1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 &vdev_hole_ops, 58 NULL 59 }; 60 61 /* maximum scrub/resilver I/O queue per leaf vdev */ 62 int zfs_scrub_limit = 10; 63 64 /* 65 * Given a vdev type, return the appropriate ops vector. 66 */ 67 static vdev_ops_t * 68 vdev_getops(const char *type) 69 { 70 vdev_ops_t *ops, **opspp; 71 72 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 73 if (strcmp(ops->vdev_op_type, type) == 0) 74 break; 75 76 return (ops); 77 } 78 79 /* 80 * Default asize function: return the MAX of psize with the asize of 81 * all children. This is what's used by anything other than RAID-Z. 82 */ 83 uint64_t 84 vdev_default_asize(vdev_t *vd, uint64_t psize) 85 { 86 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 87 uint64_t csize; 88 89 for (int c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the minimum allocatable size. We define the allocatable size as 99 * the vdev's asize rounded to the nearest metaslab. This allows us to 100 * replace or attach devices which don't have the same physical size but 101 * can still satisfy the same number of allocations. 102 */ 103 uint64_t 104 vdev_get_min_asize(vdev_t *vd) 105 { 106 vdev_t *pvd = vd->vdev_parent; 107 108 /* 109 * The our parent is NULL (inactive spare or cache) or is the root, 110 * just return our own asize. 111 */ 112 if (pvd == NULL) 113 return (vd->vdev_asize); 114 115 /* 116 * The top-level vdev just returns the allocatable size rounded 117 * to the nearest metaslab. 118 */ 119 if (vd == vd->vdev_top) 120 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 121 122 /* 123 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 124 * so each child must provide at least 1/Nth of its asize. 125 */ 126 if (pvd->vdev_ops == &vdev_raidz_ops) 127 return (pvd->vdev_min_asize / pvd->vdev_children); 128 129 return (pvd->vdev_min_asize); 130 } 131 132 void 133 vdev_set_min_asize(vdev_t *vd) 134 { 135 vd->vdev_min_asize = vdev_get_min_asize(vd); 136 137 for (int c = 0; c < vd->vdev_children; c++) 138 vdev_set_min_asize(vd->vdev_child[c]); 139 } 140 141 vdev_t * 142 vdev_lookup_top(spa_t *spa, uint64_t vdev) 143 { 144 vdev_t *rvd = spa->spa_root_vdev; 145 146 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 147 148 if (vdev < rvd->vdev_children) { 149 ASSERT(rvd->vdev_child[vdev] != NULL); 150 return (rvd->vdev_child[vdev]); 151 } 152 153 return (NULL); 154 } 155 156 vdev_t * 157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 158 { 159 vdev_t *mvd; 160 161 if (vd->vdev_guid == guid) 162 return (vd); 163 164 for (int c = 0; c < vd->vdev_children; c++) 165 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 166 NULL) 167 return (mvd); 168 169 return (NULL); 170 } 171 172 void 173 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 174 { 175 size_t oldsize, newsize; 176 uint64_t id = cvd->vdev_id; 177 vdev_t **newchild; 178 179 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 180 ASSERT(cvd->vdev_parent == NULL); 181 182 cvd->vdev_parent = pvd; 183 184 if (pvd == NULL) 185 return; 186 187 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 188 189 oldsize = pvd->vdev_children * sizeof (vdev_t *); 190 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 191 newsize = pvd->vdev_children * sizeof (vdev_t *); 192 193 newchild = kmem_zalloc(newsize, KM_SLEEP); 194 if (pvd->vdev_child != NULL) { 195 bcopy(pvd->vdev_child, newchild, oldsize); 196 kmem_free(pvd->vdev_child, oldsize); 197 } 198 199 pvd->vdev_child = newchild; 200 pvd->vdev_child[id] = cvd; 201 202 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 203 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 204 205 /* 206 * Walk up all ancestors to update guid sum. 207 */ 208 for (; pvd != NULL; pvd = pvd->vdev_parent) 209 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 210 211 if (cvd->vdev_ops->vdev_op_leaf) 212 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 248 if (cvd->vdev_ops->vdev_op_leaf) 249 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 250 } 251 252 /* 253 * Remove any holes in the child array. 