842 	vd->vdev_ms_count = newc;
843 
844 	for (m = oldc; m < newc; m++) {
845 		uint64_t object = 0;
846 
847 		if (txg == 0) {
848 			error = dmu_read(mos, vd->vdev_ms_array,
849 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
850 			    DMU_READ_PREFETCH);
851 			if (error)
852 				return (error);
853 		}
854 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg);
855 	}
856 
857 	if (txg == 0)
858 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
859 
860 	/*
861 	 * If the vdev is being removed we don't activate
862 	 * the metaslabs since we want to ensure that no new
863 	 * allocations are performed on this device.
864 	 */
865 	if (oldc == 0 && !vd->vdev_removing)
866 		metaslab_group_activate(vd->vdev_mg);
867 
868 	if (txg == 0)
869 		spa_config_exit(spa, SCL_ALLOC, FTAG);
870 
871 	return (0);
872 }
873 
874 void
875 vdev_metaslab_fini(vdev_t *vd)
876 {
877 	uint64_t m;
878 	uint64_t count = vd->vdev_ms_count;
879 
880 	if (vd->vdev_ms != NULL) {
881 		metaslab_group_passivate(vd->vdev_mg);
882 		for (m = 0; m < count; m++) {
883 			metaslab_t *msp = vd->vdev_ms[m];
884 
885 			if (msp != NULL)
886 				metaslab_fini(msp);
887 		}
888 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
889 		vd->vdev_ms = NULL;
890 	}
891 }
892 
893 typedef struct vdev_probe_stats {
894 	boolean_t	vps_readable;
895 	boolean_t	vps_writeable;
896 	int		vps_flags;
897 } vdev_probe_stats_t;
898 
899 static void
900 vdev_probe_done(zio_t *zio)
901 {
902 	spa_t *spa = zio->io_spa;
903 	vdev_t *vd = zio->io_vd;
904 	vdev_probe_stats_t *vps = zio->io_private;
905 
906 	ASSERT(vd->vdev_probe_zio != NULL);
907 
908 	if (zio->io_type == ZIO_TYPE_READ) {
909 		if (zio->io_error == 0)
910 			vps->vps_readable = 1;
911 		if (zio->io_error == 0 && spa_writeable(spa)) {
912 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
913 			    zio->io_offset, zio->io_size, zio->io_data,
914 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
915 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
916 		} else {
917 			zio_buf_free(zio->io_data, zio->io_size);
918 		}
919 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
920 		if (zio->io_error == 0)
921 			vps->vps_writeable = 1;
922 		zio_buf_free(zio->io_data, zio->io_size);
923 	} else if (zio->io_type == ZIO_TYPE_NULL) {
924 		zio_t *pio;
925 
926 		vd->vdev_cant_read |= !vps->vps_readable;
927 		vd->vdev_cant_write |= !vps->vps_writeable;
928 
929 		if (vdev_readable(vd) &&
930 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
931 			zio->io_error = 0;
932 		} else {
933 			ASSERT(zio->io_error != 0);
934 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
935 			    spa, vd, NULL, 0, 0);
936 			zio->io_error = SET_ERROR(ENXIO);
937 		}
938 
939 		mutex_enter(&vd->vdev_probe_lock);
940 		ASSERT(vd->vdev_probe_zio == zio);
941 		vd->vdev_probe_zio = NULL;
942 		mutex_exit(&vd->vdev_probe_lock);
943 
944 		while ((pio = zio_walk_parents(zio)) != NULL)
945 			if (!vdev_accessible(vd, pio))
946 				pio->io_error = SET_ERROR(ENXIO);
947 
948 		kmem_free(vps, sizeof (*vps));
949 	}
950 }
951 
952 /*
953  * Determine whether this device is accessible.
954  *
955  * Read and write to several known locations: the pad regions of each
956  * vdev label but the first, which we leave alone in case it contains
957  * a VTOC.
958  */
959 zio_t *
960 vdev_probe(vdev_t *vd, zio_t *zio)
961 {
962 	spa_t *spa = vd->vdev_spa;
963 	vdev_probe_stats_t *vps = NULL;
964 	zio_t *pio;
965 
966 	ASSERT(vd->vdev_ops->vdev_op_leaf);
967 
968 	/*
969 	 * Don't probe the probe.
970 	 */
971 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
972 		return (NULL);
973 
974 	/*
975 	 * To prevent 'probe storms' when a device fails, we create
976 	 * just one probe i/o at a time.  All zios that want to probe
977 	 * this vdev will become parents of the probe io.
978 	 */
979 	mutex_enter(&vd->vdev_probe_lock);
980 
981 	if ((pio = vd->vdev_probe_zio) == NULL) {
982 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
983 
984 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
985 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
986 		    ZIO_FLAG_TRYHARD;
987 
988 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
989 			/*
990 			 * vdev_cant_read and vdev_cant_write can only
991 			 * transition from TRUE to FALSE when we have the
992 			 * SCL_ZIO lock as writer; otherwise they can only
993 			 * transition from FALSE to TRUE.  This ensures that
994 			 * any zio looking at these values can assume that
995 			 * failures persist for the life of the I/O.  That's
996 			 * important because when a device has intermittent
997 			 * connectivity problems, we want to ensure that
998 			 * they're ascribed to the device (ENXIO) and not
999 			 * the zio (EIO).
1000 			 *
1001 			 * Since we hold SCL_ZIO as writer here, clear both
1002 			 * values so the probe can reevaluate from first
1003 			 * principles.
1004 			 */
1005 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1006 			vd->vdev_cant_read = B_FALSE;
1007 			vd->vdev_cant_write = B_FALSE;
1008 		}
1009 
1010 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1011 		    vdev_probe_done, vps,
1012 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1013 
1014 		/*
1015 		 * We can't change the vdev state in this context, so we
1016 		 * kick off an async task to do it on our behalf.
1017 		 */
1018 		if (zio != NULL) {
1019 			vd->vdev_probe_wanted = B_TRUE;
1020 			spa_async_request(spa, SPA_ASYNC_PROBE);
1021 		}
1022 	}
1023 
1024 	if (zio != NULL)
1025 		zio_add_child(zio, pio);
1026 
1027 	mutex_exit(&vd->vdev_probe_lock);
1028 
1029 	if (vps == NULL) {
1030 		ASSERT(zio != NULL);
1031 		return (NULL);
1032 	}
1033 
1034 	for (int l = 1; l < VDEV_LABELS; l++) {
1035 		zio_nowait(zio_read_phys(pio, vd,
1036 		    vdev_label_offset(vd->vdev_psize, l,
1037 		    offsetof(vdev_label_t, vl_pad2)),
1038 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1039 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1040 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1041 	}
1042 
1043 	if (zio == NULL)
1044 		return (pio);
1045 
1046 	zio_nowait(pio);
1047 	return (NULL);
1048 }
1049 
1050 static void
1051 vdev_open_child(void *arg)
1052 {
1053 	vdev_t *vd = arg;
1054 
1055 	vd->vdev_open_thread = curthread;
1056 	vd->vdev_open_error = vdev_open(vd);
1057 	vd->vdev_open_thread = NULL;
1058 }
1059 
1060 boolean_t
1061 vdev_uses_zvols(vdev_t *vd)
1062 {
1063 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1064 	    strlen(ZVOL_DIR)) == 0)
1065 		return (B_TRUE);
1066 	for (int c = 0; c < vd->vdev_children; c++)
1067 		if (vdev_uses_zvols(vd->vdev_child[c]))
1068 			return (B_TRUE);
1069 	return (B_FALSE);
1070 }
1071 
1072 void
1073 vdev_open_children(vdev_t *vd)
1074 {
1075 	taskq_t *tq;
1076 	int children = vd->vdev_children;
1077 
1078 	/*
1079 	 * in order to handle pools on top of zvols, do the opens
1080 	 * in a single thread so that the same thread holds the
1081 	 * spa_namespace_lock
1082 	 */
1083 	if (vdev_uses_zvols(vd)) {
1084 		for (int c = 0; c < children; c++)
1085 			vd->vdev_child[c]->vdev_open_error =
1086 			    vdev_open(vd->vdev_child[c]);
1087 		return;
1088 	}
1089 	tq = taskq_create("vdev_open", children, minclsyspri,
1090 	    children, children, TASKQ_PREPOPULATE);
1091 
1092 	for (int c = 0; c < children; c++)
1093 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1094 		    TQ_SLEEP) != NULL);
1095 
1096 	taskq_destroy(tq);
1097 }
1098 
1099 /*
1100  * Prepare a virtual device for access.
1101  */
1102 int
1103 vdev_open(vdev_t *vd)
1104 {
1105 	spa_t *spa = vd->vdev_spa;
1106 	int error;
1107 	uint64_t osize = 0;
1108 	uint64_t max_osize = 0;
1109 	uint64_t asize, max_asize, psize;
1110 	uint64_t ashift = 0;
1111 
1112 	ASSERT(vd->vdev_open_thread == curthread ||
1113 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1114 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1115 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1116 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1117 
1118 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1119 	vd->vdev_cant_read = B_FALSE;
1120 	vd->vdev_cant_write = B_FALSE;
1121 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1122 
1123 	/*
1124 	 * If this vdev is not removed, check its fault status.  If it's
1125 	 * faulted, bail out of the open.
1126 	 */
1127 	if (!vd->vdev_removed && vd->vdev_faulted) {
1128 		ASSERT(vd->vdev_children == 0);
1129 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1130 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1131 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1132 		    vd->vdev_label_aux);
1133 		return (SET_ERROR(ENXIO));
1134 	} else if (vd->vdev_offline) {
1135 		ASSERT(vd->vdev_children == 0);
1136 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1137 		return (SET_ERROR(ENXIO));
1138 	}
1139 
1140 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1141 
1142 	/*
1143 	 * Reset the vdev_reopening flag so that we actually close
1144 	 * the vdev on error.
