1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * Given a vdev type, return the appropriate ops vector. 69 */ 70 static vdev_ops_t * 71 vdev_getops(const char *type) 72 { 73 vdev_ops_t *ops, **opspp; 74 75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 76 if (strcmp(ops->vdev_op_type, type) == 0) 77 break; 78 79 return (ops); 80 } 81 82 /* 83 * Default asize function: return the MAX of psize with the asize of 84 * all children. This is what's used by anything other than RAID-Z. 85 */ 86 uint64_t 87 vdev_default_asize(vdev_t *vd, uint64_t psize) 88 { 89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 90 uint64_t csize; 91 92 for (int c = 0; c < vd->vdev_children; c++) { 93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 94 asize = MAX(asize, csize); 95 } 96 97 return (asize); 98 } 99 100 /* 101 * Get the minimum allocatable size. We define the allocatable size as 102 * the vdev's asize rounded to the nearest metaslab. This allows us to 103 * replace or attach devices which don't have the same physical size but 104 * can still satisfy the same number of allocations. 105 */ 106 uint64_t 107 vdev_get_min_asize(vdev_t *vd) 108 { 109 vdev_t *pvd = vd->vdev_parent; 110 111 /* 112 * If our parent is NULL (inactive spare or cache) or is the root, 113 * just return our own asize. 114 */ 115 if (pvd == NULL) 116 return (vd->vdev_asize); 117 118 /* 119 * The top-level vdev just returns the allocatable size rounded 120 * to the nearest metaslab. 121 */ 122 if (vd == vd->vdev_top) 123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 124 125 /* 126 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 127 * so each child must provide at least 1/Nth of its asize. 128 */ 129 if (pvd->vdev_ops == &vdev_raidz_ops) 130 return (pvd->vdev_min_asize / pvd->vdev_children); 131 132 return (pvd->vdev_min_asize); 133 } 134 135 void 136 vdev_set_min_asize(vdev_t *vd) 137 { 138 vd->vdev_min_asize = vdev_get_min_asize(vd); 139 140 for (int c = 0; c < vd->vdev_children; c++) 141 vdev_set_min_asize(vd->vdev_child[c]); 142 } 143 144 vdev_t * 145 vdev_lookup_top(spa_t *spa, uint64_t vdev) 146 { 147 vdev_t *rvd = spa->spa_root_vdev; 148 149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 150 151 if (vdev < rvd->vdev_children) { 152 ASSERT(rvd->vdev_child[vdev] != NULL); 153 return (rvd->vdev_child[vdev]); 154 } 155 156 return (NULL); 157 } 158 159 vdev_t * 160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 161 { 162 vdev_t *mvd; 163 164 if (vd->vdev_guid == guid) 165 return (vd); 166 167 for (int c = 0; c < vd->vdev_children; c++) 168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 169 NULL) 170 return (mvd); 171 172 return (NULL); 173 } 174 175 void 176 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 177 { 178 size_t oldsize, newsize; 179 uint64_t id = cvd->vdev_id; 180 vdev_t **newchild; 181 182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 183 ASSERT(cvd->vdev_parent == NULL); 184 185 cvd->vdev_parent = pvd; 186 187 if (pvd == NULL) 188 return; 189 190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 191 192 oldsize = pvd->vdev_children * sizeof (vdev_t *); 193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 194 newsize = pvd->vdev_children * sizeof (vdev_t *); 195 196 newchild = kmem_zalloc(newsize, KM_SLEEP); 197 if (pvd->vdev_child != NULL) { 198 bcopy(pvd->vdev_child, newchild, oldsize); 199 kmem_free(pvd->vdev_child, oldsize); 200 } 201 202 pvd->vdev_child = newchild; 203 pvd->vdev_child[id] = cvd; 204 205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 207 208 /* 209 * Walk up all ancestors to update guid sum. 210 */ 211 for (; pvd != NULL; pvd = pvd->vdev_parent) 212 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 } 248 249 /* 250 * Remove any holes in the child array. 251 */ 252 void 253 vdev_compact_children(vdev_t *pvd) 254 { 255 vdev_t **newchild, *cvd; 256 int oldc = pvd->vdev_children; 257 int newc; 258 259 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 260 261 for (int c = newc = 0; c < oldc; c++) 262 if (pvd->vdev_child[c]) 263 newc++; 264 265 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 266 267 for (int c = newc = 0; c < oldc; c++) { 268 if ((cvd = pvd->vdev_child[c]) != NULL) { 269 newchild[newc] = cvd; 270 cvd->vdev_id = newc++; 271 } 272 } 273 274 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 275 pvd->vdev_child = newchild; 276 pvd->vdev_children = newc; 277 } 278 279 /* 280 * Allocate and minimally initialize a vdev_t. 281 */ 282 vdev_t * 283 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 284 { 285 vdev_t *vd; 286 287 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 288 289 if (spa->spa_root_vdev == NULL) { 290 ASSERT(ops == &vdev_root_ops); 291 spa->spa_root_vdev = vd; 292 spa->spa_load_guid = spa_generate_guid(NULL); 293 } 294 295 if (guid == 0 && ops != &vdev_hole_ops) { 296 if (spa->spa_root_vdev == vd) { 297 /* 298 * The root vdev's guid will also be the pool guid, 299 * which must be unique among all pools. 300 */ 301 guid = spa_generate_guid(NULL); 302 } else { 303 /* 304 * Any other vdev's guid must be unique within the pool. 305 */ 306 guid = spa_generate_guid(spa); 307 } 308 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 309 } 310 311 vd->vdev_spa = spa; 312 vd->vdev_id = id; 313 vd->vdev_guid = guid; 314 vd->vdev_guid_sum = guid; 315 vd->vdev_ops = ops; 316 vd->vdev_state = VDEV_STATE_CLOSED; 317 vd->vdev_ishole = (ops == &vdev_hole_ops); 318 319 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 321 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 322 for (int t = 0; t < DTL_TYPES; t++) { 323 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 324 &vd->vdev_dtl_lock); 325 } 326 txg_list_create(&vd->vdev_ms_list, 327 offsetof(struct metaslab, ms_txg_node)); 328 txg_list_create(&vd->vdev_dtl_list, 329 offsetof(struct vdev, vdev_dtl_node)); 330 vd->vdev_stat.vs_timestamp = gethrtime(); 331 vdev_queue_init(vd); 332 vdev_cache_init(vd); 333 334 return (vd); 335 } 336 337 /* 338 * Allocate a new vdev. The 'alloctype' is used to control whether we are 339 * creating a new vdev or loading an existing one - the behavior is slightly 340 * different for each case. 341 */ 342 int 343 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 344 int alloctype) 345 { 346 vdev_ops_t *ops; 347 char *type; 348 uint64_t guid = 0, islog, nparity; 349 vdev_t *vd; 350 351 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 352 353 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 354 return (SET_ERROR(EINVAL)); 355 356 if ((ops = vdev_getops(type)) == NULL) 357 return (SET_ERROR(EINVAL)); 358 359 /* 360 * If this is a load, get the vdev guid from the nvlist. 361 * Otherwise, vdev_alloc_common() will generate one for us. 362 */ 363 if (alloctype == VDEV_ALLOC_LOAD) { 364 uint64_t label_id; 365 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 367 label_id != id) 368 return (SET_ERROR(EINVAL)); 369 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (SET_ERROR(EINVAL)); 372 } else if (alloctype == VDEV_ALLOC_SPARE) { 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (SET_ERROR(EINVAL)); 375 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (SET_ERROR(EINVAL)); 378 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (SET_ERROR(EINVAL)); 381 } 382 383 /* 384 * The first allocated vdev must be of type 'root'. 385 */ 386 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 387 return (SET_ERROR(EINVAL)); 388 389 /* 390 * Determine whether we're a log vdev. 391 */ 392 islog = 0; 393 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 394 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 395 return (SET_ERROR(ENOTSUP)); 396 397 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 398 return (SET_ERROR(ENOTSUP)); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 408 return (SET_ERROR(EINVAL)); 409 /* 410 * Previous versions could only support 1 or 2 parity 411 * device. 412 */ 413 if (nparity > 1 && 414 spa_version(spa) < SPA_VERSION_RAIDZ2) 415 return (SET_ERROR(ENOTSUP)); 416 if (nparity > 2 && 417 spa_version(spa) < SPA_VERSION_RAIDZ3) 418 return (SET_ERROR(ENOTSUP)); 419 } else { 420 /* 421 * We require the parity to be specified for SPAs that 422 * support multiple parity levels. 423 */ 424 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 425 return (SET_ERROR(EINVAL)); 426 /* 427 * Otherwise, we default to 1 parity device for RAID-Z. 428 */ 429 nparity = 1; 430 } 431 } else { 432 nparity = 0; 433 } 434 ASSERT(nparity != -1ULL); 435 436 vd = vdev_alloc_common(spa, id, guid, ops); 437 438 vd->vdev_islog = islog; 439 vd->vdev_nparity = nparity; 440 441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 442 vd->vdev_path = spa_strdup(vd->vdev_path); 443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 444 vd->vdev_devid = spa_strdup(vd->vdev_devid); 445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 446 &vd->vdev_physpath) == 0) 447 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 449 vd->vdev_fru = spa_strdup(vd->vdev_fru); 450 451 /* 452 * Set the whole_disk property. If it's not specified, leave the value 453 * as -1. 454 */ 455 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 456 &vd->vdev_wholedisk) != 0) 457 vd->vdev_wholedisk = -1ULL; 458 459 /* 460 * Look for the 'not present' flag. This will only be set if the device 461 * was not present at the time of import. 462 */ 463 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 464 &vd->vdev_not_present); 465 466 /* 467 * Get the alignment requirement. 468 */ 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 470 471 /* 472 * Retrieve the vdev creation time. 473 */ 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 475 &vd->vdev_crtxg); 476 477 /* 478 * If we're a top-level vdev, try to load the allocation parameters. 479 */ 480 if (parent && !parent->vdev_parent && 481 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 483 &vd->vdev_ms_array); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 485 &vd->vdev_ms_shift); 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 487 &vd->vdev_asize); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 489 &vd->vdev_removing); 490 } 491 492 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 493 ASSERT(alloctype == VDEV_ALLOC_LOAD || 494 alloctype == VDEV_ALLOC_ADD || 495 alloctype == VDEV_ALLOC_SPLIT || 496 alloctype == VDEV_ALLOC_ROOTPOOL); 497 vd->vdev_mg = metaslab_group_create(islog ? 498 spa_log_class(spa) : spa_normal_class(spa), vd); 499 } 500 501 /* 502 * If we're a leaf vdev, try to load the DTL object and other state. 503 */ 504 if (vd->vdev_ops->vdev_op_leaf && 505 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 506 alloctype == VDEV_ALLOC_ROOTPOOL)) { 507 if (alloctype == VDEV_ALLOC_LOAD) { 508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 509 &vd->vdev_dtl_object); 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 511 &vd->vdev_unspare); 512 } 513 514 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 515 uint64_t spare = 0; 516 517 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 518 &spare) == 0 && spare) 519 spa_spare_add(vd); 520 } 521 522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 523 &vd->vdev_offline); 524 525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 526 &vd->vdev_resilver_txg); 527 528 /* 529 * When importing a pool, we want to ignore the persistent fault 530 * state, as the diagnosis made on another system may not be 531 * valid in the current context. Local vdevs will 532 * remain in the faulted state. 