254 */ 255 void 256 vdev_compact_children(vdev_t *pvd) 257 { 258 vdev_t **newchild, *cvd; 259 int oldc = pvd->vdev_children; 260 int newc; 261 262 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 263 264 for (int c = newc = 0; c < oldc; c++) 265 if (pvd->vdev_child[c]) 266 newc++; 267 268 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 269 270 for (int c = newc = 0; c < oldc; c++) { 271 if ((cvd = pvd->vdev_child[c]) != NULL) { 272 newchild[newc] = cvd; 273 cvd->vdev_id = newc++; 274 } 275 } 276 277 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 278 pvd->vdev_child = newchild; 279 pvd->vdev_children = newc; 280 } 281 282 /* 283 * Allocate and minimally initialize a vdev_t. 284 */ 285 vdev_t * 286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 287 { 288 vdev_t *vd; 289 290 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 291 292 if (spa->spa_root_vdev == NULL) { 293 ASSERT(ops == &vdev_root_ops); 294 spa->spa_root_vdev = vd; 295 } 296 297 if (guid == 0 && ops != &vdev_hole_ops) { 298 if (spa->spa_root_vdev == vd) { 299 /* 300 * The root vdev's guid will also be the pool guid, 301 * which must be unique among all pools. 302 */ 303 while (guid == 0 || spa_guid_exists(guid, 0)) 304 guid = spa_get_random(-1ULL); 305 } else { 306 /* 307 * Any other vdev's guid must be unique within the pool. 308 */ 309 while (guid == 0 || 310 spa_guid_exists(spa_guid(spa), guid)) 311 guid = spa_get_random(-1ULL); 312 } 313 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 314 } 315 316 vd->vdev_spa = spa; 317 vd->vdev_id = id; 318 vd->vdev_guid = guid; 319 vd->vdev_guid_sum = guid; 320 vd->vdev_ops = ops; 321 vd->vdev_state = VDEV_STATE_CLOSED; 322 vd->vdev_ishole = (ops == &vdev_hole_ops); 323 324 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 325 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 327 for (int t = 0; t < DTL_TYPES; t++) { 328 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 329 &vd->vdev_dtl_lock); 330 } 331 txg_list_create(&vd->vdev_ms_list, 332 offsetof(struct metaslab, ms_txg_node)); 333 txg_list_create(&vd->vdev_dtl_list, 334 offsetof(struct vdev, vdev_dtl_node)); 335 vd->vdev_stat.vs_timestamp = gethrtime(); 336 vdev_queue_init(vd); 337 vdev_cache_init(vd); 338 339 return (vd); 340 } 341 342 /* 343 * Allocate a new vdev. The 'alloctype' is used to control whether we are 344 * creating a new vdev or loading an existing one - the behavior is slightly 345 * different for each case. 346 */ 347 int 348 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 349 int alloctype) 350 { 351 vdev_ops_t *ops; 352 char *type; 353 uint64_t guid = 0, islog, nparity; 354 vdev_t *vd; 355 356 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 357 358 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 359 return (EINVAL); 360 361 if ((ops = vdev_getops(type)) == NULL) 362 return (EINVAL); 363 364 /* 365 * If this is a load, get the vdev guid from the nvlist. 366 * Otherwise, vdev_alloc_common() will generate one for us. 367 */ 368 if (alloctype == VDEV_ALLOC_LOAD) { 369 uint64_t label_id; 370 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 372 label_id != id) 373 return (EINVAL); 374 375 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 376 return (EINVAL); 377 } else if (alloctype == VDEV_ALLOC_SPARE) { 378 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 379 return (EINVAL); 380 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 381 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 382 return (EINVAL); 383 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 384 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 385 return (EINVAL); 386 } 387 388 /* 389 * The first allocated vdev must be of type 'root'. 