1145 	 */
1146 	vd->vdev_reopening = B_FALSE;
1147 	if (zio_injection_enabled && error == 0)
1148 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1149 
1150 	if (error) {
1151 		if (vd->vdev_removed &&
1152 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1153 			vd->vdev_removed = B_FALSE;
1154 
1155 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156 		    vd->vdev_stat.vs_aux);
1157 		return (error);
1158 	}
1159 
1160 	vd->vdev_removed = B_FALSE;
1161 
1162 	/*
1163 	 * Recheck the faulted flag now that we have confirmed that
1164 	 * the vdev is accessible.  If we're faulted, bail.
1165 	 */
1166 	if (vd->vdev_faulted) {
1167 		ASSERT(vd->vdev_children == 0);
1168 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171 		    vd->vdev_label_aux);
1172 		return (SET_ERROR(ENXIO));
1173 	}
1174 
1175 	if (vd->vdev_degraded) {
1176 		ASSERT(vd->vdev_children == 0);
1177 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1178 		    VDEV_AUX_ERR_EXCEEDED);
1179 	} else {
1180 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1181 	}
1182 
1183 	/*
1184 	 * For hole or missing vdevs we just return success.
1185 	 */
1186 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1187 		return (0);
1188 
1189 	for (int c = 0; c < vd->vdev_children; c++) {
1190 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1191 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1192 			    VDEV_AUX_NONE);
1193 			break;
1194 		}
1195 	}
1196 
1197 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1198 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1199 
1200 	if (vd->vdev_children == 0) {
1201 		if (osize < SPA_MINDEVSIZE) {
1202 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203 			    VDEV_AUX_TOO_SMALL);
1204 			return (SET_ERROR(EOVERFLOW));
1205 		}
1206 		psize = osize;
1207 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1208 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1209 		    VDEV_LABEL_END_SIZE);
1210 	} else {
1211 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1212 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1213 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1214 			    VDEV_AUX_TOO_SMALL);
1215 			return (SET_ERROR(EOVERFLOW));
1216 		}
1217 		psize = 0;
1218 		asize = osize;
1219 		max_asize = max_osize;
1220 	}
1221 
1222 	vd->vdev_psize = psize;
1223 
1224 	/*
1225 	 * Make sure the allocatable size hasn't shrunk.
1226 	 */
1227 	if (asize < vd->vdev_min_asize) {
1228 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1229 		    VDEV_AUX_BAD_LABEL);
1230 		return (SET_ERROR(EINVAL));
1231 	}
1232 
1233 	if (vd->vdev_asize == 0) {
1234 		/*
1235 		 * This is the first-ever open, so use the computed values.
1236 		 * For testing purposes, a higher ashift can be requested.
1237 		 */
1238 		vd->vdev_asize = asize;
1239 		vd->vdev_max_asize = max_asize;
1240 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1241 	} else {
1242 		/*
1243 		 * Detect if the alignment requirement has increased.
1244 		 * We don't want to make the pool unavailable, just
1245 		 * issue a warning instead.
1246 		 */
1247 		if (ashift > vd->vdev_top->vdev_ashift &&
1248 		    vd->vdev_ops->vdev_op_leaf) {
1249 			cmn_err(CE_WARN,
1250 			    "Disk, '%s', has a block alignment that is "
1251 			    "larger than the pool's alignment\n",
1252 			    vd->vdev_path);
1253 		}
1254 		vd->vdev_max_asize = max_asize;
1255 	}
1256 
1257 	/*
1258 	 * If all children are healthy and the asize has increased,
1259 	 * then we've experienced dynamic LUN growth.  If automatic
1260 	 * expansion is enabled then use the additional space.
1261 	 */
1262 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1263 	    (vd->vdev_expanding || spa->spa_autoexpand))
1264 		vd->vdev_asize = asize;
1265 
1266 	vdev_set_min_asize(vd);
1267 
1268 	/*
1269 	 * Ensure we can issue some IO before declaring the
1270 	 * vdev open for business.
1271 	 */
1272 	if (vd->vdev_ops->vdev_op_leaf &&
1273 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1274 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1275 		    VDEV_AUX_ERR_EXCEEDED);
1276 		return (error);
1277 	}
1278 
1279 	/*
1280 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1281 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1282 	 * since this would just restart the scrub we are already doing.
1283 	 */
1284 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1285 	    vdev_resilver_needed(vd, NULL, NULL))
1286 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1287 
1288 	return (0);
1289 }
1290 
1291 /*
1292  * Called once the vdevs are all opened, this routine validates the label
1293  * contents.  This needs to be done before vdev_load() so that we don't
1294  * inadvertently do repair I/Os to the wrong device.
1295  *
1296  * If 'strict' is false ignore the spa guid check. This is necessary because
1297  * if the machine crashed during a re-guid the new guid might have been written
1298  * to all of the vdev labels, but not the cached config. The strict check
1299  * will be performed when the pool is opened again using the mos config.
1300  *
1301  * This function will only return failure if one of the vdevs indicates that it
1302  * has since been destroyed or exported.  This is only possible if
1303  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1304  * will be updated but the function will return 0.
1305  */
1306 int
1307 vdev_validate(vdev_t *vd, boolean_t strict)
1308 {
1309 	spa_t *spa = vd->vdev_spa;
1310 	nvlist_t *label;
1311 	uint64_t guid = 0, top_guid;
1312 	uint64_t state;
1313 
1314 	for (int c = 0; c < vd->vdev_children; c++)
1315 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1316 			return (SET_ERROR(EBADF));
1317 
1318 	/*
1319 	 * If the device has already failed, or was marked offline, don't do
1320 	 * any further validation.  Otherwise, label I/O will fail and we will
1321 	 * overwrite the previous state.
1322 	 */
1323 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1324 		uint64_t aux_guid = 0;
1325 		nvlist_t *nvl;
1326 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1327 		    spa_last_synced_txg(spa) : -1ULL;
1328 
1329 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1330 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1331 			    VDEV_AUX_BAD_LABEL);
1332 			return (0);
1333 		}
1334 
1335 		/*
1336 		 * Determine if this vdev has been split off into another
1337 		 * pool.  If so, then refuse to open it.
1338 		 */
1339 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1340 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1341 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1342 			    VDEV_AUX_SPLIT_POOL);
1343 			nvlist_free(label);
1344 			return (0);
1345 		}
1346 
1347 		if (strict && (nvlist_lookup_uint64(label,
1348 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1349 		    guid != spa_guid(spa))) {
1350 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1351 			    VDEV_AUX_CORRUPT_DATA);
1352 			nvlist_free(label);
1353 			return (0);
1354 		}
1355 
1356 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1357 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1358 		    &aux_guid) != 0)
1359 			aux_guid = 0;
1360 
1361 		/*
1362 		 * If this vdev just became a top-level vdev because its
1363 		 * sibling was detached, it will have adopted the parent's
1364 		 * vdev guid -- but the label may or may not be on disk yet.
1365 		 * Fortunately, either version of the label will have the
1366 		 * same top guid, so if we're a top-level vdev, we can
1367 		 * safely compare to that instead.
1368 		 *
1369 		 * If we split this vdev off instead, then we also check the
1370 		 * original pool's guid.  We don't want to consider the vdev
1371 		 * corrupt if it is partway through a split operation.
1372 		 */
1373 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1374 		    &guid) != 0 ||
1375 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1376 		    &top_guid) != 0 ||
1377 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1378 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1379 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1380 			    VDEV_AUX_CORRUPT_DATA);
1381 			nvlist_free(label);
1382 			return (0);
1383 		}
1384 
1385 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1386 		    &state) != 0) {
1387 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1388 			    VDEV_AUX_CORRUPT_DATA);
1389 			nvlist_free(label);
1390 			return (0);
1391 		}
1392 
1393 		nvlist_free(label);
1394 
1395 		/*
1396 		 * If this is a verbatim import, no need to check the
1397 		 * state of the pool.
1398 		 */
1399 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1400 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1401 		    state != POOL_STATE_ACTIVE)
1402 			return (SET_ERROR(EBADF));
1403 
1404 		/*
1405 		 * If we were able to open and validate a vdev that was
1406 		 * previously marked permanently unavailable, clear that state
1407 		 * now.
1408 		 */
1409 		if (vd->vdev_not_present)
1410 			vd->vdev_not_present = 0;
1411 	}
1412 
1413 	return (0);
1414 }
1415 
1416 /*
1417  * Close a virtual device.
1418  */
1419 void
1420 vdev_close(vdev_t *vd)
1421 {
1422 	spa_t *spa = vd->vdev_spa;
1423 	vdev_t *pvd = vd->vdev_parent;
1424 
1425 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1426 
1427 	/*
1428 	 * If our parent is reopening, then we are as well, unless we are
1429 	 * going offline.
1430 	 */
1431 	if (pvd != NULL && pvd->vdev_reopening)
1432 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1433 
1434 	vd->vdev_ops->vdev_op_close(vd);
1435 
1436 	vdev_cache_purge(vd);
1437 
1438 	/*
1439 	 * We record the previous state before we close it, so that if we are
1440 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1441 	 * it's still faulted.