533 */ 534 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 536 &vd->vdev_faulted); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 538 &vd->vdev_degraded); 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 540 &vd->vdev_removed); 541 542 if (vd->vdev_faulted || vd->vdev_degraded) { 543 char *aux; 544 545 vd->vdev_label_aux = 546 VDEV_AUX_ERR_EXCEEDED; 547 if (nvlist_lookup_string(nv, 548 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 549 strcmp(aux, "external") == 0) 550 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 551 } 552 } 553 } 554 555 /* 556 * Add ourselves to the parent's list of children. 557 */ 558 vdev_add_child(parent, vd); 559 560 *vdp = vd; 561 562 return (0); 563 } 564 565 void 566 vdev_free(vdev_t *vd) 567 { 568 spa_t *spa = vd->vdev_spa; 569 570 /* 571 * vdev_free() implies closing the vdev first. This is simpler than 572 * trying to ensure complicated semantics for all callers. 573 */ 574 vdev_close(vd); 575 576 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 577 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 578 579 /* 580 * Free all children. 581 */ 582 for (int c = 0; c < vd->vdev_children; c++) 583 vdev_free(vd->vdev_child[c]); 584 585 ASSERT(vd->vdev_child == NULL); 586 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 587 588 /* 589 * Discard allocation state. 590 */ 591 if (vd->vdev_mg != NULL) { 592 vdev_metaslab_fini(vd); 593 metaslab_group_destroy(vd->vdev_mg); 594 } 595 596 ASSERT0(vd->vdev_stat.vs_space); 597 ASSERT0(vd->vdev_stat.vs_dspace); 598 ASSERT0(vd->vdev_stat.vs_alloc); 599 600 /* 601 * Remove this vdev from its parent's child list. 602 */ 603 vdev_remove_child(vd->vdev_parent, vd); 604 605 ASSERT(vd->vdev_parent == NULL); 606 607 /* 608 * Clean up vdev structure. 609 */ 610 vdev_queue_fini(vd); 611 vdev_cache_fini(vd); 612 613 if (vd->vdev_path) 614 spa_strfree(vd->vdev_path); 615 if (vd->vdev_devid) 616 spa_strfree(vd->vdev_devid); 617 if (vd->vdev_physpath) 618 spa_strfree(vd->vdev_physpath); 619 if (vd->vdev_fru) 620 spa_strfree(vd->vdev_fru); 621 622 if (vd->vdev_isspare) 623 spa_spare_remove(vd); 624 if (vd->vdev_isl2cache) 625 spa_l2cache_remove(vd); 626 627 txg_list_destroy(&vd->vdev_ms_list); 628 txg_list_destroy(&vd->vdev_dtl_list); 629 630 mutex_enter(&vd->vdev_dtl_lock); 631 space_map_close(vd->vdev_dtl_sm); 632 for (int t = 0; t < DTL_TYPES; t++) { 633 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 634 range_tree_destroy(vd->vdev_dtl[t]); 635 } 636 mutex_exit(&vd->vdev_dtl_lock); 637 638 mutex_destroy(&vd->vdev_dtl_lock); 639 mutex_destroy(&vd->vdev_stat_lock); 640 mutex_destroy(&vd->vdev_probe_lock); 641 642 if (vd == spa->spa_root_vdev) 643 spa->spa_root_vdev = NULL; 644 645 kmem_free(vd, sizeof (vdev_t)); 646 } 647 648 /* 649 * Transfer top-level vdev state from svd to tvd. 650 */ 651 static void 652 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 653 { 654 spa_t *spa = svd->vdev_spa; 655 metaslab_t *msp; 656 vdev_t *vd; 657 int t; 658 659 ASSERT(tvd == tvd->vdev_top); 660 661 tvd->vdev_ms_array = svd->vdev_ms_array; 662 tvd->vdev_ms_shift = svd->vdev_ms_shift; 663 tvd->vdev_ms_count = svd->vdev_ms_count; 664 665 svd->vdev_ms_array = 0; 666 svd->vdev_ms_shift = 0; 667 svd->vdev_ms_count = 0; 668 669 if (tvd->vdev_mg) 670 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 671 tvd->vdev_mg = svd->vdev_mg; 672 tvd->vdev_ms = svd->vdev_ms; 673 674 svd->vdev_mg = NULL; 675 svd->vdev_ms = NULL; 676 677 if (tvd->vdev_mg != NULL) 678 tvd->vdev_mg->mg_vd = tvd; 679 680 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 681 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 682 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 683 684 svd->vdev_stat.vs_alloc = 0; 685 svd->vdev_stat.vs_space = 0; 686 svd->vdev_stat.vs_dspace = 0; 687 688 for (t = 0; t < TXG_SIZE; t++) { 689 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 691 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 692 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 693 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 694 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 695 } 696 697 if (list_link_active(&svd->vdev_config_dirty_node)) { 698 vdev_config_clean(svd); 699 vdev_config_dirty(tvd); 700 } 701 702 if (list_link_active(&svd->vdev_state_dirty_node)) { 703 vdev_state_clean(svd); 704 vdev_state_dirty(tvd); 705 } 706 707 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 708 svd->vdev_deflate_ratio = 0; 709 710 tvd->vdev_islog = svd->vdev_islog; 711 svd->vdev_islog = 0; 712 } 713 714 static void 715 vdev_top_update(vdev_t *tvd, vdev_t *vd) 716 { 717 if (vd == NULL) 718 return; 719 720 vd->vdev_top = tvd; 721 722 for (int c = 0; c < vd->vdev_children; c++) 723 vdev_top_update(tvd, vd->vdev_child[c]); 724 } 725 726 /* 727 * Add a mirror/replacing vdev above an existing vdev. 728 */ 729 vdev_t * 730 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 731 { 732 spa_t *spa = cvd->vdev_spa; 733 vdev_t *pvd = cvd->vdev_parent; 734 vdev_t *mvd; 735 736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 737 738 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 739 740 mvd->vdev_asize = cvd->vdev_asize; 741 mvd->vdev_min_asize = cvd->vdev_min_asize; 742 mvd->vdev_max_asize = cvd->vdev_max_asize; 743 mvd->vdev_ashift = cvd->vdev_ashift; 744 mvd->vdev_state = cvd->vdev_state; 745 mvd->vdev_crtxg = cvd->vdev_crtxg; 746 747 vdev_remove_child(pvd, cvd); 748 vdev_add_child(pvd, mvd); 749 cvd->vdev_id = mvd->vdev_children; 750 vdev_add_child(mvd, cvd); 751 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 752 753 if (mvd == mvd->vdev_top) 754 vdev_top_transfer(cvd, mvd); 755 756 return (mvd); 757 } 758 759 /* 760 * Remove a 1-way mirror/replacing vdev from the tree. 761 */ 762 void 763 vdev_remove_parent(vdev_t *cvd) 764 { 765 vdev_t *mvd = cvd->vdev_parent; 766 vdev_t *pvd = mvd->vdev_parent; 767 768 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 769 770 ASSERT(mvd->vdev_children == 1); 771 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 772 mvd->vdev_ops == &vdev_replacing_ops || 773 mvd->vdev_ops == &vdev_spare_ops); 774 cvd->vdev_ashift = mvd->vdev_ashift; 775 776 vdev_remove_child(mvd, cvd); 777 vdev_remove_child(pvd, mvd); 778 779 /* 780 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 781 * Otherwise, we could have detached an offline device, and when we 782 * go to import the pool we'll think we have two top-level vdevs, 783 * instead of a different version of the same top-level vdev. 784 */ 785 if (mvd->vdev_top == mvd) { 786 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 787 cvd->vdev_orig_guid = cvd->vdev_guid; 788 cvd->vdev_guid += guid_delta; 789 cvd->vdev_guid_sum += guid_delta; 790 } 791 cvd->vdev_id = mvd->vdev_id; 792 vdev_add_child(pvd, cvd); 793 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 794 795 if (cvd == cvd->vdev_top) 796 vdev_top_transfer(mvd, cvd); 797 798 ASSERT(mvd->vdev_children == 0); 799 vdev_free(mvd); 800 } 801 802 int 803 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 804 { 805 spa_t *spa = vd->vdev_spa; 806 objset_t *mos = spa->spa_meta_objset; 807 uint64_t m; 808 uint64_t oldc = vd->vdev_ms_count; 809 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 810 metaslab_t **mspp; 811 int error; 812 813 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 814 815 /* 816 * This vdev is not being allocated from yet or is a hole. 817 */ 818 if (vd->vdev_ms_shift == 0) 819 return (0); 820 821 ASSERT(!vd->vdev_ishole); 822 823 /* 824 * Compute the raidz-deflation ratio. Note, we hard-code 825 * in 128k (1 << 17) because it is the current "typical" blocksize. 826 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 827 * or we will inconsistently account for existing bp's. 828 */ 829 vd->vdev_deflate_ratio = (1 << 17) / 830 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 831 832 ASSERT(oldc <= newc); 833 834 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 835 836 if (oldc != 0) { 837 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 838 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 839 } 840 841 vd->vdev_ms = mspp; 842 vd->vdev_ms_count = newc; 843 844 for (m = oldc; m < newc; m++) { 845 uint64_t object = 0; 846 847 if (txg == 0) { 848 error = dmu_read(mos, vd->vdev_ms_array, 849 m * sizeof (uint64_t), sizeof (uint64_t), &object, 850 DMU_READ_PREFETCH); 851 if (error) 852 return (error); 853 } 854 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); 855 } 856 857 if (txg == 0) 858 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 859 860 /* 861 * If the vdev is being removed we don't activate 862 * the metaslabs since we want to ensure that no new 863 * allocations are performed on this device. 864 */ 865 if (oldc == 0 && !vd->vdev_removing) 866 metaslab_group_activate(vd->vdev_mg); 867 868 if (txg == 0) 869 spa_config_exit(spa, SCL_ALLOC, FTAG); 870 871 return (0); 872 } 873 874 void 875 vdev_metaslab_fini(vdev_t *vd) 876 { 877 uint64_t m; 878 uint64_t count = vd->vdev_ms_count; 879 880 if (vd->vdev_ms != NULL) { 881 metaslab_group_passivate(vd->vdev_mg); 882 for (m = 0; m < count; m++) { 883 metaslab_t *msp = vd->vdev_ms[m]; 884 885 if (msp != NULL) 886 metaslab_fini(msp); 887 } 888 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 889 vd->vdev_ms = NULL; 890 } 891 } 892 893 typedef struct vdev_probe_stats { 894 boolean_t vps_readable; 895 boolean_t vps_writeable; 896 int vps_flags; 897 } vdev_probe_stats_t; 898 899 static void 900 vdev_probe_done(zio_t *zio) 901 { 902 spa_t *spa = zio->io_spa; 903 vdev_t *vd = zio->io_vd; 904 vdev_probe_stats_t *vps = zio->io_private; 905 906 ASSERT(vd->vdev_probe_zio != NULL); 907 908 if (zio->io_type == ZIO_TYPE_READ) { 909 if (zio->io_error == 0) 910 vps->vps_readable = 1; 911 if (zio->io_error == 0 && spa_writeable(spa)) { 912 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 913 zio->io_offset, zio->io_size, zio->io_data, 914 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 915 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 916 } else { 917 zio_buf_free(zio->io_data, zio->io_size); 918 } 919 } else if (zio->io_type == ZIO_TYPE_WRITE) { 920 if (zio->io_error == 0) 921 vps->vps_writeable = 1; 922 zio_buf_free(zio->io_data, zio->io_size); 923 } else if (zio->io_type == ZIO_TYPE_NULL) { 924 zio_t *pio; 925 926 vd->vdev_cant_read |= !vps->vps_readable; 927 vd->vdev_cant_write |= !vps->vps_writeable; 928 929 if (vdev_readable(vd) && 930 (vdev_writeable(vd) || !spa_writeable(spa))) { 931 zio->io_error = 0; 932 } else { 933 ASSERT(zio->io_error != 0); 934 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 935 spa, vd, NULL, 0, 0); 936 zio->io_error = SET_ERROR(ENXIO); 937 } 938 939 mutex_enter(&vd->vdev_probe_lock); 940 ASSERT(vd->vdev_probe_zio == zio); 941 vd->vdev_probe_zio = NULL; 942 mutex_exit(&vd->vdev_probe_lock); 943 944 while ((pio = zio_walk_parents(zio)) != NULL) 945 if (!vdev_accessible(vd, pio)) 946 pio->io_error = SET_ERROR(ENXIO); 947 948 kmem_free(vps, sizeof (*vps)); 949 } 950 } 951 952 /* 953 * Determine whether this device is accessible. 954 * 955 * Read and write to several known locations: the pad regions of each 956 * vdev label but the first, which we leave alone in case it contains 957 * a VTOC. 958 */ 959 zio_t * 960 vdev_probe(vdev_t *vd, zio_t *zio) 961 { 962 spa_t *spa = vd->vdev_spa; 963 vdev_probe_stats_t *vps = NULL; 964 zio_t *pio; 965 966 ASSERT(vd->vdev_ops->vdev_op_leaf); 967 968 /* 969 * Don't probe the probe. 