390 */ 391 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 392 return (EINVAL); 393 394 /* 395 * Determine whether we're a log vdev. 396 */ 397 islog = 0; 398 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 399 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 400 return (ENOTSUP); 401 402 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 403 return (ENOTSUP); 404 405 /* 406 * Set the nparity property for RAID-Z vdevs. 407 */ 408 nparity = -1ULL; 409 if (ops == &vdev_raidz_ops) { 410 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 411 &nparity) == 0) { 412 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 413 return (EINVAL); 414 /* 415 * Previous versions could only support 1 or 2 parity 416 * device. 417 */ 418 if (nparity > 1 && 419 spa_version(spa) < SPA_VERSION_RAIDZ2) 420 return (ENOTSUP); 421 if (nparity > 2 && 422 spa_version(spa) < SPA_VERSION_RAIDZ3) 423 return (ENOTSUP); 424 } else { 425 /* 426 * We require the parity to be specified for SPAs that 427 * support multiple parity levels. 428 */ 429 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 430 return (EINVAL); 431 /* 432 * Otherwise, we default to 1 parity device for RAID-Z. 433 */ 434 nparity = 1; 435 } 436 } else { 437 nparity = 0; 438 } 439 ASSERT(nparity != -1ULL); 440 441 vd = vdev_alloc_common(spa, id, guid, ops); 442 443 vd->vdev_islog = islog; 444 vd->vdev_nparity = nparity; 445 446 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 447 vd->vdev_path = spa_strdup(vd->vdev_path); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 449 vd->vdev_devid = spa_strdup(vd->vdev_devid); 450 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 451 &vd->vdev_physpath) == 0) 452 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 453 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 454 vd->vdev_fru = spa_strdup(vd->vdev_fru); 455 456 /* 457 * Set the whole_disk property. If it's not specified, leave the value 458 * as -1. 459 */ 460 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 461 &vd->vdev_wholedisk) != 0) 462 vd->vdev_wholedisk = -1ULL; 463 464 /* 465 * Look for the 'not present' flag. This will only be set if the device 466 * was not present at the time of import. 467 */ 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 469 &vd->vdev_not_present); 470 471 /* 472 * Get the alignment requirement. 473 */ 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 475 476 /* 477 * Retrieve the vdev creation time. 478 */ 479 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 480 &vd->vdev_crtxg); 481 482 /* 483 * If we're a top-level vdev, try to load the allocation parameters. 484 */ 485 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 487 &vd->vdev_ms_array); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 489 &vd->vdev_ms_shift); 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 491 &vd->vdev_asize); 492 } 493 494 /* 495 * If we're a leaf vdev, try to load the DTL object and other state. 