1442 	 */
1443 	vd->vdev_prevstate = vd->vdev_state;
1444 
1445 	if (vd->vdev_offline)
1446 		vd->vdev_state = VDEV_STATE_OFFLINE;
1447 	else
1448 		vd->vdev_state = VDEV_STATE_CLOSED;
1449 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1450 }
1451 
1452 void
1453 vdev_hold(vdev_t *vd)
1454 {
1455 	spa_t *spa = vd->vdev_spa;
1456 
1457 	ASSERT(spa_is_root(spa));
1458 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1459 		return;
1460 
1461 	for (int c = 0; c < vd->vdev_children; c++)
1462 		vdev_hold(vd->vdev_child[c]);
1463 
1464 	if (vd->vdev_ops->vdev_op_leaf)
1465 		vd->vdev_ops->vdev_op_hold(vd);
1466 }
1467 
1468 void
1469 vdev_rele(vdev_t *vd)
1470 {
1471 	spa_t *spa = vd->vdev_spa;
1472 
1473 	ASSERT(spa_is_root(spa));
1474 	for (int c = 0; c < vd->vdev_children; c++)
1475 		vdev_rele(vd->vdev_child[c]);
1476 
1477 	if (vd->vdev_ops->vdev_op_leaf)
1478 		vd->vdev_ops->vdev_op_rele(vd);
1479 }
1480 
1481 /*
1482  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1483  * reopen leaf vdevs which had previously been opened as they might deadlock
1484  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1485  * If the leaf has never been opened then open it, as usual.
1486  */
1487 void
1488 vdev_reopen(vdev_t *vd)
1489 {
1490 	spa_t *spa = vd->vdev_spa;
1491 
1492 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1493 
1494 	/* set the reopening flag unless we're taking the vdev offline */
1495 	vd->vdev_reopening = !vd->vdev_offline;
1496 	vdev_close(vd);
1497 	(void) vdev_open(vd);
1498 
1499 	/*
1500 	 * Call vdev_validate() here to make sure we have the same device.
1501 	 * Otherwise, a device with an invalid label could be successfully
1502 	 * opened in response to vdev_reopen().
1503 	 */
1504 	if (vd->vdev_aux) {
1505 		(void) vdev_validate_aux(vd);
1506 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1507 		    vd->vdev_aux == &spa->spa_l2cache &&
1508 		    !l2arc_vdev_present(vd))
1509 			l2arc_add_vdev(spa, vd);
1510 	} else {
1511 		(void) vdev_validate(vd, B_TRUE);
1512 	}
1513 
1514 	/*
1515 	 * Reassess parent vdev's health.
1516 	 */
1517 	vdev_propagate_state(vd);
1518 }
1519 
1520 int
1521 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1522 {
1523 	int error;
1524 
1525 	/*
1526 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1527 	 * For a create, however, we want to fail the request if
1528 	 * there are any components we can't open.
1529 	 */
1530 	error = vdev_open(vd);
1531 
1532 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1533 		vdev_close(vd);
1534 		return (error ? error : ENXIO);
1535 	}
1536 
1537 	/*
1538 	 * Recursively load DTLs and initialize all labels.
1539 	 */
1540 	if ((error = vdev_dtl_load(vd)) != 0 ||
1541 	    (error = vdev_label_init(vd, txg, isreplacing ?
1542 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1543 		vdev_close(vd);
1544 		return (error);
1545 	}
1546 
1547 	return (0);
1548 }
1549 
1550 void
1551 vdev_metaslab_set_size(vdev_t *vd)
1552 {
1553 	/*
1554 	 * Aim for roughly 200 metaslabs per vdev.
1555 	 */
1556 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200);
1557 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1558 }
1559 
1560 void
1561 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1562 {
1563 	ASSERT(vd == vd->vdev_top);
1564 	ASSERT(!vd->vdev_ishole);
1565 	ASSERT(ISP2(flags));
1566 	ASSERT(spa_writeable(vd->vdev_spa));
1567 
1568 	if (flags & VDD_METASLAB)
1569 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1570 
1571 	if (flags & VDD_DTL)
1572 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1573 
1574 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1575 }
1576 
1577 void
1578 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1579 {
1580 	for (int c = 0; c < vd->vdev_children; c++)
1581 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1582 
1583 	if (vd->vdev_ops->vdev_op_leaf)
1584 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1585 }
1586 
1587 /*
1588  * DTLs.
1589  *
1590  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1591  * the vdev has less than perfect replication.  There are four kinds of DTL:
1592  *
1593  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1594  *
1595  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1596  *
1597  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1598  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1599  *	txgs that was scrubbed.
1600  *
1601  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1602  *	persistent errors or just some device being offline.
1603  *	Unlike the other three, the DTL_OUTAGE map is not generally
1604  *	maintained; it's only computed when needed, typically to
1605  *	determine whether a device can be detached.
1606  *
1607  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1608  * either has the data or it doesn't.
1609  *
1610  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1611  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1612  * if any child is less than fully replicated, then so is its parent.
1613  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1614  * comprising only those txgs which appear in 'maxfaults' or more children;
1615  * those are the txgs we don't have enough replication to read.  For example,
1616  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1617  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1618  * two child DTL_MISSING maps.
1619  *
1620  * It should be clear from the above that to compute the DTLs and outage maps
1621  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1622  * Therefore, that is all we keep on disk.  When loading the pool, or after
1623  * a configuration change, we generate all other DTLs from first principles.
1624  */
1625 void
1626 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1627 {
1628 	range_tree_t *rt = vd->vdev_dtl[t];
1629 
1630 	ASSERT(t < DTL_TYPES);
1631 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1632 	ASSERT(spa_writeable(vd->vdev_spa));
1633 
1634 	mutex_enter(rt->rt_lock);
1635 	if (!range_tree_contains(rt, txg, size))
1636 		range_tree_add(rt, txg, size);
1637 	mutex_exit(rt->rt_lock);
1638 }
1639 
1640 boolean_t
1641 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1642 {
1643 	range_tree_t *rt = vd->vdev_dtl[t];
1644 	boolean_t dirty = B_FALSE;
1645 
1646 	ASSERT(t < DTL_TYPES);
1647 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1648 
1649 	mutex_enter(rt->rt_lock);
1650 	if (range_tree_space(rt) != 0)
1651 		dirty = range_tree_contains(rt, txg, size);
1652 	mutex_exit(rt->rt_lock);
1653 
1654 	return (dirty);
1655 }
1656 
1657 boolean_t
1658 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1659 {
1660 	range_tree_t *rt = vd->vdev_dtl[t];
1661 	boolean_t empty;
1662 
1663 	mutex_enter(rt->rt_lock);
1664 	empty = (range_tree_space(rt) == 0);
1665 	mutex_exit(rt->rt_lock);
1666 
1667 	return (empty);
1668 }
1669 
1670 /*
1671  * Returns the lowest txg in the DTL range.
1672  */
1673 static uint64_t
1674 vdev_dtl_min(vdev_t *vd)
1675 {
1676 	range_seg_t *rs;
1677 
1678 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1679 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1680 	ASSERT0(vd->vdev_children);
1681 
1682 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1683 	return (rs->rs_start - 1);
1684 }
1685 
1686 /*
1687  * Returns the highest txg in the DTL.
1688  */
1689 static uint64_t
1690 vdev_dtl_max(vdev_t *vd)
1691 {
1692 	range_seg_t *rs;
1693 
1694 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1695 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1696 	ASSERT0(vd->vdev_children);
1697 
1698 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1699 	return (rs->rs_end);
1700 }
1701 
1702 /*
1703  * Determine if a resilvering vdev should remove any DTL entries from
1704  * its range. If the vdev was resilvering for the entire duration of the
1705  * scan then it should excise that range from its DTLs. Otherwise, this
1706  * vdev is considered partially resilvered and should leave its DTL
1707  * entries intact. The comment in vdev_dtl_reassess() describes how we
1708  * excise the DTLs.
1709  */
1710 static boolean_t
1711 vdev_dtl_should_excise(vdev_t *vd)
1712 {
1713 	spa_t *spa = vd->vdev_spa;
1714 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1715 
1716 	ASSERT0(scn->scn_phys.scn_errors);
1717 	ASSERT0(vd->vdev_children);
1718 
1719 	if (vd->vdev_resilver_txg == 0 ||
1720 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1721 		return (B_TRUE);
1722 
1723 	/*
1724 	 * When a resilver is initiated the scan will assign the scn_max_txg
1725 	 * value to the highest txg value that exists in all DTLs. If this
1726 	 * device's max DTL is not part of this scan (i.e. it is not in
1727 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1728 	 * for excision.
1729 	 */
1730 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1731 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1732 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1733 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1734 		return (B_TRUE);
1735 	}
1736 	return (B_FALSE);
1737 }
1738 
1739 /*
1740  * Reassess DTLs after a config change or scrub completion.
1741  */
1742 void
1743 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1744 {
1745 	spa_t *spa = vd->vdev_spa;
1746 	avl_tree_t reftree;
1747 	int minref;
1748 
1749 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1750 
1751 	for (int c = 0; c < vd->vdev_children; c++)
1752 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1753 		    scrub_txg, scrub_done);
1754 
1755 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1756 		return;
1757 
1758 	if (vd->vdev_ops->vdev_op_leaf) {
1759 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1760 
1761 		mutex_enter(&vd->vdev_dtl_lock);
1762 
1763 		/*
1764 		 * If we've completed a scan cleanly then determine
1765 		 * if this vdev should remove any DTLs. We only want to
1766 		 * excise regions on vdevs that were available during
1767 		 * the entire duration of this scan.
1768 		 */
1769 		if (scrub_txg != 0 &&
1770 		    (spa->spa_scrub_started ||
1771 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1772 		    vdev_dtl_should_excise(vd)) {
1773 			/*
1774 			 * We completed a scrub up to scrub_txg.  If we
1775 			 * did it without rebooting, then the scrub dtl
1776 			 * will be valid, so excise the old region and
1777 			 * fold in the scrub dtl.  Otherwise, leave the
1778 			 * dtl as-is if there was an error.
1779 			 *
1780 			 * There's little trick here: to excise the beginning
1781 			 * of the DTL_MISSING map, we put it into a reference
1782 			 * tree and then add a segment with refcnt -1 that
1783 			 * covers the range [0, scrub_txg).  This means
1784 			 * that each txg in that range has refcnt -1 or 0.
1785 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1786 			 * entries in the range [0, scrub_txg) will have a
1787 			 * positive refcnt -- either 1 or 2.  We then convert
1788 			 * the reference tree into the new DTL_MISSING map.