970 */ 971 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 972 return (NULL); 973 974 /* 975 * To prevent 'probe storms' when a device fails, we create 976 * just one probe i/o at a time. All zios that want to probe 977 * this vdev will become parents of the probe io. 978 */ 979 mutex_enter(&vd->vdev_probe_lock); 980 981 if ((pio = vd->vdev_probe_zio) == NULL) { 982 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 983 984 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 985 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 986 ZIO_FLAG_TRYHARD; 987 988 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 989 /* 990 * vdev_cant_read and vdev_cant_write can only 991 * transition from TRUE to FALSE when we have the 992 * SCL_ZIO lock as writer; otherwise they can only 993 * transition from FALSE to TRUE. This ensures that 994 * any zio looking at these values can assume that 995 * failures persist for the life of the I/O. That's 996 * important because when a device has intermittent 997 * connectivity problems, we want to ensure that 998 * they're ascribed to the device (ENXIO) and not 999 * the zio (EIO). 1000 * 1001 * Since we hold SCL_ZIO as writer here, clear both 1002 * values so the probe can reevaluate from first 1003 * principles. 1004 */ 1005 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1006 vd->vdev_cant_read = B_FALSE; 1007 vd->vdev_cant_write = B_FALSE; 1008 } 1009 1010 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1011 vdev_probe_done, vps, 1012 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1013 1014 /* 1015 * We can't change the vdev state in this context, so we 1016 * kick off an async task to do it on our behalf. 1017 */ 1018 if (zio != NULL) { 1019 vd->vdev_probe_wanted = B_TRUE; 1020 spa_async_request(spa, SPA_ASYNC_PROBE); 1021 } 1022 } 1023 1024 if (zio != NULL) 1025 zio_add_child(zio, pio); 1026 1027 mutex_exit(&vd->vdev_probe_lock); 1028 1029 if (vps == NULL) { 1030 ASSERT(zio != NULL); 1031 return (NULL); 1032 } 1033 1034 for (int l = 1; l < VDEV_LABELS; l++) { 1035 zio_nowait(zio_read_phys(pio, vd, 1036 vdev_label_offset(vd->vdev_psize, l, 1037 offsetof(vdev_label_t, vl_pad2)), 1038 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1039 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1040 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1041 } 1042 1043 if (zio == NULL) 1044 return (pio); 1045 1046 zio_nowait(pio); 1047 return (NULL); 1048 } 1049 1050 static void 1051 vdev_open_child(void *arg) 1052 { 1053 vdev_t *vd = arg; 1054 1055 vd->vdev_open_thread = curthread; 1056 vd->vdev_open_error = vdev_open(vd); 1057 vd->vdev_open_thread = NULL; 1058 } 1059 1060 boolean_t 1061 vdev_uses_zvols(vdev_t *vd) 1062 { 1063 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1064 strlen(ZVOL_DIR)) == 0) 1065 return (B_TRUE); 1066 for (int c = 0; c < vd->vdev_children; c++) 1067 if (vdev_uses_zvols(vd->vdev_child[c])) 1068 return (B_TRUE); 1069 return (B_FALSE); 1070 } 1071 1072 void 1073 vdev_open_children(vdev_t *vd) 1074 { 1075 taskq_t *tq; 1076 int children = vd->vdev_children; 1077 1078 /* 1079 * in order to handle pools on top of zvols, do the opens 1080 * in a single thread so that the same thread holds the 1081 * spa_namespace_lock 1082 */ 1083 if (vdev_uses_zvols(vd)) { 1084 for (int c = 0; c < children; c++) 1085 vd->vdev_child[c]->vdev_open_error = 1086 vdev_open(vd->vdev_child[c]); 1087 return; 1088 } 1089 tq = taskq_create("vdev_open", children, minclsyspri, 1090 children, children, TASKQ_PREPOPULATE); 1091 1092 for (int c = 0; c < children; c++) 1093 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1094 TQ_SLEEP) != NULL); 1095 1096 taskq_destroy(tq); 1097 } 1098 1099 /* 1100 * Prepare a virtual device for access. 1101 */ 1102 int 1103 vdev_open(vdev_t *vd) 1104 { 1105 spa_t *spa = vd->vdev_spa; 1106 int error; 1107 uint64_t osize = 0; 1108 uint64_t max_osize = 0; 1109 uint64_t asize, max_asize, psize; 1110 uint64_t ashift = 0; 1111 1112 ASSERT(vd->vdev_open_thread == curthread || 1113 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1114 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1115 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1116 vd->vdev_state == VDEV_STATE_OFFLINE); 1117 1118 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1119 vd->vdev_cant_read = B_FALSE; 1120 vd->vdev_cant_write = B_FALSE; 1121 vd->vdev_min_asize = vdev_get_min_asize(vd); 1122 1123 /* 1124 * If this vdev is not removed, check its fault status. If it's 1125 * faulted, bail out of the open. 1126 */ 1127 if (!vd->vdev_removed && vd->vdev_faulted) { 1128 ASSERT(vd->vdev_children == 0); 1129 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1130 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1132 vd->vdev_label_aux); 1133 return (SET_ERROR(ENXIO)); 1134 } else if (vd->vdev_offline) { 1135 ASSERT(vd->vdev_children == 0); 1136 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1137 return (SET_ERROR(ENXIO)); 1138 } 1139 1140 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1141 1142 /* 1143 * Reset the vdev_reopening flag so that we actually close 1144 * the vdev on error. 1145 */ 1146 vd->vdev_reopening = B_FALSE; 1147 if (zio_injection_enabled && error == 0) 1148 error = zio_handle_device_injection(vd, NULL, ENXIO); 1149 1150 if (error) { 1151 if (vd->vdev_removed && 1152 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1153 vd->vdev_removed = B_FALSE; 1154 1155 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1156 vd->vdev_stat.vs_aux); 1157 return (error); 1158 } 1159 1160 vd->vdev_removed = B_FALSE; 1161 1162 /* 1163 * Recheck the faulted flag now that we have confirmed that 1164 * the vdev is accessible. If we're faulted, bail. 1165 */ 1166 if (vd->vdev_faulted) { 1167 ASSERT(vd->vdev_children == 0); 1168 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1169 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1170 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1171 vd->vdev_label_aux); 1172 return (SET_ERROR(ENXIO)); 1173 } 1174 1175 if (vd->vdev_degraded) { 1176 ASSERT(vd->vdev_children == 0); 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1178 VDEV_AUX_ERR_EXCEEDED); 1179 } else { 1180 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1181 } 1182 1183 /* 1184 * For hole or missing vdevs we just return success. 1185 */ 1186 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1187 return (0); 1188 1189 for (int c = 0; c < vd->vdev_children; c++) { 1190 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1192 VDEV_AUX_NONE); 1193 break; 1194 } 1195 } 1196 1197 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1198 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1199 1200 if (vd->vdev_children == 0) { 1201 if (osize < SPA_MINDEVSIZE) { 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1203 VDEV_AUX_TOO_SMALL); 1204 return (SET_ERROR(EOVERFLOW)); 1205 } 1206 psize = osize; 1207 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1208 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1209 VDEV_LABEL_END_SIZE); 1210 } else { 1211 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1212 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1214 VDEV_AUX_TOO_SMALL); 1215 return (SET_ERROR(EOVERFLOW)); 1216 } 1217 psize = 0; 1218 asize = osize; 1219 max_asize = max_osize; 1220 } 1221 1222 vd->vdev_psize = psize; 1223 1224 /* 1225 * Make sure the allocatable size hasn't shrunk. 1226 */ 1227 if (asize < vd->vdev_min_asize) { 1228 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1229 VDEV_AUX_BAD_LABEL); 1230 return (SET_ERROR(EINVAL)); 1231 } 1232 1233 if (vd->vdev_asize == 0) { 1234 /* 1235 * This is the first-ever open, so use the computed values. 1236 * For testing purposes, a higher ashift can be requested. 1237 */ 1238 vd->vdev_asize = asize; 1239 vd->vdev_max_asize = max_asize; 1240 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1241 } else { 1242 /* 1243 * Detect if the alignment requirement has increased. 1244 * We don't want to make the pool unavailable, just 1245 * issue a warning instead. 1246 */ 1247 if (ashift > vd->vdev_top->vdev_ashift && 1248 vd->vdev_ops->vdev_op_leaf) { 1249 cmn_err(CE_WARN, 1250 "Disk, '%s', has a block alignment that is " 1251 "larger than the pool's alignment\n", 1252 vd->vdev_path); 1253 } 1254 vd->vdev_max_asize = max_asize; 1255 } 1256 1257 /* 1258 * If all children are healthy and the asize has increased, 1259 * then we've experienced dynamic LUN growth. If automatic 1260 * expansion is enabled then use the additional space. 1261 */ 1262 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1263 (vd->vdev_expanding || spa->spa_autoexpand)) 1264 vd->vdev_asize = asize; 1265 1266 vdev_set_min_asize(vd); 1267 1268 /* 1269 * Ensure we can issue some IO before declaring the 1270 * vdev open for business. 1271 */ 1272 if (vd->vdev_ops->vdev_op_leaf && 1273 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1274 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1275 VDEV_AUX_ERR_EXCEEDED); 1276 return (error); 1277 } 1278 1279 /* 1280 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1281 * resilver. But don't do this if we are doing a reopen for a scrub, 1282 * since this would just restart the scrub we are already doing. 1283 */ 1284 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1285 vdev_resilver_needed(vd, NULL, NULL)) 1286 spa_async_request(spa, SPA_ASYNC_RESILVER); 1287 1288 return (0); 1289 } 1290 1291 /* 1292 * Called once the vdevs are all opened, this routine validates the label 1293 * contents. This needs to be done before vdev_load() so that we don't 1294 * inadvertently do repair I/Os to the wrong device. 1295 * 1296 * If 'strict' is false ignore the spa guid check. This is necessary because 1297 * if the machine crashed during a re-guid the new guid might have been written 1298 * to all of the vdev labels, but not the cached config. The strict check 1299 * will be performed when the pool is opened again using the mos config. 1300 * 1301 * This function will only return failure if one of the vdevs indicates that it 1302 * has since been destroyed or exported. This is only possible if 1303 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1304 * will be updated but the function will return 0. 1305 */ 1306 int 1307 vdev_validate(vdev_t *vd, boolean_t strict) 1308 { 1309 spa_t *spa = vd->vdev_spa; 1310 nvlist_t *label; 1311 uint64_t guid = 0, top_guid; 1312 uint64_t state; 1313 1314 for (int c = 0; c < vd->vdev_children; c++) 1315 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1316 return (SET_ERROR(EBADF)); 1317 1318 /* 1319 * If the device has already failed, or was marked offline, don't do 1320 * any further validation. Otherwise, label I/O will fail and we will 1321 * overwrite the previous state. 1322 */ 1323 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1324 uint64_t aux_guid = 0; 1325 nvlist_t *nvl; 1326 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1327 spa_last_synced_txg(spa) : -1ULL; 1328 1329 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1330 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1331 VDEV_AUX_BAD_LABEL); 1332 return (0); 1333 } 1334 1335 /* 1336 * Determine if this vdev has been split off into another 1337 * pool. If so, then refuse to open it. 1338 */ 1339 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1340 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1341 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1342 VDEV_AUX_SPLIT_POOL); 1343 nvlist_free(label); 1344 return (0); 1345 } 1346 1347 if (strict && (nvlist_lookup_uint64(label, 1348 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1349 guid != spa_guid(spa))) { 1350 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1351 VDEV_AUX_CORRUPT_DATA); 1352 nvlist_free(label); 1353 return (0); 1354 } 1355 1356 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1357 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1358 &aux_guid) != 0) 1359 aux_guid = 0; 1360 1361 /* 1362 * If this vdev just became a top-level vdev because its 1363 * sibling was detached, it will have adopted the parent's 1364 * vdev guid -- but the label may or may not be on disk yet. 1365 * Fortunately, either version of the label will have the 1366 * same top guid, so if we're a top-level vdev, we can 1367 * safely compare to that instead. 