496 */ 497 if (vd->vdev_ops->vdev_op_leaf && 498 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 499 alloctype == VDEV_ALLOC_ROOTPOOL)) { 500 if (alloctype == VDEV_ALLOC_LOAD) { 501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 502 &vd->vdev_dtl_smo.smo_object); 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 504 &vd->vdev_unspare); 505 } 506 507 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 508 uint64_t spare = 0; 509 510 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 511 &spare) == 0 && spare) 512 spa_spare_add(vd); 513 } 514 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 516 &vd->vdev_offline); 517 518 /* 519 * When importing a pool, we want to ignore the persistent fault 520 * state, as the diagnosis made on another system may not be 521 * valid in the current context. Local vdevs will 522 * remain in the faulted state. 523 */ 524 if (spa->spa_load_state == SPA_LOAD_OPEN) { 525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 526 &vd->vdev_faulted); 527 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 528 &vd->vdev_degraded); 529 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 530 &vd->vdev_removed); 531 532 if (vd->vdev_faulted || vd->vdev_degraded) { 533 char *aux; 534 535 vd->vdev_label_aux = 536 VDEV_AUX_ERR_EXCEEDED; 537 if (nvlist_lookup_string(nv, 538 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 539 strcmp(aux, "external") == 0) 540 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 541 } 542 } 543 } 544 545 /* 546 * Add ourselves to the parent's list of children. 547 */ 548 vdev_add_child(parent, vd); 549 550 *vdp = vd; 551 552 return (0); 553 } 554 555 void 556 vdev_free(vdev_t *vd) 557 { 558 spa_t *spa = vd->vdev_spa; 559 560 /* 561 * vdev_free() implies closing the vdev first. This is simpler than 562 * trying to ensure complicated semantics for all callers. 563 */ 564 vdev_close(vd); 565 566 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 567 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 568 569 /* 570 * Free all children. 571 */ 572 for (int c = 0; c < vd->vdev_children; c++) 573 vdev_free(vd->vdev_child[c]); 574 575 ASSERT(vd->vdev_child == NULL); 576 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 577 578 /* 579 * Discard allocation state. 580 */ 581 if (vd == vd->vdev_top) 582 vdev_metaslab_fini(vd); 583 584 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 585 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 586 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 587 588 /* 589 * Remove this vdev from its parent's child list. 590 */ 591 vdev_remove_child(vd->vdev_parent, vd); 592 593 ASSERT(vd->vdev_parent == NULL); 594 595 /* 596 * Clean up vdev structure. 597 */ 598 vdev_queue_fini(vd); 599 vdev_cache_fini(vd); 600 601 if (vd->vdev_path) 602 spa_strfree(vd->vdev_path); 603 if (vd->vdev_devid) 604 spa_strfree(vd->vdev_devid); 605 if (vd->vdev_physpath) 606 spa_strfree(vd->vdev_physpath); 607 if (vd->vdev_fru) 608 spa_strfree(vd->vdev_fru); 609 610 if (vd->vdev_isspare) 611 spa_spare_remove(vd); 612 if (vd->vdev_isl2cache) 613 spa_l2cache_remove(vd); 614 615 txg_list_destroy(&vd->vdev_ms_list); 616 txg_list_destroy(&vd->vdev_dtl_list); 617 618 mutex_enter(&vd->vdev_dtl_lock); 619 for (int t = 0; t < DTL_TYPES; t++) { 620 space_map_unload(&vd->vdev_dtl[t]); 621 space_map_destroy(&vd->vdev_dtl[t]); 622 } 623 mutex_exit(&vd->vdev_dtl_lock); 624 625 mutex_destroy(&vd->vdev_dtl_lock); 626 mutex_destroy(&vd->vdev_stat_lock); 627 mutex_destroy(&vd->vdev_probe_lock); 628 629 if (vd == spa->spa_root_vdev) 630 spa->spa_root_vdev = NULL; 631 632 kmem_free(vd, sizeof (vdev_t)); 633 } 634 635 /* 636 * Transfer top-level vdev state from svd to tvd. 637 */ 638 static void 639 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 640 { 641 spa_t *spa = svd->vdev_spa; 642 metaslab_t *msp; 643 vdev_t *vd; 644 int t; 645 646 ASSERT(tvd == tvd->vdev_top); 647 648 tvd->vdev_ms_array = svd->vdev_ms_array; 649 tvd->vdev_ms_shift = svd->vdev_ms_shift; 650 tvd->vdev_ms_count = svd->vdev_ms_count; 651 652 svd->vdev_ms_array = 0; 653 