1789 			 */
1790 			space_reftree_create(&reftree);
1791 			space_reftree_add_map(&reftree,
1792 			    vd->vdev_dtl[DTL_MISSING], 1);
1793 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1794 			space_reftree_add_map(&reftree,
1795 			    vd->vdev_dtl[DTL_SCRUB], 2);
1796 			space_reftree_generate_map(&reftree,
1797 			    vd->vdev_dtl[DTL_MISSING], 1);
1798 			space_reftree_destroy(&reftree);
1799 		}
1800 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1801 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1802 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1803 		if (scrub_done)
1804 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1805 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1806 		if (!vdev_readable(vd))
1807 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1808 		else
1809 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1810 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1811 
1812 		/*
1813 		 * If the vdev was resilvering and no longer has any
1814 		 * DTLs then reset its resilvering flag.
1815 		 */
1816 		if (vd->vdev_resilver_txg != 0 &&
1817 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1818 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1819 			vd->vdev_resilver_txg = 0;
1820 
1821 		mutex_exit(&vd->vdev_dtl_lock);
1822 
1823 		if (txg != 0)
1824 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1825 		return;
1826 	}
1827 
1828 	mutex_enter(&vd->vdev_dtl_lock);
1829 	for (int t = 0; t < DTL_TYPES; t++) {
1830 		/* account for child's outage in parent's missing map */
1831 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1832 		if (t == DTL_SCRUB)
1833 			continue;			/* leaf vdevs only */
1834 		if (t == DTL_PARTIAL)
1835 			minref = 1;			/* i.e. non-zero */
1836 		else if (vd->vdev_nparity != 0)
1837 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1838 		else
1839 			minref = vd->vdev_children;	/* any kind of mirror */
1840 		space_reftree_create(&reftree);
1841 		for (int c = 0; c < vd->vdev_children; c++) {
1842 			vdev_t *cvd = vd->vdev_child[c];
1843 			mutex_enter(&cvd->vdev_dtl_lock);
1844 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1845 			mutex_exit(&cvd->vdev_dtl_lock);
1846 		}
1847 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1848 		space_reftree_destroy(&reftree);
1849 	}
1850 	mutex_exit(&vd->vdev_dtl_lock);
1851 }
1852 
1853 int
1854 vdev_dtl_load(vdev_t *vd)
1855 {
1856 	spa_t *spa = vd->vdev_spa;
1857 	objset_t *mos = spa->spa_meta_objset;
1858 	int error = 0;
1859 
1860 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1861 		ASSERT(!vd->vdev_ishole);
1862 
1863 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1864 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1865 		if (error)
1866 			return (error);
1867 		ASSERT(vd->vdev_dtl_sm != NULL);
1868 
1869 		mutex_enter(&vd->vdev_dtl_lock);
1870 
1871 		/*
1872 		 * Now that we've opened the space_map we need to update
1873 		 * the in-core DTL.
1874 		 */
1875 		space_map_update(vd->vdev_dtl_sm);
1876 
1877 		error = space_map_load(vd->vdev_dtl_sm,
1878 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1879 		mutex_exit(&vd->vdev_dtl_lock);
1880 
1881 		return (error);
1882 	}
1883 
1884 	for (int c = 0; c < vd->vdev_children; c++) {
1885 		error = vdev_dtl_load(vd->vdev_child[c]);
1886 		if (error != 0)
1887 			break;
1888 	}
1889 
1890 	return (error);
1891 }
1892 
1893 void
1894 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1895 {
1896 	spa_t *spa = vd->vdev_spa;
1897 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1898 	objset_t *mos = spa->spa_meta_objset;
1899 	range_tree_t *rtsync;
1900 	kmutex_t rtlock;
1901 	dmu_tx_t *tx;
1902 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1903 
1904 	ASSERT(!vd->vdev_ishole);
1905 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1906 
1907 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1908 
1909 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1910 		mutex_enter(&vd->vdev_dtl_lock);
1911 		space_map_free(vd->vdev_dtl_sm, tx);
1912 		space_map_close(vd->vdev_dtl_sm);
1913 		vd->vdev_dtl_sm = NULL;
1914 		mutex_exit(&vd->vdev_dtl_lock);
1915 		dmu_tx_commit(tx);
1916 		return;
1917 	}
1918 
1919 	if (vd->vdev_dtl_sm == NULL) {
1920 		uint64_t new_object;
1921 
1922 		new_object = space_map_alloc(mos, tx);
1923 		VERIFY3U(new_object, !=, 0);
1924 
1925 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1926 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
1927 		ASSERT(vd->vdev_dtl_sm != NULL);
1928 	}
1929 
1930 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1931 
1932 	rtsync = range_tree_create(NULL, NULL, &rtlock);
1933 
1934 	mutex_enter(&rtlock);
1935 
1936 	mutex_enter(&vd->vdev_dtl_lock);
1937 	range_tree_walk(rt, range_tree_add, rtsync);
1938 	mutex_exit(&vd->vdev_dtl_lock);
1939 
1940 	space_map_truncate(vd->vdev_dtl_sm, tx);
1941 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1942 	range_tree_vacate(rtsync, NULL, NULL);
1943 
1944 	range_tree_destroy(rtsync);
1945 
1946 	mutex_exit(&rtlock);
1947 	mutex_destroy(&rtlock);
1948 
1949 	/*
1950 	 * If the object for the space map has changed then dirty
1951 	 * the top level so that we update the config.
1952 	 */
1953 	if (object != space_map_object(vd->vdev_dtl_sm)) {
1954 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
1955 		    "new object %llu", txg, spa_name(spa), object,
1956 		    space_map_object(vd->vdev_dtl_sm));
1957 		vdev_config_dirty(vd->vdev_top);
1958 	}
1959 
1960 	dmu_tx_commit(tx);
1961 
1962 	mutex_enter(&vd->vdev_dtl_lock);
1963 	space_map_update(vd->vdev_dtl_sm);
1964 	mutex_exit(&vd->vdev_dtl_lock);
1965 }
1966 
1967 /*
1968  * Determine whether the specified vdev can be offlined/detached/removed
1969  * without losing data.
1970  */
1971 boolean_t
1972 vdev_dtl_required(vdev_t *vd)
1973 {
1974 	spa_t *spa = vd->vdev_spa;
1975 	vdev_t *tvd = vd->vdev_top;
1976 	uint8_t cant_read = vd->vdev_cant_read;
1977 	boolean_t required;
1978 
1979 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1980 
1981 	if (vd == spa->spa_root_vdev || vd == tvd)
1982 		return (B_TRUE);
1983 
1984 	/*
1985 	 * Temporarily mark the device as unreadable, and then determine
1986 	 * whether this results in any DTL outages in the top-level vdev.
1987 	 * If not, we can safely offline/detach/remove the device.
1988 	 */
1989 	vd->vdev_cant_read = B_TRUE;
1990 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1991 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1992 	vd->vdev_cant_read = cant_read;
1993 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1994 
1995 	if (!required && zio_injection_enabled)
1996 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1997 
1998 	return (required);
1999 }
2000 
2001 /*
2002  * Determine if resilver is needed, and if so the txg range.
2003  */
2004 boolean_t
2005 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2006 {
2007 	boolean_t needed = B_FALSE;
2008 	uint64_t thismin = UINT64_MAX;
2009 	uint64_t thismax = 0;
2010 
2011 	if (vd->vdev_children == 0) {
2012 		mutex_enter(&vd->vdev_dtl_lock);
2013 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2014 		    vdev_writeable(vd)) {
2015 
2016 			thismin = vdev_dtl_min(vd);
2017 			thismax = vdev_dtl_max(vd);
2018 			needed = B_TRUE;
2019 		}
2020 		mutex_exit(&vd->vdev_dtl_lock);
2021 	} else {
2022 		for (int c = 0; c < vd->vdev_children; c++) {
2023 			vdev_t *cvd = vd->vdev_child[c];
2024 			uint64_t cmin, cmax;
2025 
2026 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2027 				thismin = MIN(thismin, cmin);
2028 				thismax = MAX(thismax, cmax);
2029 				needed = B_TRUE;
2030 			}
2031 		}
2032 	}
2033 
2034 	if (needed && minp) {
2035 		*minp = thismin;
2036 		*maxp = thismax;
2037 	}
2038 	return (needed);
2039 }
2040 
2041 void
2042 vdev_load(vdev_t *vd)
2043 {
2044 	/*
2045 	 * Recursively load all children.
2046 	 */
2047 	for (int c = 0; c < vd->vdev_children; c++)
2048 		vdev_load(vd->vdev_child[c]);
2049 
2050 	/*
2051 	 * If this is a top-level vdev, initialize its metaslabs.
2052 	 */
2053 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2054 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2055 	    vdev_metaslab_init(vd, 0) != 0))
2056 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2057 		    VDEV_AUX_CORRUPT_DATA);
2058 
2059 	/*
2060 	 * If this is a leaf vdev, load its DTL.
2061 	 */
2062 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2063 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2064 		    VDEV_AUX_CORRUPT_DATA);
2065 }
2066 
2067 /*
2068  * The special vdev case is used for hot spares and l2cache devices.  Its
2069  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2070  * we make sure that we can open the underlying device, then try to read the
2071  * label, and make sure that the label is sane and that it hasn't been
2072  * repurposed to another pool.
2073  */
2074 int
2075 vdev_validate_aux(vdev_t *vd)
2076 {
2077 	nvlist_t *label;
2078 	uint64_t guid, version;
2079 	uint64_t state;
2080 
2081 	if (!vdev_readable(vd))
2082 		return (0);
2083 
2084 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2085 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2086 		    VDEV_AUX_CORRUPT_DATA);
2087 		return (-1);
2088 	}
2089 
2090 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2091 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2092 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2093 	    guid != vd->vdev_guid ||
2094 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2095 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2096 		    VDEV_AUX_CORRUPT_DATA);
2097 		nvlist_free(label);
2098 		return (-1);
2099 	}
2100 
2101 	/*
2102 	 * We don't actually check the pool state here.  If it's in fact in
2103 	 * use by another pool, we update this fact on the fly when requested.