1368 * 1369 * If we split this vdev off instead, then we also check the 1370 * original pool's guid. We don't want to consider the vdev 1371 * corrupt if it is partway through a split operation. 1372 */ 1373 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1374 &guid) != 0 || 1375 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1376 &top_guid) != 0 || 1377 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1378 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1379 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1380 VDEV_AUX_CORRUPT_DATA); 1381 nvlist_free(label); 1382 return (0); 1383 } 1384 1385 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1386 &state) != 0) { 1387 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1388 VDEV_AUX_CORRUPT_DATA); 1389 nvlist_free(label); 1390 return (0); 1391 } 1392 1393 nvlist_free(label); 1394 1395 /* 1396 * If this is a verbatim import, no need to check the 1397 * state of the pool. 1398 */ 1399 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1400 spa_load_state(spa) == SPA_LOAD_OPEN && 1401 state != POOL_STATE_ACTIVE) 1402 return (SET_ERROR(EBADF)); 1403 1404 /* 1405 * If we were able to open and validate a vdev that was 1406 * previously marked permanently unavailable, clear that state 1407 * now. 1408 */ 1409 if (vd->vdev_not_present) 1410 vd->vdev_not_present = 0; 1411 } 1412 1413 return (0); 1414 } 1415 1416 /* 1417 * Close a virtual device. 1418 */ 1419 void 1420 vdev_close(vdev_t *vd) 1421 { 1422 spa_t *spa = vd->vdev_spa; 1423 vdev_t *pvd = vd->vdev_parent; 1424 1425 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1426 1427 /* 1428 * If our parent is reopening, then we are as well, unless we are 1429 * going offline. 1430 */ 1431 if (pvd != NULL && pvd->vdev_reopening) 1432 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1433 1434 vd->vdev_ops->vdev_op_close(vd); 1435 1436 vdev_cache_purge(vd); 1437 1438 /* 1439 * We record the previous state before we close it, so that if we are 1440 * doing a reopen(), we don't generate FMA ereports if we notice that 1441 * it's still faulted. 1442 */ 1443 vd->vdev_prevstate = vd->vdev_state; 1444 1445 if (vd->vdev_offline) 1446 vd->vdev_state = VDEV_STATE_OFFLINE; 1447 else 1448 vd->vdev_state = VDEV_STATE_CLOSED; 1449 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1450 } 1451 1452 void 1453 vdev_hold(vdev_t *vd) 1454 { 1455 spa_t *spa = vd->vdev_spa; 1456 1457 ASSERT(spa_is_root(spa)); 1458 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1459 return; 1460 1461 for (int c = 0; c < vd->vdev_children; c++) 1462 vdev_hold(vd->vdev_child[c]); 1463 1464 if (vd->vdev_ops->vdev_op_leaf) 1465 vd->vdev_ops->vdev_op_hold(vd); 1466 } 1467 1468 void 1469 vdev_rele(vdev_t *vd) 1470 { 1471 spa_t *spa = vd->vdev_spa; 1472 1473 ASSERT(spa_is_root(spa)); 1474 for (int c = 0; c < vd->vdev_children; c++) 1475 vdev_rele(vd->vdev_child[c]); 1476 1477 if (vd->vdev_ops->vdev_op_leaf) 1478 vd->vdev_ops->vdev_op_rele(vd); 1479 } 1480 1481 /* 1482 * Reopen all interior vdevs and any unopened leaves. We don't actually 1483 * reopen leaf vdevs which had previously been opened as they might deadlock 1484 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1485 * If the leaf has never been opened then open it, as usual. 1486 */ 1487 void 1488 vdev_reopen(vdev_t *vd) 1489 { 1490 spa_t *spa = vd->vdev_spa; 1491 1492 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1493 1494 /* set the reopening flag unless we're taking the vdev offline */ 1495 vd->vdev_reopening = !vd->vdev_offline; 1496 vdev_close(vd); 1497 (void) vdev_open(vd); 1498 1499 /* 1500 * Call vdev_validate() here to make sure we have the same device. 1501 * Otherwise, a device with an invalid label could be successfully 1502 * opened in response to vdev_reopen(). 1503 */ 1504 if (vd->vdev_aux) { 1505 (void) vdev_validate_aux(vd); 1506 if (vdev_readable(vd) && vdev_writeable(vd) && 1507 vd->vdev_aux == &spa->spa_l2cache && 1508 !l2arc_vdev_present(vd)) 1509 l2arc_add_vdev(spa, vd); 1510 } else { 1511 (void) vdev_validate(vd, B_TRUE); 1512 } 1513 1514 /* 1515 * Reassess parent vdev's health. 1516 */ 1517 vdev_propagate_state(vd); 1518 } 1519 1520 int 1521 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1522 { 1523 int error; 1524 1525 /* 1526 * Normally, partial opens (e.g. of a mirror) are allowed. 1527 * For a create, however, we want to fail the request if 1528 * there are any components we can't open. 1529 */ 1530 error = vdev_open(vd); 1531 1532 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1533 vdev_close(vd); 1534 return (error ? error : ENXIO); 1535 } 1536 1537 /* 1538 * Recursively load DTLs and initialize all labels. 1539 */ 1540 if ((error = vdev_dtl_load(vd)) != 0 || 1541 (error = vdev_label_init(vd, txg, isreplacing ? 1542 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1543 vdev_close(vd); 1544 return (error); 1545 } 1546 1547 return (0); 1548 } 1549 1550 void 1551 vdev_metaslab_set_size(vdev_t *vd) 1552 { 1553 /* 1554 * Aim for roughly 200 metaslabs per vdev. 1555 */ 1556 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200); 1557 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1558 } 1559 1560 void 1561 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1562 { 1563 ASSERT(vd == vd->vdev_top); 1564 ASSERT(!vd->vdev_ishole); 1565 ASSERT(ISP2(flags)); 1566 ASSERT(spa_writeable(vd->vdev_spa)); 1567 1568 if (flags & VDD_METASLAB) 1569 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1570 1571 if (flags & VDD_DTL) 1572 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1573 1574 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1575 } 1576 1577 void 1578 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1579 { 1580 for (int c = 0; c < vd->vdev_children; c++) 1581 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1582 1583 if (vd->vdev_ops->vdev_op_leaf) 1584 vdev_dirty(vd->vdev_top, flags, vd, txg); 1585 } 1586 1587 /* 1588 * DTLs. 1589 * 1590 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1591 * the vdev has less than perfect replication. There are four kinds of DTL: 1592 * 1593 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1594 * 1595 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1596 * 1597 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1598 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1599 * txgs that was scrubbed. 1600 * 1601 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1602 * persistent errors or just some device being offline. 1603 * Unlike the other three, the DTL_OUTAGE map is not generally 1604 * maintained; it's only computed when needed, typically to 1605 * determine whether a device can be detached. 1606 * 1607 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1608 * either has the data or it doesn't. 1609 * 1610 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1611 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1612 * if any child is less than fully replicated, then so is its parent. 1613 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1614 * comprising only those txgs which appear in 'maxfaults' or more children; 1615 * those are the txgs we don't have enough replication to read. For example, 1616 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1617 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1618 * two child DTL_MISSING maps. 1619 * 1620 * It should be clear from the above that to compute the DTLs and outage maps 1621 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1622 * Therefore, that is all we keep on disk. When loading the pool, or after 1623 * a configuration change, we generate all other DTLs from first principles. 1624 */ 1625 void 1626 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1627 { 1628 range_tree_t *rt = vd->vdev_dtl[t]; 1629 1630 ASSERT(t < DTL_TYPES); 1631 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1632 ASSERT(spa_writeable(vd->vdev_spa)); 1633 1634 mutex_enter(rt->rt_lock); 1635 if (!range_tree_contains(rt, txg, size)) 1636 range_tree_add(rt, txg, size); 1637 mutex_exit(rt->rt_lock); 1638 } 1639 1640 boolean_t 1641 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1642 { 1643 range_tree_t *rt = vd->vdev_dtl[t]; 1644 boolean_t dirty = B_FALSE; 1645 1646 ASSERT(t < DTL_TYPES); 1647 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1648 1649 mutex_enter(rt->rt_lock); 1650 if (range_tree_space(rt) != 0) 1651 dirty = range_tree_contains(rt, txg, size); 1652 mutex_exit(rt->rt_lock); 1653 1654 return (dirty); 1655 } 1656 1657 boolean_t 1658 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1659 { 1660 range_tree_t *rt = vd->vdev_dtl[t]; 1661 boolean_t empty; 1662 1663 mutex_enter(rt->rt_lock); 1664 empty = (range_tree_space(rt) == 0); 1665 mutex_exit(rt->rt_lock); 1666 1667 return (empty); 1668 } 1669 1670 /* 1671 * Returns the lowest txg in the DTL range. 1672 */ 1673 static uint64_t 1674 vdev_dtl_min(vdev_t *vd) 1675 { 1676 range_seg_t *rs; 1677 1678 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1679 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1680 ASSERT0(vd->vdev_children); 1681 1682 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1683 return (rs->rs_start - 1); 1684 } 1685 1686 /* 1687 * Returns the highest txg in the DTL. 1688 */ 1689 static uint64_t 1690 vdev_dtl_max(vdev_t *vd) 1691 { 1692 range_seg_t *rs; 1693 1694 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1695 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1696 ASSERT0(vd->vdev_children); 1697 1698 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1699 return (rs->rs_end); 1700 } 1701 1702 /* 1703 * Determine if a resilvering vdev should remove any DTL entries from 1704 * its range. If the vdev was resilvering for the entire duration of the 1705 * scan then it should excise that range from its DTLs. Otherwise, this 1706 * vdev is considered partially resilvered and should leave its DTL 1707 * entries intact. The comment in vdev_dtl_reassess() describes how we 1708 * excise the DTLs. 1709 */ 1710 static boolean_t 1711 vdev_dtl_should_excise(vdev_t *vd) 1712 { 1713 spa_t *spa = vd->vdev_spa; 1714 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1715 1716 ASSERT0(scn->scn_phys.scn_errors); 1717 ASSERT0(vd->vdev_children); 1718 1719 if (vd->vdev_resilver_txg == 0 || 1720 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1721 return (B_TRUE); 1722 1723 /* 1724 * When a resilver is initiated the scan will assign the scn_max_txg 1725 * value to the highest txg value that exists in all DTLs. If this 1726 * device's max DTL is not part of this scan (i.e. it is not in 1727 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1728 * for excision. 1729 */ 1730 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1731 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1732 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1733 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1734 return (B_TRUE); 1735 } 1736 return (B_FALSE); 1737 } 1738 1739 /* 1740 * Reassess DTLs after a config change or scrub completion. 1741 */ 1742 void 1743 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1744 { 1745 spa_t *spa = vd->vdev_spa; 1746 avl_tree_t reftree; 1747 int minref; 1748 1749 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1750 1751 for (int c = 0; c < vd->vdev_children; c++) 1752 vdev_dtl_reassess(vd->vdev_child[c], txg, 1753 scrub_txg, scrub_done); 1754 1755 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1756 return; 1757 1758 if (vd->vdev_ops->vdev_op_leaf) { 1759 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1760 1761 mutex_enter(&vd->vdev_dtl_lock); 1762 1763 /* 1764 * If we've completed a scan cleanly then determine 1765 * if this vdev should remove any DTLs. We only want to 1766 * excise regions on vdevs that were available during 1767 * the entire duration of this scan. 1768 */ 1769 if (scrub_txg != 0 && 1770 (spa->spa_scrub_started || 1771 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1772 vdev_dtl_should_excise(vd)) { 1773 /* 1774 * We completed a scrub up to scrub_txg. If we 1775 * did it without rebooting, then the scrub dtl 1776 * will be valid, so excise the old region and 1777 * fold in the scrub dtl. Otherwise, leave the 1778 * dtl as-is if there was an error. 