svd->vdev_ms_shift = 0; 654 svd->vdev_ms_count = 0; 655 656 tvd->vdev_mg = svd->vdev_mg; 657 tvd->vdev_ms = svd->vdev_ms; 658 659 svd->vdev_mg = NULL; 660 svd->vdev_ms = NULL; 661 662 if (tvd->vdev_mg != NULL) 663 tvd->vdev_mg->mg_vd = tvd; 664 665 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 666 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 667 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 668 669 svd->vdev_stat.vs_alloc = 0; 670 svd->vdev_stat.vs_space = 0; 671 svd->vdev_stat.vs_dspace = 0; 672 673 for (t = 0; t < TXG_SIZE; t++) { 674 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 675 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 676 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 677 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 678 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 679 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 680 } 681 682 if (list_link_active(&svd->vdev_config_dirty_node)) { 683 vdev_config_clean(svd); 684 vdev_config_dirty(tvd); 685 } 686 687 if (list_link_active(&svd->vdev_state_dirty_node)) { 688 vdev_state_clean(svd); 689 vdev_state_dirty(tvd); 690 } 691 692 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 693 svd->vdev_deflate_ratio = 0; 694 695 tvd->vdev_islog = svd->vdev_islog; 696 svd->vdev_islog = 0; 697 } 698 699 static void 700 vdev_top_update(vdev_t *tvd, vdev_t *vd) 701 { 702 if (vd == NULL) 703 return; 704 705 vd->vdev_top = tvd; 706 707 for (int c = 0; c < vd->vdev_children; c++) 708 vdev_top_update(tvd, vd->vdev_child[c]); 709 } 710 711 /* 712 * Add a mirror/replacing vdev above an existing vdev. 713 */ 714 vdev_t * 715 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 716 { 717 spa_t *spa = cvd->vdev_spa; 718 vdev_t *pvd = cvd->vdev_parent; 719 vdev_t *mvd; 720 721 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 722 723 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 724 725 mvd->vdev_asize = cvd->vdev_asize; 726 mvd->vdev_min_asize = cvd->vdev_min_asize; 727 mvd->vdev_ashift = cvd->vdev_ashift; 728 mvd->vdev_state = cvd->vdev_state; 729 mvd->vdev_crtxg = cvd->vdev_crtxg; 730 731 vdev_remove_child(pvd, cvd); 732 vdev_add_child(pvd, mvd); 733 cvd->vdev_id = mvd->vdev_children; 734 vdev_add_child(mvd, cvd); 735 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 736 737 if (mvd == mvd->vdev_top) 738 vdev_top_transfer(cvd, mvd); 739 740 return (mvd); 741 } 742 743 /* 744 * Remove a 1-way mirror/replacing vdev from the tree. 745 */ 746 void 747 vdev_remove_parent(vdev_t *cvd) 748 { 749 vdev_t *mvd = cvd->vdev_parent; 750 vdev_t *pvd = mvd->vdev_parent; 751 752 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 753 754 ASSERT(mvd->vdev_children == 1); 755 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 756 mvd->vdev_ops == &vdev_replacing_ops || 757 mvd->vdev_ops == &vdev_spare_ops); 758 cvd->vdev_ashift = mvd->vdev_ashift; 759 760 vdev_remove_child(mvd, cvd); 761 vdev_remove_child(pvd, mvd); 762 763 /* 764 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 765 * Otherwise, we could have detached an offline device, and when we 766 * go to import the pool we'll think we have two top-level vdevs, 767 * instead of a different version of the same top-level vdev. 768 */ 769 if (mvd->vdev_top == mvd) { 770 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 771 cvd->vdev_guid += guid_delta; 772 cvd->vdev_guid_sum += guid_delta; 773 } 774 cvd->vdev_id = mvd->vdev_id; 775 vdev_add_child(pvd, cvd); 776 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 777 778 if (cvd == cvd->vdev_top) 779 vdev_top_transfer(mvd, cvd); 780 781 ASSERT(mvd->vdev_children == 0); 782 vdev_free(mvd); 783 } 784 785 int 786 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 