2104 	 */
2105 	nvlist_free(label);
2106 	return (0);
2107 }
2108 
2109 void
2110 vdev_remove(vdev_t *vd, uint64_t txg)
2111 {
2112 	spa_t *spa = vd->vdev_spa;
2113 	objset_t *mos = spa->spa_meta_objset;
2114 	dmu_tx_t *tx;
2115 
2116 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2117 
2118 	if (vd->vdev_ms != NULL) {
2119 		metaslab_group_t *mg = vd->vdev_mg;
2120 
2121 		metaslab_group_histogram_verify(mg);
2122 		metaslab_class_histogram_verify(mg->mg_class);
2123 
2124 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2125 			metaslab_t *msp = vd->vdev_ms[m];
2126 
2127 			if (msp == NULL || msp->ms_sm == NULL)
2128 				continue;
2129 
2130 			mutex_enter(&msp->ms_lock);
2131 			/*
2132 			 * If the metaslab was not loaded when the vdev
2133 			 * was removed then the histogram accounting may
2134 			 * not be accurate. Update the histogram information
2135 			 * here so that we ensure that the metaslab group
2136 			 * and metaslab class are up-to-date.
2137 			 */
2138 			metaslab_group_histogram_remove(mg, msp);
2139 
2140 			VERIFY0(space_map_allocated(msp->ms_sm));
2141 			space_map_free(msp->ms_sm, tx);
2142 			space_map_close(msp->ms_sm);
2143 			msp->ms_sm = NULL;
2144 			mutex_exit(&msp->ms_lock);
2145 		}
2146 
2147 		metaslab_group_histogram_verify(mg);
2148 		metaslab_class_histogram_verify(mg->mg_class);
2149 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2150 			ASSERT0(mg->mg_histogram[i]);
2151 
2152 	}
2153 
2154 	if (vd->vdev_ms_array) {
2155 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2156 		vd->vdev_ms_array = 0;
2157 	}
2158 	dmu_tx_commit(tx);
2159 }
2160 
2161 void
2162 vdev_sync_done(vdev_t *vd, uint64_t txg)
2163 {
2164 	metaslab_t *msp;
2165 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2166 
2167 	ASSERT(!vd->vdev_ishole);
2168 
2169 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2170 		metaslab_sync_done(msp, txg);
2171 
2172 	if (reassess)
2173 		metaslab_sync_reassess(vd->vdev_mg);
2174 }
2175 
2176 void
2177 vdev_sync(vdev_t *vd, uint64_t txg)
2178 {
2179 	spa_t *spa = vd->vdev_spa;
2180 	vdev_t *lvd;
2181 	metaslab_t *msp;
2182 	dmu_tx_t *tx;
2183 
2184 	ASSERT(!vd->vdev_ishole);
2185 
2186 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2187 		ASSERT(vd == vd->vdev_top);
2188 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2189 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2190 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2191 		ASSERT(vd->vdev_ms_array != 0);
2192 		vdev_config_dirty(vd);
2193 		dmu_tx_commit(tx);
2194 	}
2195 
2196 	/*
2197 	 * Remove the metadata associated with this vdev once it's empty.
2198 	 */
2199 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2200 		vdev_remove(vd, txg);
2201 
2202 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2203 		metaslab_sync(msp, txg);
2204 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2205 	}
2206 
2207 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2208 		vdev_dtl_sync(lvd, txg);
2209 
2210 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2211 }
2212 
2213 uint64_t
2214 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2215 {
2216 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2217 }
2218 
2219 /*
2220  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2221  * not be opened, and no I/O is attempted.
2222  */
2223 int
2224 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2225 {
2226 	vdev_t *vd, *tvd;
2227 
2228 	spa_vdev_state_enter(spa, SCL_NONE);
2229 
2230 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2231 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2232 
2233 	if (!vd->vdev_ops->vdev_op_leaf)
2234 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2235 
2236 	tvd = vd->vdev_top;
2237 
2238 	/*
2239 	 * We don't directly use the aux state here, but if we do a
2240 	 * vdev_reopen(), we need this value to be present to remember why we
2241 	 * were faulted.
2242 	 */
2243 	vd->vdev_label_aux = aux;
2244 
2245 	/*
2246 	 * Faulted state takes precedence over degraded.
2247 	 */
2248 	vd->vdev_delayed_close = B_FALSE;
2249 	vd->vdev_faulted = 1ULL;
2250 	vd->vdev_degraded = 0ULL;
2251 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2252 
2253 	/*
2254 	 * If this device has the only valid copy of the data, then
2255 	 * back off and simply mark the vdev as degraded instead.
2256 	 */
2257 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2258 		vd->vdev_degraded = 1ULL;
2259 		vd->vdev_faulted = 0ULL;
2260 
2261 		/*
2262 		 * If we reopen the device and it's not dead, only then do we
2263 		 * mark it degraded.
2264 		 */
2265 		vdev_reopen(tvd);
2266 
2267 		if (vdev_readable(vd))
2268 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2269 	}
2270 
2271 	return (spa_vdev_state_exit(spa, vd, 0));
2272 }
2273 
2274 /*
2275  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2276  * user that something is wrong.  The vdev continues to operate as normal as far
2277  * as I/O is concerned.
2278  */
2279 int
2280 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2281 {
2282 	vdev_t *vd;
2283 
2284 	spa_vdev_state_enter(spa, SCL_NONE);
2285 
2286 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2287 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2288 
2289 	if (!vd->vdev_ops->vdev_op_leaf)
2290 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2291 
2292 	/*
2293 	 * If the vdev is already faulted, then don't do anything.
2294 	 */
2295 	if (vd->vdev_faulted || vd->vdev_degraded)
2296 		return (spa_vdev_state_exit(spa, NULL, 0));
2297 
2298 	vd->vdev_degraded = 1ULL;
2299 	if (!vdev_is_dead(vd))
2300 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2301 		    aux);
2302 
2303 	return (spa_vdev_state_exit(spa, vd, 0));
2304 }
2305 
2306 /*
2307  * Online the given vdev.
2308  *
2309  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2310  * spare device should be detached when the device finishes resilvering.
2311  * Second, the online should be treated like a 'test' online case, so no FMA
2312  * events are generated if the device fails to open.
2313  */
2314 int
2315 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2316 {
2317 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2318 
2319 	spa_vdev_state_enter(spa, SCL_NONE);
2320 
2321 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2322 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2323 
2324 	if (!vd->vdev_ops->vdev_op_leaf)
2325 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2326 
2327 	tvd = vd->vdev_top;
2328 	vd->vdev_offline = B_FALSE;
2329 	vd->vdev_tmpoffline = B_FALSE;
2330 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2331 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2332 
2333 	/* XXX - L2ARC 1.0 does not support expansion */
2334 	if (!vd->vdev_aux) {
2335 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2336 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2337 	}
2338 
2339 	vdev_reopen(tvd);
2340 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2341 
2342 	if (!vd->vdev_aux) {
2343 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2344 			pvd->vdev_expanding = B_FALSE;
2345 	}
2346 
2347 	if (newstate)
2348 		*newstate = vd->vdev_state;
2349 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2350 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2351 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2352 	    vd->vdev_parent->vdev_child[0] == vd)
2353 		vd->vdev_unspare = B_TRUE;
2354 
2355 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2356 
2357 		/* XXX - L2ARC 1.0 does not support expansion */
2358 		if (vd->vdev_aux)
2359 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2360 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2361 	}
2362 	return (spa_vdev_state_exit(spa, vd, 0));
2363 }
2364 
2365 static int
2366 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2367 {
2368 	vdev_t *vd, *tvd;
2369 	int error = 0;
2370 	uint64_t generation;
2371 	metaslab_group_t *mg;
2372 
2373 top:
2374 	spa_vdev_state_enter(spa, SCL_ALLOC);
2375 
2376 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2377 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2378 
2379 	if (!vd->vdev_ops->vdev_op_leaf)
2380 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2381 
2382 	tvd = vd->vdev_top;
2383 	mg = tvd->vdev_mg;
2384 	generation = spa->spa_config_generation + 1;
2385 
2386 	/*
2387 	 * If the device isn't already offline, try to offline it.
2388 	 */
2389 	if (!vd->vdev_offline) {
2390 		/*
2391 		 * If this device has the only valid copy of some data,
2392 		 * don't allow it to be offlined. Log devices are always
2393 		 * expendable.
2394 		 */
2395 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2396 		    vdev_dtl_required(vd))
2397 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2398 
2399 		/*
2400 		 * If the top-level is a slog and it has had allocations
2401 		 * then proceed.  We check that the vdev's metaslab group
2402 		 * is not NULL since it's possible that we may have just
2403 		 * added this vdev but not yet initialized its metaslabs.
2404 		 */
2405 		if (tvd->vdev_islog && mg != NULL) {
2406 			/*
2407 			 * Prevent any future allocations.
2408 			 */
2409 			metaslab_group_passivate(mg);
2410 			(void) spa_vdev_state_exit(spa, vd, 0);
2411 
2412 			error = spa_offline_log(spa);
2413 
2414 			spa_vdev_state_enter(spa, SCL_ALLOC);
2415 
2416 			/*
2417 			 * Check to see if the config has changed.
2418 			 */
2419 			if (error || generation != spa->spa_config_generation) {
2420 				metaslab_group_activate(mg);
2421 				if (error)
2422 					return (spa_vdev_state_exit(spa,
2423 					    vd, error));
2424 				(void) spa_vdev_state_exit(spa, vd, 0);
2425 				goto top;
2426 			}
2427 			ASSERT0(tvd->vdev_stat.vs_alloc);
2428 		}
2429 
2430 		/*
2431 		 * Offline this device and reopen its top-level vdev.