1779 * 1780 * There's little trick here: to excise the beginning 1781 * of the DTL_MISSING map, we put it into a reference 1782 * tree and then add a segment with refcnt -1 that 1783 * covers the range [0, scrub_txg). This means 1784 * that each txg in that range has refcnt -1 or 0. 1785 * We then add DTL_SCRUB with a refcnt of 2, so that 1786 * entries in the range [0, scrub_txg) will have a 1787 * positive refcnt -- either 1 or 2. We then convert 1788 * the reference tree into the new DTL_MISSING map. 1789 */ 1790 space_reftree_create(&reftree); 1791 space_reftree_add_map(&reftree, 1792 vd->vdev_dtl[DTL_MISSING], 1); 1793 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1794 space_reftree_add_map(&reftree, 1795 vd->vdev_dtl[DTL_SCRUB], 2); 1796 space_reftree_generate_map(&reftree, 1797 vd->vdev_dtl[DTL_MISSING], 1); 1798 space_reftree_destroy(&reftree); 1799 } 1800 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1801 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1802 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1803 if (scrub_done) 1804 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1805 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1806 if (!vdev_readable(vd)) 1807 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1808 else 1809 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1810 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1811 1812 /* 1813 * If the vdev was resilvering and no longer has any 1814 * DTLs then reset its resilvering flag. 1815 */ 1816 if (vd->vdev_resilver_txg != 0 && 1817 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1818 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1819 vd->vdev_resilver_txg = 0; 1820 1821 mutex_exit(&vd->vdev_dtl_lock); 1822 1823 if (txg != 0) 1824 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1825 return; 1826 } 1827 1828 mutex_enter(&vd->vdev_dtl_lock); 1829 for (int t = 0; t < DTL_TYPES; t++) { 1830 /* account for child's outage in parent's missing map */ 1831 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1832 if (t == DTL_SCRUB) 1833 continue; /* leaf vdevs only */ 1834 if (t == DTL_PARTIAL) 1835 minref = 1; /* i.e. non-zero */ 1836 else if (vd->vdev_nparity != 0) 1837 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1838 else 1839 minref = vd->vdev_children; /* any kind of mirror */ 1840 space_reftree_create(&reftree); 1841 for (int c = 0; c < vd->vdev_children; c++) { 1842 vdev_t *cvd = vd->vdev_child[c]; 1843 mutex_enter(&cvd->vdev_dtl_lock); 1844 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1845 mutex_exit(&cvd->vdev_dtl_lock); 1846 } 1847 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1848 space_reftree_destroy(&reftree); 1849 } 1850 mutex_exit(&vd->vdev_dtl_lock); 1851 } 1852 1853 int 1854 vdev_dtl_load(vdev_t *vd) 1855 { 1856 spa_t *spa = vd->vdev_spa; 1857 objset_t *mos = spa->spa_meta_objset; 1858 int error = 0; 1859 1860 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1861 ASSERT(!vd->vdev_ishole); 1862 1863 error = space_map_open(&vd->vdev_dtl_sm, mos, 1864 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1865 if (error) 1866 return (error); 1867 ASSERT(vd->vdev_dtl_sm != NULL); 1868 1869 mutex_enter(&vd->vdev_dtl_lock); 1870 1871 /* 1872 * Now that we've opened the space_map we need to update 1873 * the in-core DTL. 1874 */ 1875 space_map_update(vd->vdev_dtl_sm); 1876 1877 error = space_map_load(vd->vdev_dtl_sm, 1878 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1879 mutex_exit(&vd->vdev_dtl_lock); 1880 1881 return (error); 1882 } 1883 1884 for (int c = 0; c < vd->vdev_children; c++) { 1885 error = vdev_dtl_load(vd->vdev_child[c]); 1886 if (error != 0) 1887 break; 1888 } 1889 1890 return (error); 1891 } 1892 1893 void 1894 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1895 { 1896 spa_t *spa = vd->vdev_spa; 1897 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1898 objset_t *mos = spa->spa_meta_objset; 1899 range_tree_t *rtsync; 1900 kmutex_t rtlock; 1901 dmu_tx_t *tx; 1902 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1903 1904 ASSERT(!vd->vdev_ishole); 1905 ASSERT(vd->vdev_ops->vdev_op_leaf); 1906 1907 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1908 1909 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1910 mutex_enter(&vd->vdev_dtl_lock); 1911 space_map_free(vd->vdev_dtl_sm, tx); 1912 space_map_close(vd->vdev_dtl_sm); 1913 vd->vdev_dtl_sm = NULL; 1914 mutex_exit(&vd->vdev_dtl_lock); 1915 dmu_tx_commit(tx); 1916 return; 1917 } 1918 1919 if (vd->vdev_dtl_sm == NULL) { 1920 uint64_t new_object; 1921 1922 new_object = space_map_alloc(mos, tx); 1923 VERIFY3U(new_object, !=, 0); 1924 1925 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1926 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1927 ASSERT(vd->vdev_dtl_sm != NULL); 1928 } 1929 1930 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1931 1932 rtsync = range_tree_create(NULL, NULL, &rtlock); 1933 1934 mutex_enter(&rtlock); 1935 1936 mutex_enter(&vd->vdev_dtl_lock); 1937 range_tree_walk(rt, range_tree_add, rtsync); 1938 mutex_exit(&vd->vdev_dtl_lock); 1939 1940 space_map_truncate(vd->vdev_dtl_sm, tx); 1941 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1942 range_tree_vacate(rtsync, NULL, NULL); 1943 1944 range_tree_destroy(rtsync); 1945 1946 mutex_exit(&rtlock); 1947 mutex_destroy(&rtlock); 1948 1949 /* 1950 * If the object for the space map has changed then dirty 1951 * the top level so that we update the config. 1952 */ 1953 if (object != space_map_object(vd->vdev_dtl_sm)) { 1954 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1955 "new object %llu", txg, spa_name(spa), object, 1956 space_map_object(vd->vdev_dtl_sm)); 1957 vdev_config_dirty(vd->vdev_top); 1958 } 1959 1960 dmu_tx_commit(tx); 1961 1962 mutex_enter(&vd->vdev_dtl_lock); 1963 space_map_update(vd->vdev_dtl_sm); 1964 mutex_exit(&vd->vdev_dtl_lock); 1965 } 1966 1967 /* 1968 * Determine whether the specified vdev can be offlined/detached/removed 1969 * without losing data. 1970 */ 1971 boolean_t 1972 vdev_dtl_required(vdev_t *vd) 1973 { 1974 spa_t *spa = vd->vdev_spa; 1975 vdev_t *tvd = vd->vdev_top; 1976 uint8_t cant_read = vd->vdev_cant_read; 1977 boolean_t required; 1978 1979 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1980 1981 if (vd == spa->spa_root_vdev || vd == tvd) 1982 return (B_TRUE); 1983 1984 /* 1985 * Temporarily mark the device as unreadable, and then determine 1986 * whether this results in any DTL outages in the top-level vdev. 1987 * If not, we can safely offline/detach/remove the device. 1988 */ 1989 vd->vdev_cant_read = B_TRUE; 1990 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1991 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1992 vd->vdev_cant_read = cant_read; 1993 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1994 1995 if (!required && zio_injection_enabled) 1996 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 1997 1998 return (required); 1999 } 2000 2001 /* 2002 * Determine if resilver is needed, and if so the txg range. 2003 */ 2004 boolean_t 2005 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2006 { 2007 boolean_t needed = B_FALSE; 2008 uint64_t thismin = UINT64_MAX; 2009 uint64_t thismax = 0; 2010 2011 if (vd->vdev_children == 0) { 2012 mutex_enter(&vd->vdev_dtl_lock); 2013 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2014 vdev_writeable(vd)) { 2015 2016 thismin = vdev_dtl_min(vd); 2017 thismax = vdev_dtl_max(vd); 2018 needed = B_TRUE; 2019 } 2020 mutex_exit(&vd->vdev_dtl_lock); 2021 } else { 2022 for (int c = 0; c < vd->vdev_children; c++) { 2023 vdev_t *cvd = vd->vdev_child[c]; 2024 uint64_t cmin, cmax; 2025 2026 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2027 thismin = MIN(thismin, cmin); 2028 thismax = MAX(thismax, cmax); 2029 needed = B_TRUE; 2030 } 2031 } 2032 } 2033 2034 if (needed && minp) { 2035 *minp = thismin; 2036 *maxp = thismax; 2037 } 2038 return (needed); 2039 } 2040 2041 void 2042 vdev_load(vdev_t *vd) 2043 { 2044 /* 2045 * Recursively load all children. 2046 */ 2047 for (int c = 0; c < vd->vdev_children; c++) 2048 vdev_load(vd->vdev_child[c]); 2049 2050 /* 2051 * If this is a top-level vdev, initialize its metaslabs. 2052 */ 2053 if (vd == vd->vdev_top && !vd->vdev_ishole && 2054 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2055 vdev_metaslab_init(vd, 0) != 0)) 2056 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2057 VDEV_AUX_CORRUPT_DATA); 2058 2059 /* 2060 * If this is a leaf vdev, load its DTL. 2061 */ 2062 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2063 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2064 VDEV_AUX_CORRUPT_DATA); 2065 } 2066 2067 /* 2068 * The special vdev case is used for hot spares and l2cache devices. Its 2069 * sole purpose it to set the vdev state for the associated vdev. To do this, 2070 * we make sure that we can open the underlying device, then try to read the 2071 * label, and make sure that the label is sane and that it hasn't been 2072 * repurposed to another pool. 2073 */ 2074 int 2075 vdev_validate_aux(vdev_t *vd) 2076 { 2077 nvlist_t *label; 2078 uint64_t guid, version; 2079 uint64_t state; 2080 2081 if (!vdev_readable(vd)) 2082 return (0); 2083 2084 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2085 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2086 VDEV_AUX_CORRUPT_DATA); 2087 return (-1); 2088 } 2089 2090 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2091 !SPA_VERSION_IS_SUPPORTED(version) || 2092 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2093 guid != vd->vdev_guid || 2094 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2095 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2096 VDEV_AUX_CORRUPT_DATA); 2097 nvlist_free(label); 2098 return (-1); 2099 } 2100 2101 /* 2102 * We don't actually check the pool state here. If it's in fact in 2103 * use by another pool, we update this fact on the fly when requested. 2104 */ 2105 nvlist_free(label); 2106 return (0); 2107 } 2108 2109 void 2110 vdev_remove(vdev_t *vd, uint64_t txg) 2111 { 2112 spa_t *spa = vd->vdev_spa; 2113 objset_t *mos = spa->spa_meta_objset; 2114 dmu_tx_t *tx; 2115 2116 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2117 2118 if (vd->vdev_ms != NULL) { 2119 for (int m = 0; m < vd->vdev_ms_count; m++) { 2120 metaslab_t *msp = vd->vdev_ms[m]; 2121 2122 if (msp == NULL || msp->ms_sm == NULL) 2123 continue; 2124 2125 mutex_enter(&msp->ms_lock); 2126 VERIFY0(space_map_allocated(msp->ms_sm)); 2127 space_map_free(msp->ms_sm, tx); 2128 space_map_close(msp->ms_sm); 2129 msp->ms_sm = NULL; 2130 mutex_exit(&msp->ms_lock); 2131 } 2132 } 2133 2134 if (vd->vdev_ms_array) { 2135 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2136 vd->vdev_ms_array = 0; 2137 } 2138 dmu_tx_commit(tx); 2139 } 2140 2141 void 2142 vdev_sync_done(vdev_t *vd, uint64_t txg) 2143 { 2144 metaslab_t *msp; 2145 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2146 2147 ASSERT(!vd->vdev_ishole); 2148 2149 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2150 metaslab_sync_done(msp, txg); 2151 2152 if (reassess) 2153 metaslab_sync_reassess(vd->vdev_mg); 2154 } 2155 2156 void 2157 vdev_sync(vdev_t *vd, uint64_t txg) 2158 { 2159 spa_t *spa = vd->vdev_spa; 2160 vdev_t *lvd; 2161 metaslab_t *msp; 2162 dmu_tx_t *tx; 2163 2164 ASSERT(!vd->vdev_ishole); 2165 2166 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2167 ASSERT(vd == vd->vdev_top); 2168 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2169 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2170 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2171 ASSERT(vd->vdev_ms_array != 0); 2172 vdev_config_dirty(vd); 2173 dmu_tx_commit(tx); 2174 } 2175 2176 /* 2177 * Remove the metadata associated with this vdev once it's empty. 2178 */ 2179 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2180 vdev_remove(vd, txg); 2181 2182 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2183 metaslab_sync(msp, txg); 2184 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2185 } 2186 2187 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2188 vdev_dtl_sync(lvd, txg); 2189 2190 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2191 } 2192 2193 uint64_t 2194 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2195 { 2196 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2197 } 2198 2199 /* 2200 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2201 * not be opened, and no I/O is attempted. 2202 */ 2203 int 2204 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2205 { 2206 vdev_t *vd, *tvd; 2207 2208 spa_vdev_state_enter(spa, SCL_NONE); 2209 2210 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2211 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2212 2213 if (!vd->vdev_ops->vdev_op_leaf) 2214 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2215 2216 tvd = vd->vdev_top; 2217 2218 /* 2219 * We don't directly use the aux state here, but if we do a 2220 * vdev_reopen(), we need this value to be present to remember why we 2221 * were faulted. 2222 */ 2223 vd->vdev_label_aux = aux; 2224 2225 /* 2226 * Faulted state takes precedence over degraded. 2227 */ 2228 vd->vdev_delayed_close = B_FALSE; 2229 vd->vdev_faulted = 1ULL; 2230 vd->vdev_degraded = 0ULL; 2231 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2232 2233 /* 2234 * If this device has the only valid copy of the data, then 2235 * back off and simply mark the vdev as degraded instead. 2236 */ 2237 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2238 vd->vdev_degraded = 1ULL; 2239 vd->vdev_faulted = 0ULL; 2240 2241 /* 2242 * If we reopen the device and it's not dead, only then do we 2243 * mark it degraded. 2244 */ 2245 vdev_reopen(tvd); 2246 2247 if (vdev_readable(vd)) 2248 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2249 } 2250 2251 return (spa_vdev_state_exit(spa, vd, 0)); 2252 } 2253 2254 /* 2255 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2256 * user that something is wrong. The vdev continues to operate as normal as far 2257 * as I/O is concerned. 2258 */ 2259 int 2260 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2261 { 2262 vdev_t *vd; 2263 2264 spa_vdev_state_enter(spa, SCL_NONE); 2265 2266 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2267 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2268 2269 if (!vd->vdev_ops->vdev_op_leaf) 2270 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2271 2272 /* 2273 * If the vdev is already faulted, then don't do anything. 2274 */ 2275 if (vd->vdev_faulted || vd->vdev_degraded) 2276 return (spa_vdev_state_exit(spa, NULL, 0)); 2277 2278 vd->vdev_degraded = 1ULL; 2279 if (!vdev_is_dead(vd)) 2280 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2281 aux); 2282 2283 return (spa_vdev_state_exit(spa, vd, 0)); 2284 } 2285 2286 /* 2287 * Online the given vdev. 2288 * 2289 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2290 * spare device should be detached when the device finishes resilvering. 2291 * Second, the online should be treated like a 'test' online case, so no FMA 2292 * events are generated if the device fails to open. 2293 */ 2294 int 2295 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2296 { 2297 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2298 2299 spa_vdev_state_enter(spa, SCL_NONE); 2300 2301 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2302 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2303 2304 if (!vd->vdev_ops->vdev_op_leaf) 2305 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2306 2307 tvd = vd->vdev_top; 2308 vd->vdev_offline = B_FALSE; 2309 vd->vdev_tmpoffline = B_FALSE; 2310 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2311 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2312 2313 /* XXX - L2ARC 1.0 does not support expansion */ 2314 if (!vd->vdev_aux) { 2315 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2316 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2317 } 2318 2319 vdev_reopen(tvd); 2320 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2321 2322 if (!vd->vdev_aux) { 2323 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2324 pvd->vdev_expanding = B_FALSE; 2325 } 2326 2327 if (newstate) 2328 *newstate = vd->vdev_state; 2329 if ((flags & ZFS_ONLINE_UNSPARE) && 2330 !vdev_is_dead(vd) && vd->vdev_parent && 2331 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2332 vd->vdev_parent->vdev_child[0] == vd) 2333 vd->vdev_unspare = B_TRUE; 2334 2335 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2336 2337 /* XXX - L2ARC 1.0 does not support expansion */ 2338 if (vd->vdev_aux) 2339 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2340 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2341 } 2342 return (spa_vdev_state_exit(spa, vd, 0)); 2343 } 2344 2345 static int 2346 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2347 { 2348 vdev_t *vd, *tvd; 2349 int error = 0; 2350 uint64_t generation; 2351 metaslab_group_t *mg; 2352 2353 top: 2354 spa_vdev_state_enter(spa, SCL_ALLOC); 2355 2356 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2357 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2358 2359 if (!vd->vdev_ops->vdev_op_leaf) 2360 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2361 2362 tvd = vd->vdev_top; 2363 mg = tvd->vdev_mg; 2364 generation = spa->spa_config_generation + 1; 2365 2366 /* 2367 * If the device isn't already offline, try to offline it. 2368 */ 2369 if (!vd->vdev_offline) { 2370 /* 2371 * If this device has the only valid copy of some data, 2372 * don't allow it to be offlined. Log devices are always 2373 * expendable. 2374 */ 2375 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2376 vdev_dtl_required(vd)) 2377 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2378 2379 /* 2380 * If the top-level is a slog and it has had allocations 2381 * then proceed. We check that the vdev's metaslab group 2382 * is not NULL since it's possible that we may have just 2383 * added this vdev but not yet initialized its metaslabs. 2384 */ 2385 if (tvd->vdev_islog && mg != NULL) { 2386 /* 2387 * Prevent any future allocations. 2388 */ 2389 metaslab_group_passivate(mg); 2390 (void) spa_vdev_state_exit(spa, vd, 0); 2391 2392 error = spa_offline_log(spa); 2393 2394 spa_vdev_state_enter(spa, SCL_ALLOC); 2395 2396 /* 2397 * Check to see if the config has changed. 2398 */ 2399 if (error || generation != spa->spa_config_generation) { 2400 metaslab_group_activate(mg); 2401 if (error) 2402 return (spa_vdev_state_exit(spa, 2403 vd, error)); 2404 (void) spa_vdev_state_exit(spa, vd, 0); 2405 goto top; 2406 } 2407 ASSERT0(tvd->vdev_stat.vs_alloc); 2408 } 2409 2410 /* 2411 * Offline this device and reopen its top-level vdev. 2412 * If the top-level vdev is a log device then just offline 2413 * it. Otherwise, if this action results in the top-level 2414 * vdev becoming unusable, undo it and fail the request. 2415 */ 2416 vd->vdev_offline = B_TRUE; 2417 vdev_reopen(tvd); 2418 2419 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2420 vdev_is_dead(tvd)) { 2421 vd->vdev_offline = B_FALSE; 2422 vdev_reopen(tvd); 2423 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2424 } 2425 2426 /* 2427 * Add the device back into the metaslab rotor so that 2428 * once we online the device it's open for business. 2429 */ 2430 if (tvd->vdev_islog && mg != NULL) 2431 metaslab_group_activate(mg); 2432 } 2433 2434 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2435 2436 return (spa_vdev_state_exit(spa, vd, 0)); 2437 } 2438 2439 int 2440 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2441 { 2442 int error; 2443 2444 mutex_enter(&spa->spa_vdev_top_lock); 2445 error = vdev_offline_locked(spa, guid, flags); 2446 mutex_exit(&spa->spa_vdev_top_lock); 2447 2448 return (error); 2449 } 2450 2451 /* 2452 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2453 * vdev_offline(), we assume the spa config is locked. We also clear all 2454 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2455 */ 2456 void 2457 vdev_clear(spa_t *spa, vdev_t *vd) 2458 { 2459 vdev_t *rvd = spa->spa_root_vdev; 2460 2461 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2462 2463 if (vd == NULL) 2464 vd = rvd; 2465 2466 vd->vdev_stat.vs_read_errors = 0; 2467 vd->vdev_stat.vs_write_errors = 0; 2468 vd->vdev_stat.vs_checksum_errors = 0; 2469 2470 for (int c = 0; c < vd->vdev_children; c++) 2471 vdev_clear(spa, vd->vdev_child[c]); 2472 2473 /* 2474 * If we're in the FAULTED state or have experienced failed I/O, then 2475 * clear the persistent state and attempt to reopen the device. We 2476 * also mark the vdev config dirty, so that the new faulted state is 2477 * written out to disk. 2478 */ 2479 if (vd->vdev_faulted || vd->vdev_degraded || 2480 !vdev_readable(vd) || !vdev_writeable(vd)) { 2481 2482 /* 2483 * When reopening in reponse to a clear event, it may be due to 2484 * a fmadm repair request. In this case, if the device is 2485 * still broken, we want to still post the ereport again. 2486 */ 2487 vd->vdev_forcefault = B_TRUE; 2488 2489 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2490 vd->vdev_cant_read = B_FALSE; 2491 vd->vdev_cant_write = B_FALSE; 2492 2493 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2494 2495 vd->vdev_forcefault = B_FALSE; 2496 2497 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2498 vdev_state_dirty(vd->vdev_top); 2499 2500 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2501 spa_async_request(spa, SPA_ASYNC_RESILVER); 2502 2503 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2504 } 2505 2506 /* 2507 * When clearing a FMA-diagnosed fault, we always want to 2508 * unspare the device, as we assume that the original spare was 2509 * done in response to the FMA fault. 2510 */ 2511 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2512 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2513 vd->vdev_parent->vdev_child[0] == vd) 2514 vd->vdev_unspare = B_TRUE; 2515 } 2516 2517 boolean_t 2518 vdev_is_dead(vdev_t *vd) 2519 { 2520 /* 2521 * Holes and missing devices are always considered "dead". 2522 * This simplifies the code since we don't have to check for 2523 * these types of devices in the various code paths. 