2432 		 * If the top-level vdev is a log device then just offline
2433 		 * it. Otherwise, if this action results in the top-level
2434 		 * vdev becoming unusable, undo it and fail the request.
2435 		 */
2436 		vd->vdev_offline = B_TRUE;
2437 		vdev_reopen(tvd);
2438 
2439 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2440 		    vdev_is_dead(tvd)) {
2441 			vd->vdev_offline = B_FALSE;
2442 			vdev_reopen(tvd);
2443 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2444 		}
2445 
2446 		/*
2447 		 * Add the device back into the metaslab rotor so that
2448 		 * once we online the device it's open for business.
2449 		 */
2450 		if (tvd->vdev_islog && mg != NULL)
2451 			metaslab_group_activate(mg);
2452 	}
2453 
2454 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2455 
2456 	return (spa_vdev_state_exit(spa, vd, 0));
2457 }
2458 
2459 int
2460 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2461 {
2462 	int error;
2463 
2464 	mutex_enter(&spa->spa_vdev_top_lock);
2465 	error = vdev_offline_locked(spa, guid, flags);
2466 	mutex_exit(&spa->spa_vdev_top_lock);
2467 
2468 	return (error);
2469 }
2470 
2471 /*
2472  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2473  * vdev_offline(), we assume the spa config is locked.  We also clear all
2474  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2475  */
2476 void
2477 vdev_clear(spa_t *spa, vdev_t *vd)
2478 {
2479 	vdev_t *rvd = spa->spa_root_vdev;
2480 
2481 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2482 
2483 	if (vd == NULL)
2484 		vd = rvd;
2485 
2486 	vd->vdev_stat.vs_read_errors = 0;
2487 	vd->vdev_stat.vs_write_errors = 0;
2488 	vd->vdev_stat.vs_checksum_errors = 0;
2489 
2490 	for (int c = 0; c < vd->vdev_children; c++)
2491 		vdev_clear(spa, vd->vdev_child[c]);
2492 
2493 	/*
2494 	 * If we're in the FAULTED state or have experienced failed I/O, then
2495 	 * clear the persistent state and attempt to reopen the device.  We
2496 	 * also mark the vdev config dirty, so that the new faulted state is
2497 	 * written out to disk.
2498 	 */
2499 	if (vd->vdev_faulted || vd->vdev_degraded ||
2500 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2501 
2502 		/*
2503 		 * When reopening in reponse to a clear event, it may be due to
2504 		 * a fmadm repair request.  In this case, if the device is
2505 		 * still broken, we want to still post the ereport again.
2506 		 */
2507 		vd->vdev_forcefault = B_TRUE;
2508 
2509 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2510 		vd->vdev_cant_read = B_FALSE;
2511 		vd->vdev_cant_write = B_FALSE;
2512 
2513 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2514 
2515 		vd->vdev_forcefault = B_FALSE;
2516 
2517 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2518 			vdev_state_dirty(vd->vdev_top);
2519 
2520 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2521 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2522 
2523 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2524 	}
2525 
2526 	/*
2527 	 * When clearing a FMA-diagnosed fault, we always want to
2528 	 * unspare the device, as we assume that the original spare was
2529 	 * done in response to the FMA fault.
2530 	 */
2531 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2532 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2533 	    vd->vdev_parent->vdev_child[0] == vd)
2534 		vd->vdev_unspare = B_TRUE;
2535 }
2536 
2537 boolean_t
2538 vdev_is_dead(vdev_t *vd)
2539 {
2540 	/*
2541 	 * Holes and missing devices are always considered "dead".
2542 	 * This simplifies the code since we don't have to check for
2543 	 * these types of devices in the various code paths.
2544 	 * Instead we rely on the fact that we skip over dead devices
2545 	 * before issuing I/O to them.
2546 	 */
2547 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2548 	    vd->vdev_ops == &vdev_missing_ops);
2549 }
2550 
2551 boolean_t
2552 vdev_readable(vdev_t *vd)
2553 {
2554 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2555 }
2556 
2557 boolean_t
2558 vdev_writeable(vdev_t *vd)
2559 {
2560 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2561 }
2562 
2563 boolean_t
2564 vdev_allocatable(vdev_t *vd)
2565 {
2566 	uint64_t state = vd->vdev_state;
2567 
2568 	/*
2569 	 * We currently allow allocations from vdevs which may be in the
2570 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2571 	 * fails to reopen then we'll catch it later when we're holding
2572 	 * the proper locks.  Note that we have to get the vdev state
2573 	 * in a local variable because although it changes atomically,
2574 	 * we're asking two separate questions about it.
2575 	 */
2576 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2577 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2578 }
2579 
2580 boolean_t
2581 vdev_accessible(vdev_t *vd, zio_t *zio)
2582 {
2583 	ASSERT(zio->io_vd == vd);
2584 
2585 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2586 		return (B_FALSE);
2587 
2588 	if (zio->io_type == ZIO_TYPE_READ)
2589 		return (!vd->vdev_cant_read);
2590 
2591 	if (zio->io_type == ZIO_TYPE_WRITE)
2592 		return (!vd->vdev_cant_write);
2593 
2594 	return (B_TRUE);
2595 }
2596 
2597 /*
2598  * Get statistics for the given vdev.
2599  */
2600 void
2601 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2602 {
2603 	spa_t *spa = vd->vdev_spa;
2604 	vdev_t *rvd = spa->spa_root_vdev;
2605 
2606 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2607 
2608 	mutex_enter(&vd->vdev_stat_lock);
2609 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2610 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2611 	vs->vs_state = vd->vdev_state;
2612 	vs->vs_rsize = vdev_get_min_asize(vd);
2613 	if (vd->vdev_ops->vdev_op_leaf)
2614 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2615 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2616 	if (vd->vdev_aux == NULL && vd == vd->vdev_top)
2617 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2618 
2619 	/*
2620 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2621 	 * over all top-level vdevs (i.e. the direct children of the root).
2622 	 */
2623 	if (vd == rvd) {
2624 		for (int c = 0; c < rvd->vdev_children; c++) {
2625 			vdev_t *cvd = rvd->vdev_child[c];
2626 			vdev_stat_t *cvs = &cvd->vdev_stat;
2627 
2628 			for (int t = 0; t < ZIO_TYPES; t++) {
2629 				vs->vs_ops[t] += cvs->vs_ops[t];
2630 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2631 			}
2632 			cvs->vs_scan_removing = cvd->vdev_removing;
2633 		}
2634 	}
2635 	mutex_exit(&vd->vdev_stat_lock);
2636 }
2637 
2638 void
2639 vdev_clear_stats(vdev_t *vd)
2640 {
2641 	mutex_enter(&vd->vdev_stat_lock);
2642 	vd->vdev_stat.vs_space = 0;
2643 	vd->vdev_stat.vs_dspace = 0;
2644 	vd->vdev_stat.vs_alloc = 0;
2645 	mutex_exit(&vd->vdev_stat_lock);
2646 }
2647 
2648 void
2649 vdev_scan_stat_init(vdev_t *vd)
2650 {
2651 	vdev_stat_t *vs = &vd->vdev_stat;
2652 
2653 	for (int c = 0; c < vd->vdev_children; c++)
2654 		vdev_scan_stat_init(vd->vdev_child[c]);
2655 
2656 	mutex_enter(&vd->vdev_stat_lock);
2657 	vs->vs_scan_processed = 0;
2658 	mutex_exit(&vd->vdev_stat_lock);
2659 }
2660 
2661 void
2662 vdev_stat_update(zio_t *zio, uint64_t psize)
2663 {
2664 	spa_t *spa = zio->io_spa;
2665 	vdev_t *rvd = spa->spa_root_vdev;
2666 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2667 	vdev_t *pvd;
2668 	uint64_t txg = zio->io_txg;
2669 	vdev_stat_t *vs = &vd->vdev_stat;
2670 	zio_type_t type = zio->io_type;
2671 	int flags = zio->io_flags;
2672 
2673 	/*
2674 	 * If this i/o is a gang leader, it didn't do any actual work.
2675 	 */
2676 	if (zio->io_gang_tree)
2677 		return;
2678 
2679 	if (zio->io_error == 0) {
2680 		/*
2681 		 * If this is a root i/o, don't count it -- we've already
2682 		 * counted the top-level vdevs, and vdev_get_stats() will
2683 		 * aggregate them when asked.  This reduces contention on
2684 		 * the root vdev_stat_lock and implicitly handles blocks
2685 		 * that compress away to holes, for which there is no i/o.
2686 		 * (Holes never create vdev children, so all the counters
2687 		 * remain zero, which is what we want.)
2688 		 *
2689 		 * Note: this only applies to successful i/o (io_error == 0)
2690 		 * because unlike i/o counts, errors are not additive.
2691 		 * When reading a ditto block, for example, failure of
2692 		 * one top-level vdev does not imply a root-level error.
2693 		 */
2694 		if (vd == rvd)
2695 			return;
2696 
2697 		ASSERT(vd == zio->io_vd);
2698 
2699 		if (flags & ZIO_FLAG_IO_BYPASS)
2700 			return;
2701 
2702 		mutex_enter(&vd->vdev_stat_lock);
2703 
2704 		if (flags & ZIO_FLAG_IO_REPAIR) {
2705 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2706 				dsl_scan_phys_t *scn_phys =
2707 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2708 				uint64_t *processed = &scn_phys->scn_processed;
2709 
2710 				/* XXX cleanup? */
2711 				if (vd->vdev_ops->vdev_op_leaf)
2712 					atomic_add_64(processed, psize);
2713 				vs->vs_scan_processed += psize;
2714 			}
2715 
2716 			if (flags & ZIO_FLAG_SELF_HEAL)
2717 				vs->vs_self_healed += psize;
2718 		}
2719 
2720 		vs->vs_ops[type]++;
2721 		vs->vs_bytes[type] += psize;
2722 
2723 		mutex_exit(&vd->vdev_stat_lock);
2724 		return;
2725 	}
2726 
2727 	if (flags & ZIO_FLAG_SPECULATIVE)
2728 		return;
2729 
2730 	/*
2731 	 * If this is an I/O error that is going to be retried, then ignore the
2732 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2733 	 * hard errors, when in reality they can happen for any number of
2734 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2735 	 */
2736 	if (zio->io_error == EIO &&
2737 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2738 		return;
2739 
2740 	/*
2741 	 * Intent logs writes won't propagate their error to the root
2742 	 * I/O so don't mark these types of failures as pool-level
2743 	 * errors.