2524 * Instead we rely on the fact that we skip over dead devices 2525 * before issuing I/O to them. 2526 */ 2527 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2528 vd->vdev_ops == &vdev_missing_ops); 2529 } 2530 2531 boolean_t 2532 vdev_readable(vdev_t *vd) 2533 { 2534 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2535 } 2536 2537 boolean_t 2538 vdev_writeable(vdev_t *vd) 2539 { 2540 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2541 } 2542 2543 boolean_t 2544 vdev_allocatable(vdev_t *vd) 2545 { 2546 uint64_t state = vd->vdev_state; 2547 2548 /* 2549 * We currently allow allocations from vdevs which may be in the 2550 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2551 * fails to reopen then we'll catch it later when we're holding 2552 * the proper locks. Note that we have to get the vdev state 2553 * in a local variable because although it changes atomically, 2554 * we're asking two separate questions about it. 2555 */ 2556 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2557 !vd->vdev_cant_write && !vd->vdev_ishole); 2558 } 2559 2560 boolean_t 2561 vdev_accessible(vdev_t *vd, zio_t *zio) 2562 { 2563 ASSERT(zio->io_vd == vd); 2564 2565 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2566 return (B_FALSE); 2567 2568 if (zio->io_type == ZIO_TYPE_READ) 2569 return (!vd->vdev_cant_read); 2570 2571 if (zio->io_type == ZIO_TYPE_WRITE) 2572 return (!vd->vdev_cant_write); 2573 2574 return (B_TRUE); 2575 } 2576 2577 /* 2578 * Get statistics for the given vdev. 2579 */ 2580 void 2581 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2582 { 2583 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2584 2585 mutex_enter(&vd->vdev_stat_lock); 2586 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2587 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2588 vs->vs_state = vd->vdev_state; 2589 vs->vs_rsize = vdev_get_min_asize(vd); 2590 if (vd->vdev_ops->vdev_op_leaf) 2591 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2592 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2593 mutex_exit(&vd->vdev_stat_lock); 2594 2595 /* 2596 * If we're getting stats on the root vdev, aggregate the I/O counts 2597 * over all top-level vdevs (i.e. the direct children of the root). 2598 */ 2599 if (vd == rvd) { 2600 for (int c = 0; c < rvd->vdev_children; c++) { 2601 vdev_t *cvd = rvd->vdev_child[c]; 2602 vdev_stat_t *cvs = &cvd->vdev_stat; 2603 2604 mutex_enter(&vd->vdev_stat_lock); 2605 for (int t = 0; t < ZIO_TYPES; t++) { 2606 vs->vs_ops[t] += cvs->vs_ops[t]; 2607 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2608 } 2609 cvs->vs_scan_removing = cvd->vdev_removing; 2610 mutex_exit(&vd->vdev_stat_lock); 2611 } 2612 } 2613 } 2614 2615 void 2616 vdev_clear_stats(vdev_t *vd) 2617 { 2618 mutex_enter(&vd->vdev_stat_lock); 2619 vd->vdev_stat.vs_space = 0; 2620 vd->vdev_stat.vs_dspace = 0; 2621 vd->vdev_stat.vs_alloc = 0; 2622 mutex_exit(&vd->vdev_stat_lock); 2623 } 2624 2625 void 2626 vdev_scan_stat_init(vdev_t *vd) 2627 { 2628 vdev_stat_t *vs = &vd->vdev_stat; 2629 2630 for (int c = 0; c < vd->vdev_children; c++) 2631 vdev_scan_stat_init(vd->vdev_child[c]); 2632 2633 mutex_enter(&vd->vdev_stat_lock); 2634 vs->vs_scan_processed = 0; 2635 mutex_exit(&vd->vdev_stat_lock); 2636 } 2637 2638 void 2639 vdev_stat_update(zio_t *zio, uint64_t psize) 2640 { 2641 spa_t *spa = zio->io_spa; 2642 vdev_t *rvd = spa->spa_root_vdev; 2643 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2644 vdev_t *pvd; 2645 uint64_t txg = zio->io_txg; 2646 vdev_stat_t *vs = &vd->vdev_stat; 2647 zio_type_t type = zio->io_type; 2648 int flags = zio->io_flags; 2649 2650 /* 2651 * If this i/o is a gang leader, it didn't do any actual work. 2652 */ 2653 if (zio->io_gang_tree) 2654 return; 2655 2656 if (zio->io_error == 0) { 2657 /* 2658 * If this is a root i/o, don't count it -- we've already 2659 * counted the top-level vdevs, and vdev_get_stats() will 2660 * aggregate them when asked. This reduces contention on 2661 * the root vdev_stat_lock and implicitly handles blocks 2662 * that compress away to holes, for which there is no i/o. 2663 * (Holes never create vdev children, so all the counters 2664 * remain zero, which is what we want.) 2665 * 2666 * Note: this only applies to successful i/o (io_error == 0) 2667 * because unlike i/o counts, errors are not additive. 2668 * When reading a ditto block, for example, failure of 2669 * one top-level vdev does not imply a root-level error. 2670 */ 2671 if (vd == rvd) 2672 return; 2673 2674 ASSERT(vd == zio->io_vd); 2675 2676 if (flags & ZIO_FLAG_IO_BYPASS) 2677 return; 2678 2679 mutex_enter(&vd->vdev_stat_lock); 2680 2681 if (flags & ZIO_FLAG_IO_REPAIR) { 2682 if (flags & ZIO_FLAG_SCAN_THREAD) { 2683 dsl_scan_phys_t *scn_phys = 2684 &spa->spa_dsl_pool->dp_scan->scn_phys; 2685 uint64_t *processed = &scn_phys->scn_processed; 2686 2687 /* XXX cleanup? */ 2688 if (vd->vdev_ops->vdev_op_leaf) 2689 atomic_add_64(processed, psize); 2690 vs->vs_scan_processed += psize; 2691 } 2692 2693 if (flags & ZIO_FLAG_SELF_HEAL) 2694 vs->vs_self_healed += psize; 2695 } 2696 2697 vs->vs_ops[type]++; 2698 vs->vs_bytes[type] += psize; 2699 2700 mutex_exit(&vd->vdev_stat_lock); 2701 return; 2702 } 2703 2704 if (flags & ZIO_FLAG_SPECULATIVE) 2705 return; 2706 2707 /* 2708 * If this is an I/O error that is going to be retried, then ignore the 2709 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2710 * hard errors, when in reality they can happen for any number of 2711 * innocuous reasons (bus resets, MPxIO link failure, etc). 2712 */ 2713 if (zio->io_error == EIO && 2714 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2715 return; 2716 2717 /* 2718 * Intent logs writes won't propagate their error to the root 2719 * I/O so don't mark these types of failures as pool-level 2720 * errors. 2721 */ 2722 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2723 return; 2724 2725 mutex_enter(&vd->vdev_stat_lock); 2726 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2727 if (zio->io_error == ECKSUM) 2728 vs->vs_checksum_errors++; 2729 else 2730 vs->vs_read_errors++; 2731 } 2732 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2733 vs->vs_write_errors++; 2734 mutex_exit(&vd->vdev_stat_lock); 2735 2736 if (type == ZIO_TYPE_WRITE && txg != 0 && 2737 (!(flags & ZIO_FLAG_IO_REPAIR) || 2738 (flags & ZIO_FLAG_SCAN_THREAD) || 2739 spa->spa_claiming)) { 2740 /* 2741 * This is either a normal write (not a repair), or it's 2742 * a repair induced by the scrub thread, or it's a repair 2743 * made by zil_claim() during spa_load() in the first txg. 2744 * In the normal case, we commit the DTL change in the same 2745 * txg as the block was born. In the scrub-induced repair 2746 * case, we know that scrubs run in first-pass syncing context, 2747 * so we commit the DTL change in spa_syncing_txg(spa). 2748 * In the zil_claim() case, we commit in spa_first_txg(spa). 2749 * 2750 * We currently do not make DTL entries for failed spontaneous 2751 * self-healing writes triggered by normal (non-scrubbing) 2752 * reads, because we have no transactional context in which to 2753 * do so -- and it's not clear that it'd be desirable anyway. 2754 */ 2755 if (vd->vdev_ops->vdev_op_leaf) { 2756 uint64_t commit_txg = txg; 2757 if (flags & ZIO_FLAG_SCAN_THREAD) { 2758 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2759 ASSERT(spa_sync_pass(spa) == 1); 2760 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2761 commit_txg = spa_syncing_txg(spa); 2762 } else if (spa->spa_claiming) { 2763 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2764 commit_txg = spa_first_txg(spa); 2765 } 2766 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2767 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2768 return; 2769 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2770 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2771 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2772 } 2773 if (vd != rvd) 2774 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2775 } 2776 } 2777 2778 /* 2779 * Update the in-core space usage stats for this vdev, its metaslab class, 2780 * and the root vdev. 2781 */ 2782 void 2783 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2784 int64_t space_delta) 2785 { 2786 int64_t dspace_delta = space_delta; 2787 spa_t *spa = vd->vdev_spa; 2788 vdev_t *rvd = spa->spa_root_vdev; 2789 metaslab_group_t *mg = vd->vdev_mg; 2790 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2791 2792 ASSERT(vd == vd->vdev_top); 2793 2794 /* 2795 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2796 * factor. We must calculate this here and not at the root vdev 2797 * because the root vdev's psize-to-asize is simply the max of its 2798 * childrens', thus not accurate enough for us. 2799 */ 2800 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2801 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2802 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2803 vd->vdev_deflate_ratio; 2804 2805 mutex_enter(&vd->vdev_stat_lock); 2806 vd->vdev_stat.vs_alloc += alloc_delta; 2807 vd->vdev_stat.vs_space += space_delta; 2808 vd->vdev_stat.vs_dspace += dspace_delta; 2809 mutex_exit(&vd->vdev_stat_lock); 2810 2811 if (mc == spa_normal_class(spa)) { 2812 mutex_enter(&rvd->vdev_stat_lock); 2813 rvd->vdev_stat.vs_alloc += alloc_delta; 2814 rvd->vdev_stat.vs_space += space_delta; 2815 rvd->vdev_stat.vs_dspace += dspace_delta; 2816 mutex_exit(&rvd->vdev_stat_lock); 2817 } 2818 2819 if (mc != NULL) { 2820 ASSERT(rvd == vd->vdev_parent); 2821 ASSERT(vd->vdev_ms_count != 0); 2822 2823 metaslab_class_space_update(mc, 2824 alloc_delta, defer_delta, space_delta, dspace_delta); 2825 } 2826 } 2827 2828 /* 2829 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2830 * so that it will be written out next time the vdev configuration is synced. 2831 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2832 */ 2833 void 2834 vdev_config_dirty(vdev_t *vd) 2835 { 2836 spa_t *spa = vd->vdev_spa; 2837 vdev_t *rvd = spa->spa_root_vdev; 2838 int c; 2839 2840 ASSERT(spa_writeable(spa)); 2841 2842 /* 2843 * If this is an aux vdev (as with l2cache and spare devices), then we 2844 * update the vdev config manually and set the sync flag. 2845 */ 2846 if (vd->vdev_aux != NULL) { 2847 spa_aux_vdev_t *sav = vd->vdev_aux; 2848 nvlist_t **aux; 2849 uint_t naux; 2850 2851 for (c = 0; c < sav->sav_count; c++) { 2852 if (sav->sav_vdevs[c] == vd) 2853 break; 2854 } 2855 2856 if (c == sav->sav_count) { 2857 /* 2858 * We're being removed. There's nothing more to do. 2859 */ 2860 ASSERT(sav->sav_sync == B_TRUE); 2861 return; 2862 } 2863 2864 sav->sav_sync = B_TRUE; 2865 2866 if (nvlist_lookup_nvlist_array(sav->sav_config, 2867 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2868 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2869 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2870 } 2871 2872 ASSERT(c < naux); 2873 2874 /* 2875 * Setting the nvlist in the middle if the array is a little 2876 * sketchy, but it will work. 2877 */ 2878 nvlist_free(aux[c]); 2879 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2880 2881 return; 2882 } 2883 2884 /* 2885 * The dirty list is protected by the SCL_CONFIG lock. The caller 2886 * must either hold SCL_CONFIG as writer, or must be the sync thread 2887 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2888 * so this is sufficient to ensure mutual exclusion. 2889 */ 2890 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2891 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2892 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2893 2894 if (vd == rvd) { 2895 for (c = 0; c < rvd->vdev_children; c++) 2896 vdev_config_dirty(rvd->vdev_child[c]); 2897 } else { 2898 ASSERT(vd == vd->vdev_top); 2899 2900 if (!list_link_active(&vd->vdev_config_dirty_node) && 2901 !vd->vdev_ishole) 2902 list_insert_head(&spa->spa_config_dirty_list, vd); 2903 } 2904 } 2905 2906 void 2907 vdev_config_clean(vdev_t *vd) 2908 { 2909 spa_t *spa = vd->vdev_spa; 2910 2911 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2912 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2913 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2914 2915 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2916 list_remove(&spa->spa_config_dirty_list, vd); 2917 } 2918 2919 /* 2920 * Mark a top-level vdev's state as dirty, so that the next pass of 2921 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2922 * the state changes from larger config changes because they require 2923 * much less locking, and are often needed for administrative actions. 2924 */ 2925 void 2926 vdev_state_dirty(vdev_t *vd) 2927 { 2928 spa_t *spa = vd->vdev_spa; 2929 2930 ASSERT(spa_writeable(spa)); 2931 ASSERT(vd == vd->vdev_top); 2932 2933 /* 2934 * The state list is protected by the SCL_STATE lock. The caller 2935 * must either hold SCL_STATE as writer, or must be the sync thread 2936 * (which holds SCL_STATE as reader). There's only one sync thread, 2937 * so this is sufficient to ensure mutual exclusion. 2938 */ 2939 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2940 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2941 spa_config_held(spa, SCL_STATE, RW_READER))); 2942 2943 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2944 list_insert_head(&spa->spa_state_dirty_list, vd); 2945 } 2946 2947 void 2948 vdev_state_clean(vdev_t *vd) 2949 { 2950 spa_t *spa = vd->vdev_spa; 2951 2952 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2953 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2954 spa_config_held(spa, SCL_STATE, RW_READER))); 2955 2956 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2957 list_remove(&spa->spa_state_dirty_list, vd); 2958 } 2959 2960 /* 2961 * Propagate vdev state up from children to parent. 2962 */ 2963 void 2964 vdev_propagate_state(vdev_t *vd) 2965 { 2966 spa_t *spa = vd->vdev_spa; 2967 vdev_t *rvd = spa->spa_root_vdev; 2968 int degraded = 0, faulted = 0; 2969 int corrupted = 0; 2970 vdev_t *child; 2971 2972 if (vd->vdev_children > 0) { 2973 for (int c = 0; c < vd->vdev_children; c++) { 2974 child = vd->vdev_child[c]; 2975 2976 /* 2977 * Don't factor holes into the decision. 2978 */ 2979 if (child->vdev_ishole) 2980 continue; 2981 2982 if (!vdev_readable(child) || 2983 (!vdev_writeable(child) && spa_writeable(spa))) { 2984 /* 2985 * Root special: if there is a top-level log 2986 * device, treat the root vdev as if it were 2987 * degraded. 2988 */ 2989 if (child->vdev_islog && vd == rvd) 2990 degraded++; 2991 else 2992 faulted++; 2993 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2994 degraded++; 2995 } 2996 2997 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2998 corrupted++; 2999 } 3000 3001 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3002 3003 /* 3004 * Root special: if there is a top-level vdev that cannot be 3005 * opened due to corrupted metadata, then propagate the root 3006 * vdev's aux state as 'corrupt' rather than 'insufficient 3007 * replicas'. 3008 */ 3009 if (corrupted && vd == rvd && 3010 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3011 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3012 VDEV_AUX_CORRUPT_DATA); 3013 } 3014 3015 if (vd->vdev_parent) 3016 vdev_propagate_state(vd->vdev_parent); 3017 } 3018 3019 /* 3020 * Set a vdev's state. If this is during an open, we don't update the parent 3021 * state, because we're in the process of opening children depth-first. 3022 * Otherwise, we propagate the change to the parent. 3023 * 3024 * If this routine places a device in a faulted state, an appropriate ereport is 3025 * generated. 3026 */ 3027 void 3028 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3029 { 3030 uint64_t save_state; 3031 spa_t *spa = vd->vdev_spa; 3032 3033 if (state == vd->vdev_state) { 3034 vd->vdev_stat.vs_aux = aux; 3035 return; 3036 } 3037 3038 save_state = vd->vdev_state; 3039 3040 vd->vdev_state = state; 3041 vd->vdev_stat.vs_aux = aux; 3042 3043 /* 3044 * If we are setting the vdev state to anything but an open state, then 3045 * always close the underlying device unless the device has requested 3046 * a delayed close (i.e. we're about to remove or fault the device). 3047 * Otherwise, we keep accessible but invalid devices open forever. 3048 * We don't call vdev_close() itself, because that implies some extra 3049 * checks (offline, etc) that we don't want here. This is limited to 3050 * leaf devices, because otherwise closing the device will affect other 3051 * children. 3052 */ 3053 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3054 vd->vdev_ops->vdev_op_leaf) 3055 vd->vdev_ops->vdev_op_close(vd); 3056 3057 /* 3058 * If we have brought this vdev back into service, we need 3059 * to notify fmd so that it can gracefully repair any outstanding 3060 * cases due to a missing device. We do this in all cases, even those 3061 * that probably don't correlate to a repaired fault. This is sure to 3062 * catch all cases, and we let the zfs-retire agent sort it out. If 3063 * this is a transient state it's OK, as the retire agent will 3064 * double-check the state of the vdev before repairing it. 3065 */ 3066 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3067 vd->vdev_prevstate != state) 3068 zfs_post_state_change(spa, vd); 3069 3070 if (vd->vdev_removed && 3071 state == VDEV_STATE_CANT_OPEN && 3072 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3073 /* 3074 * If the previous state is set to VDEV_STATE_REMOVED, then this 3075 * device was previously marked removed and someone attempted to 3076 * reopen it. If this failed due to a nonexistent device, then 3077 * keep the device in the REMOVED state. We also let this be if 3078 * it is one of our special test online cases, which is only 3079 * attempting to online the device and shouldn't generate an FMA 3080 * fault. 3081 */ 3082 vd->vdev_state = VDEV_STATE_REMOVED; 3083 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3084 } else if (state == VDEV_STATE_REMOVED) { 3085 vd->vdev_removed = B_TRUE; 3086 } else if (state == VDEV_STATE_CANT_OPEN) { 3087 /* 3088 * If we fail to open a vdev during an import or recovery, we 3089 * mark it as "not available", which signifies that it was 3090 * never there to begin with. Failure to open such a device 3091 * is not considered an error. 3092 */ 3093 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3094 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3095 vd->vdev_ops->vdev_op_leaf) 3096 vd->vdev_not_present = 1; 3097 3098 /* 3099 * Post the appropriate ereport. If the 'prevstate' field is 3100 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3101 * that this is part of a vdev_reopen(). In this case, we don't 3102 * want to post the ereport if the device was already in the 3103 * CANT_OPEN state beforehand. 3104 * 3105 * If the 'checkremove' flag is set, then this is an attempt to 3106 * online the device in response to an insertion event. If we 3107 * hit this case, then we have detected an insertion event for a 3108 * faulted or offline device that wasn't in the removed state. 3109 * In this scenario, we don't post an ereport because we are 3110 * about to replace the device, or attempt an online with 3111 * vdev_forcefault, which will generate the fault for us. 3112 */ 3113 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3114 !vd->vdev_not_present && !vd->vdev_checkremove && 3115 vd != spa->spa_root_vdev) { 3116 const char *class; 3117 3118 switch (aux) { 3119 case VDEV_AUX_OPEN_FAILED: 3120 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3121 break; 3122 case VDEV_AUX_CORRUPT_DATA: 3123 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3124 break; 3125 case VDEV_AUX_NO_REPLICAS: 3126 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3127 break; 3128 case VDEV_AUX_BAD_GUID_SUM: 3129 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3130 break; 3131 case VDEV_AUX_TOO_SMALL: 3132 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3133 break; 3134 case VDEV_AUX_BAD_LABEL: 3135 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3136 break; 3137 default: 3138 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3139 } 3140 3141 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3142 } 3143 3144 /* Erase any notion of persistent removed state */ 3145 vd->vdev_removed = B_FALSE; 3146 } else { 3147 vd->vdev_removed = B_FALSE; 3148 } 3149 3150 if (!isopen && vd->vdev_parent) 3151 vdev_propagate_state(vd->vdev_parent); 3152 } 3153 3154 /* 3155 * Check the vdev configuration to ensure that it's capable of supporting 3156 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3157 * In addition, only a single top-level vdev is allowed and none of the leaves 3158 * can be wholedisks. 3159 */ 3160 boolean_t 3161 vdev_is_bootable(vdev_t *vd) 3162 { 3163 if (!vd->vdev_ops->vdev_op_leaf) { 3164 char *vdev_type = vd->vdev_ops->vdev_op_type; 3165 3166 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3167 vd->vdev_children > 1) { 3168 return (B_FALSE); 3169 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3170 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3171 return (B_FALSE); 3172 } 3173 } else if (vd->vdev_wholedisk == 1) { 3174 return (B_FALSE); 3175 } 3176 3177 for (int c = 0; c < vd->vdev_children; c++) { 3178 if (!vdev_is_bootable(vd->vdev_child[c])) 3179 return (B_FALSE); 3180 } 3181 return (B_TRUE); 3182 } 3183 3184 /* 3185 * Load the state from the original vdev tree (ovd) which 3186 * we've retrieved from the MOS config object. If the original 3187 * vdev was offline or faulted then we transfer that state to the 3188 * device in the current vdev tree (nvd). 3189 */ 3190 void 3191 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3192 { 3193 spa_t *spa = nvd->vdev_spa; 3194 3195 ASSERT(nvd->vdev_top->vdev_islog); 3196 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3197 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3198 3199 for (int c = 0; c < nvd->vdev_children; c++) 3200 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3201 3202 if (nvd->vdev_ops->vdev_op_leaf) { 3203 /* 3204 * Restore the persistent vdev state 3205 */ 3206 nvd->vdev_offline = ovd->vdev_offline; 3207 nvd->vdev_faulted = ovd->vdev_faulted; 3208 nvd->vdev_degraded = ovd->vdev_degraded; 3209 nvd->vdev_removed = ovd->vdev_removed; 3210 } 3211 } 3212 3213 /* 3214 * Determine if a log device has valid content. If the vdev was 3215 * removed or faulted in the MOS config then we know that 3216 * the content on the log device has already been written to the pool. 3217 */ 3218 boolean_t 3219 vdev_log_state_valid(vdev_t *vd) 3220 { 3221 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3222 !vd->vdev_removed) 3223 return (B_TRUE); 3224 3225 for (int c = 0; c < vd->vdev_children; c++) 3226 if (vdev_log_state_valid(vd->vdev_child[c])) 3227 return (B_TRUE); 3228 3229 return (B_FALSE); 3230 } 3231 3232 /* 3233 * Expand a vdev if possible. 3234 */ 3235 void 3236 vdev_expand(vdev_t *vd, uint64_t txg) 3237 { 3238 ASSERT(vd->vdev_top == vd); 3239 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3240 3241 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3242 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3243 vdev_config_dirty(vd); 3244 } 3245 } 3246 3247 /* 3248 * Split a vdev. 3249 */ 3250 void 3251 vdev_split(vdev_t *vd) 3252 { 3253 vdev_t *cvd, *pvd = vd->vdev_parent; 3254 3255 vdev_remove_child(pvd, vd); 3256 vdev_compact_children(pvd); 3257 3258 cvd = pvd->vdev_child[0]; 3259 if (pvd->vdev_children == 1) { 3260 vdev_remove_parent(cvd); 3261 cvd->vdev_splitting = B_TRUE; 3262 } 3263 vdev_propagate_state(cvd); 3264 } 3265 3266 void 3267 vdev_deadman(vdev_t *vd) 3268 { 3269 for (int c = 0; c < vd->vdev_children; c++) { 3270 vdev_t *cvd = vd->vdev_child[c]; 3271 3272 vdev_deadman(cvd); 3273 } 3274 3275 if (vd->vdev_ops->vdev_op_leaf) { 3276 vdev_queue_t *vq = &vd->vdev_queue; 3277 3278 mutex_enter(&vq->vq_lock); 3279 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3280 spa_t *spa = vd->vdev_spa; 3281 zio_t *fio; 3282 uint64_t delta; 3283 3284 /* 3285 * Look at the head of all the pending queues, 3286 * if any I/O has been outstanding for longer than 3287 * the spa_deadman_synctime we panic the system. 3288 */ 3289 fio = avl_first(&vq->vq_active_tree); 3290 delta = gethrtime() - fio->io_timestamp; 3291 if (delta > spa_deadman_synctime(spa)) { 3292 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3293 "delta %lluns, last io %lluns", 3294 fio->io_timestamp, delta, 3295 vq->vq_io_complete_ts); 3296 fm_panic("I/O to pool '%s' appears to be " 3297 "hung.", spa_name(spa)); 3298 } 3299 } 3300 mutex_exit(&vq->vq_lock); 3301 } 3302 } 3303