2744 	 */
2745 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2746 		return;
2747 
2748 	mutex_enter(&vd->vdev_stat_lock);
2749 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2750 		if (zio->io_error == ECKSUM)
2751 			vs->vs_checksum_errors++;
2752 		else
2753 			vs->vs_read_errors++;
2754 	}
2755 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2756 		vs->vs_write_errors++;
2757 	mutex_exit(&vd->vdev_stat_lock);
2758 
2759 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2760 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2761 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2762 	    spa->spa_claiming)) {
2763 		/*
2764 		 * This is either a normal write (not a repair), or it's
2765 		 * a repair induced by the scrub thread, or it's a repair
2766 		 * made by zil_claim() during spa_load() in the first txg.
2767 		 * In the normal case, we commit the DTL change in the same
2768 		 * txg as the block was born.  In the scrub-induced repair
2769 		 * case, we know that scrubs run in first-pass syncing context,
2770 		 * so we commit the DTL change in spa_syncing_txg(spa).
2771 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2772 		 *
2773 		 * We currently do not make DTL entries for failed spontaneous
2774 		 * self-healing writes triggered by normal (non-scrubbing)
2775 		 * reads, because we have no transactional context in which to
2776 		 * do so -- and it's not clear that it'd be desirable anyway.
2777 		 */
2778 		if (vd->vdev_ops->vdev_op_leaf) {
2779 			uint64_t commit_txg = txg;
2780 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2781 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2782 				ASSERT(spa_sync_pass(spa) == 1);
2783 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2784 				commit_txg = spa_syncing_txg(spa);
2785 			} else if (spa->spa_claiming) {
2786 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2787 				commit_txg = spa_first_txg(spa);
2788 			}
2789 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2790 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2791 				return;
2792 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2793 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2794 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2795 		}
2796 		if (vd != rvd)
2797 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2798 	}
2799 }
2800 
2801 /*
2802  * Update the in-core space usage stats for this vdev, its metaslab class,
2803  * and the root vdev.
2804  */
2805 void
2806 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2807     int64_t space_delta)
2808 {
2809 	int64_t dspace_delta = space_delta;
2810 	spa_t *spa = vd->vdev_spa;
2811 	vdev_t *rvd = spa->spa_root_vdev;
2812 	metaslab_group_t *mg = vd->vdev_mg;
2813 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2814 
2815 	ASSERT(vd == vd->vdev_top);
2816 
2817 	/*
2818 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2819 	 * factor.  We must calculate this here and not at the root vdev
2820 	 * because the root vdev's psize-to-asize is simply the max of its
2821 	 * childrens', thus not accurate enough for us.
2822 	 */
2823 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2824 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2825 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2826 	    vd->vdev_deflate_ratio;
2827 
2828 	mutex_enter(&vd->vdev_stat_lock);
2829 	vd->vdev_stat.vs_alloc += alloc_delta;
2830 	vd->vdev_stat.vs_space += space_delta;
2831 	vd->vdev_stat.vs_dspace += dspace_delta;
2832 	mutex_exit(&vd->vdev_stat_lock);
2833 
2834 	if (mc == spa_normal_class(spa)) {
2835 		mutex_enter(&rvd->vdev_stat_lock);
2836 		rvd->vdev_stat.vs_alloc += alloc_delta;
2837 		rvd->vdev_stat.vs_space += space_delta;
2838 		rvd->vdev_stat.vs_dspace += dspace_delta;
2839 		mutex_exit(&rvd->vdev_stat_lock);
2840 	}
2841 
2842 	if (mc != NULL) {
2843 		ASSERT(rvd == vd->vdev_parent);
2844 		ASSERT(vd->vdev_ms_count != 0);
2845 
2846 		metaslab_class_space_update(mc,
2847 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2848 	}
2849 }
2850 
2851 /*
2852  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2853  * so that it will be written out next time the vdev configuration is synced.
2854  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2855  */
2856 void
2857 vdev_config_dirty(vdev_t *vd)
2858 {
2859 	spa_t *spa = vd->vdev_spa;
2860 	vdev_t *rvd = spa->spa_root_vdev;
2861 	int c;
2862 
2863 	ASSERT(spa_writeable(spa));
2864 
2865 	/*
2866 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2867 	 * update the vdev config manually and set the sync flag.
2868 	 */
2869 	if (vd->vdev_aux != NULL) {
2870 		spa_aux_vdev_t *sav = vd->vdev_aux;
2871 		nvlist_t **aux;
2872 		uint_t naux;
2873 
2874 		for (c = 0; c < sav->sav_count; c++) {
2875 			if (sav->sav_vdevs[c] == vd)
2876 				break;
2877 		}
2878 
2879 		if (c == sav->sav_count) {
2880 			/*
2881 			 * We're being removed.  There's nothing more to do.
2882 			 */
2883 			ASSERT(sav->sav_sync == B_TRUE);
2884 			return;
2885 		}
2886 
2887 		sav->sav_sync = B_TRUE;
2888 
2889 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2890 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2891 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2892 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2893 		}
2894 
2895 		ASSERT(c < naux);
2896 
2897 		/*
2898 		 * Setting the nvlist in the middle if the array is a little
2899 		 * sketchy, but it will work.
2900 		 */
2901 		nvlist_free(aux[c]);
2902 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2903 
2904 		return;
2905 	}
2906 
2907 	/*
2908 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2909 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2910 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2911 	 * so this is sufficient to ensure mutual exclusion.
2912 	 */
2913 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2914 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2915 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2916 
2917 	if (vd == rvd) {
2918 		for (c = 0; c < rvd->vdev_children; c++)
2919 			vdev_config_dirty(rvd->vdev_child[c]);
2920 	} else {
2921 		ASSERT(vd == vd->vdev_top);
2922 
2923 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2924 		    !vd->vdev_ishole)
2925 			list_insert_head(&spa->spa_config_dirty_list, vd);
2926 	}
2927 }
2928 
2929 void
2930 vdev_config_clean(vdev_t *vd)
2931 {
2932 	spa_t *spa = vd->vdev_spa;
2933 
2934 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2935 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2936 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2937 
2938 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2939 	list_remove(&spa->spa_config_dirty_list, vd);
2940 }
2941 
2942 /*
2943  * Mark a top-level vdev's state as dirty, so that the next pass of
2944  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2945  * the state changes from larger config changes because they require
2946  * much less locking, and are often needed for administrative actions.
2947  */
2948 void
2949 vdev_state_dirty(vdev_t *vd)
2950 {
2951 	spa_t *spa = vd->vdev_spa;
2952 
2953 	ASSERT(spa_writeable(spa));
2954 	ASSERT(vd == vd->vdev_top);
2955 
2956 	/*
2957 	 * The state list is protected by the SCL_STATE lock.  The caller
2958 	 * must either hold SCL_STATE as writer, or must be the sync thread
2959 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2960 	 * so this is sufficient to ensure mutual exclusion.
2961 	 */
2962 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2963 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2964 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2965 
2966 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2967 		list_insert_head(&spa->spa_state_dirty_list, vd);
2968 }
2969 
2970 void
2971 vdev_state_clean(vdev_t *vd)
2972 {
2973 	spa_t *spa = vd->vdev_spa;
2974 
2975 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2976 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2977 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2978 
2979 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2980 	list_remove(&spa->spa_state_dirty_list, vd);
2981 }
2982 
2983 /*
2984  * Propagate vdev state up from children to parent.
2985  */
2986 void
2987 vdev_propagate_state(vdev_t *vd)
2988 {
2989 	spa_t *spa = vd->vdev_spa;
2990 	vdev_t *rvd = spa->spa_root_vdev;
2991 	int degraded = 0, faulted = 0;
2992 	int corrupted = 0;
2993 	vdev_t *child;
2994 
2995 	if (vd->vdev_children > 0) {
2996 		for (int c = 0; c < vd->vdev_children; c++) {
2997 			child = vd->vdev_child[c];
2998 
2999 			/*
3000 			 * Don't factor holes into the decision.
3001 			 */
3002 			if (child->vdev_ishole)
3003 				continue;
3004 
3005 			if (!vdev_readable(child) ||
3006 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3007 				/*
3008 				 * Root special: if there is a top-level log
3009 				 * device, treat the root vdev as if it were
3010 				 * degraded.
3011 				 */
3012 				if (child->vdev_islog && vd == rvd)
3013 					degraded++;
3014 				else
3015 					faulted++;
3016 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3017 				degraded++;
3018 			}
3019 
3020 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3021 				corrupted++;
3022 		}
3023 
3024 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3025 
3026 		/*
3027 		 * Root special: if there is a top-level vdev that cannot be
3028 		 * opened due to corrupted metadata, then propagate the root
3029 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3030 		 * replicas'.
3031 		 */
3032 		if (corrupted && vd == rvd &&
3033 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3034 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3035 			    VDEV_AUX_CORRUPT_DATA);
3036 	}
3037 
3038 	if (vd->vdev_parent)
3039 		vdev_propagate_state(vd->vdev_parent);
3040 }
3041 
3042 /*
3043  * Set a vdev's state.  If this is during an open, we don't update the parent
3044  * state, because we're in the process of opening children depth-first.
3045  * Otherwise, we propagate the change to the parent.
3046  *
3047  * If this routine places a device in a faulted state, an appropriate ereport is
3048  * generated.
3049  */
3050 void
3051 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3052 {
3053 	uint64_t save_state;
3054 	spa_t *spa = vd->vdev_spa;
3055 
3056 	if (state == vd->vdev_state) {
3057 		vd->vdev_stat.vs_aux = aux;
3058 		return;
3059 	}
3060 
3061 	save_state = vd->vdev_state;
3062 
3063 	vd->vdev_state = state;
3064 	vd->vdev_stat.vs_aux = aux;
3065 
3066 	/*
3067 	 * If we are setting the vdev state to anything but an open state, then
3068 	 * always close the underlying device unless the device has requested
3069 	 * a delayed close (i.e. we're about to remove or fault the device).
3070 	 * Otherwise, we keep accessible but invalid devices open forever.
3071 	 * We don't call vdev_close() itself, because that implies some extra
3072 	 * checks (offline, etc) that we don't want here.  This is limited to
3073 	 * leaf devices, because otherwise closing the device will affect other
3074 	 * children.
3075 	 */
3076 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3077 	    vd->vdev_ops->vdev_op_leaf)
3078 		vd->vdev_ops->vdev_op_close(vd);
3079 
3080 	/*
3081 	 * If we have brought this vdev back into service, we need
3082 	 * to notify fmd so that it can gracefully repair any outstanding
3083 	 * cases due to a missing device.  We do this in all cases, even those
3084 	 * that probably don't correlate to a repaired fault.  This is sure to
3085 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3086 	 * this is a transient state it's OK, as the retire agent will
3087 	 * double-check the state of the vdev before repairing it.
3088 	 */
3089 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3090 	    vd->vdev_prevstate != state)
3091 		zfs_post_state_change(spa, vd);
3092 
3093 	if (vd->vdev_removed &&
3094 	    state == VDEV_STATE_CANT_OPEN &&
3095 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3096 		/*
3097 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3098 		 * device was previously marked removed and someone attempted to
3099 		 * reopen it.  If this failed due to a nonexistent device, then
3100 		 * keep the device in the REMOVED state.  We also let this be if
3101 		 * it is one of our special test online cases, which is only
3102 		 * attempting to online the device and shouldn't generate an FMA
3103 		 * fault.
3104 		 */
3105 		vd->vdev_state = VDEV_STATE_REMOVED;
3106 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3107 	} else if (state == VDEV_STATE_REMOVED) {
3108 		vd->vdev_removed = B_TRUE;
3109 	} else if (state == VDEV_STATE_CANT_OPEN) {
3110 		/*
3111 		 * If we fail to open a vdev during an import or recovery, we
3112 		 * mark it as "not available", which signifies that it was
3113 		 * never there to begin with.  Failure to open such a device
3114 		 * is not considered an error.
3115 		 */
3116 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3117 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3118 		    vd->vdev_ops->vdev_op_leaf)
3119 			vd->vdev_not_present = 1;
3120 
3121 		/*
3122 		 * Post the appropriate ereport.  If the 'prevstate' field is
3123 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3124 		 * that this is part of a vdev_reopen().  In this case, we don't
3125 		 * want to post the ereport if the device was already in the
3126 		 * CANT_OPEN state beforehand.
3127 		 *
3128 		 * If the 'checkremove' flag is set, then this is an attempt to
3129 		 * online the device in response to an insertion event.  If we
3130 		 * hit this case, then we have detected an insertion event for a
3131 		 * faulted or offline device that wasn't in the removed state.
3132 		 * In this scenario, we don't post an ereport because we are
3133 		 * about to replace the device, or attempt an online with
3134 		 * vdev_forcefault, which will generate the fault for us.
3135 		 */
3136 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3137 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3138 		    vd != spa->spa_root_vdev) {
3139 			const char *class;
3140 
3141 			switch (aux) {
3142 			case VDEV_AUX_OPEN_FAILED:
3143 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3144 				break;
3145 			case VDEV_AUX_CORRUPT_DATA:
3146 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3147 				break;
3148 			case VDEV_AUX_NO_REPLICAS:
3149 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3150 				break;
3151 			case VDEV_AUX_BAD_GUID_SUM:
3152 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3153 				break;
3154 			case VDEV_AUX_TOO_SMALL:
3155 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3156 				break;
3157 			case VDEV_AUX_BAD_LABEL:
3158 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3159 				break;
3160 			default:
3161 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3162 			}
3163 
3164 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3165 		}
3166 
3167 		/* Erase any notion of persistent removed state */
3168 		vd->vdev_removed = B_FALSE;
3169 	} else {
3170 		vd->vdev_removed = B_FALSE;
3171 	}
3172 
3173 	if (!isopen && vd->vdev_parent)
3174 		vdev_propagate_state(vd->vdev_parent);
3175 }
3176 
3177 /*
3178  * Check the vdev configuration to ensure that it's capable of supporting
3179  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3180  * In addition, only a single top-level vdev is allowed and none of the leaves
3181  * can be wholedisks.
3182  */
3183 boolean_t
3184 vdev_is_bootable(vdev_t *vd)
3185 {
3186 	if (!vd->vdev_ops->vdev_op_leaf) {
3187 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3188 
3189 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3190 		    vd->vdev_children > 1) {
3191 			return (B_FALSE);
3192 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3193 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3194 			return (B_FALSE);
3195 		}
3196 	} else if (vd->vdev_wholedisk == 1) {
3197 		return (B_FALSE);
3198 	}
3199 
3200 	for (int c = 0; c < vd->vdev_children; c++) {
3201 		if (!vdev_is_bootable(vd->vdev_child[c]))
3202 			return (B_FALSE);
3203 	}
3204 	return (B_TRUE);
3205 }
3206 
3207 /*
3208  * Load the state from the original vdev tree (ovd) which
3209  * we've retrieved from the MOS config object. If the original
3210  * vdev was offline or faulted then we transfer that state to the
3211  * device in the current vdev tree (nvd).
3212  */
3213 void
3214 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3215 {
3216 	spa_t *spa = nvd->vdev_spa;
3217 
3218 	ASSERT(nvd->vdev_top->vdev_islog);
3219 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3220 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3221 
3222 	for (int c = 0; c < nvd->vdev_children; c++)
3223 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3224 
3225 	if (nvd->vdev_ops->vdev_op_leaf) {
3226 		/*
3227 		 * Restore the persistent vdev state
3228 		 */
3229 		nvd->vdev_offline = ovd->vdev_offline;
3230 		nvd->vdev_faulted = ovd->vdev_faulted;
3231 		nvd->vdev_degraded = ovd->vdev_degraded;
3232 		nvd->vdev_removed = ovd->vdev_removed;
3233 	}
3234 }
3235 
3236 /*
3237  * Determine if a log device has valid content.  If the vdev was
3238  * removed or faulted in the MOS config then we know that
3239  * the content on the log device has already been written to the pool.
3240  */
3241 boolean_t
3242 vdev_log_state_valid(vdev_t *vd)
3243 {
3244 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3245 	    !vd->vdev_removed)
3246 		return (B_TRUE);
3247 
3248 	for (int c = 0; c < vd->vdev_children; c++)
3249 		if (vdev_log_state_valid(vd->vdev_child[c]))
3250 			return (B_TRUE);
3251 
3252 	return (B_FALSE);
3253 }
3254 
3255 /*
3256  * Expand a vdev if possible.
3257  */
3258 void
3259 vdev_expand(vdev_t *vd, uint64_t txg)
3260 {
3261 	ASSERT(vd->vdev_top == vd);
3262 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3263 
3264 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3265 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3266 		vdev_config_dirty(vd);
3267 	}
3268 }
3269 
3270 /*
3271  * Split a vdev.
3272  */
3273 void
3274 vdev_split(vdev_t *vd)
3275 {
3276 	vdev_t *cvd, *pvd = vd->vdev_parent;
3277 
3278 	vdev_remove_child(pvd, vd);
3279 	vdev_compact_children(pvd);
3280 
3281 	cvd = pvd->vdev_child[0];
3282 	if (pvd->vdev_children == 1) {
3283 		vdev_remove_parent(cvd);
3284 		cvd->vdev_splitting = B_TRUE;
3285 	}
3286 	vdev_propagate_state(cvd);
3287 }
3288 
3289 void
3290 vdev_deadman(vdev_t *vd)
3291 {
3292 	for (int c = 0; c < vd->vdev_children; c++) {
3293 		vdev_t *cvd = vd->vdev_child[c];
3294 
3295 		vdev_deadman(cvd);
3296 	}
3297 
3298 	if (vd->vdev_ops->vdev_op_leaf) {
3299 		vdev_queue_t *vq = &vd->vdev_queue;
3300 
3301 		mutex_enter(&vq->vq_lock);
3302 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3303 			spa_t *spa = vd->vdev_spa;
3304 			zio_t *fio;
3305 			uint64_t delta;
3306 
3307 			/*
3308 			 * Look at the head of all the pending queues,
3309 			 * if any I/O has been outstanding for longer than
3310 			 * the spa_deadman_synctime we panic the system.
3311 			 */
3312 			fio = avl_first(&vq->vq_active_tree);
3313 			delta = gethrtime() - fio->io_timestamp;
3314 			if (delta > spa_deadman_synctime(spa)) {
3315 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3316 				    "delta %lluns, last io %lluns",
3317 				    fio->io_timestamp, delta,
3318 				    vq->vq_io_complete_ts);
3319 				fm_panic("I/O to pool '%s' appears to be "
3320 				    "hung.", spa_name(spa));
3321 			}
3322 		}
3323 		mutex_exit(&vq->vq_lock);
3324 	}
3325 }
3326