787 { 788 spa_t *spa = vd->vdev_spa; 789 objset_t *mos = spa->spa_meta_objset; 790 metaslab_class_t *mc; 791 uint64_t m; 792 uint64_t oldc = vd->vdev_ms_count; 793 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 794 metaslab_t **mspp; 795 int error; 796 797 /* 798 * This vdev is not being allocated from yet or is a hole. 799 */ 800 if (vd->vdev_ms_shift == 0) 801 return (0); 802 803 ASSERT(!vd->vdev_ishole); 804 805 /* 806 * Compute the raidz-deflation ratio. Note, we hard-code 807 * in 128k (1 << 17) because it is the current "typical" blocksize. 808 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 809 * or we will inconsistently account for existing bp's. 810 */ 811 vd->vdev_deflate_ratio = (1 << 17) / 812 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 813 814 ASSERT(oldc <= newc); 815 816 if (vd->vdev_islog) 817 mc = spa_log_class(spa); 818 else 819 mc = spa_normal_class(spa); 820 821 if (vd->vdev_mg == NULL) 822 vd->vdev_mg = metaslab_group_create(mc, vd); 823 824 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 825 826 if (oldc != 0) { 827 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 828 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 829 } 830 831 vd->vdev_ms = mspp; 832 vd->vdev_ms_count = newc; 833 834 for (m = oldc; m < newc; m++) { 835 space_map_obj_t smo = { 0, 0, 0 }; 836 if (txg == 0) { 837 uint64_t object = 0; 838 error = dmu_read(mos, vd->vdev_ms_array, 839 m * sizeof (uint64_t), sizeof (uint64_t), &object, 840 DMU_READ_PREFETCH); 841 if (error) 842 return (error); 843 if (object != 0) { 844 dmu_buf_t *db; 845 error = dmu_bonus_hold(mos, object, FTAG, &db); 846 if (error) 847 return (error); 848 ASSERT3U(db->db_size, >=, sizeof (smo)); 849 bcopy(db->db_data, &smo, sizeof (smo)); 850 ASSERT3U(smo.smo_object, ==, object); 851 dmu_buf_rele(db, FTAG); 852 } 853 } 854 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 855 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 856 } 857 858 return (0); 859 } 860 861 void 862 vdev_metaslab_fini(vdev_t *vd) 863 { 864 uint64_t m; 865 uint64_t count = vd->vdev_ms_count; 866 867 if (vd->vdev_ms != NULL) { 868 for (m = 0; m < count; m++) 869 if (vd->vdev_ms[m] != NULL) 870 metaslab_fini(vd->vdev_ms[m]); 871 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 872 vd->vdev_ms = NULL; 873 } 874 } 875 876 typedef struct vdev_probe_stats { 877 boolean_t vps_readable; 878 boolean_t vps_writeable; 879 int vps_flags; 880 } vdev_probe_stats_t; 881 882 static void 883 vdev_probe_done(zio_t *zio) 884 { 885 spa_t *spa = zio->io_spa; 886 vdev_t *vd = zio->io_vd; 887 vdev_probe_stats_t *vps = zio->io_private; 888 889 ASSERT(vd->vdev_probe_zio != NULL); 890 891 if (zio->io_type == ZIO_TYPE_READ) { 892 if (zio->io_error == 0) 893 vps->vps_readable = 1; 894 if (zio->io_error == 0 && spa_writeable(spa)) { 895 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 896 zio->io_offset, zio->io_size, zio->io_data, 897 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 898 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 899 } else { 900 zio_buf_free(zio->io_data, zio->io_size); 901 } 902 } else if (zio->io_type == ZIO_TYPE_WRITE) { 903 if (zio->io_error == 0) 904 vps->vps_writeable = 1; 905 zio_buf_free(zio->io_data, zio->io_size); 906 } else if (zio->io_type == ZIO_TYPE_NULL) { 907 zio_t *pio; 908 909 vd->vdev_cant_read |= !vps->vps_readable; 910 vd->vdev_cant_write |= !vps->vps_writeable; 911 912 if (vdev_readable(vd) && 913 (vdev_writeable(vd) || !spa_writeable(spa))) { 914 zio->io_error = 0; 915 } else { 916 ASSERT(zio->io_error != 0); 917 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 918 spa, vd, NULL, 0, 0); 919 zio->io_error = ENXIO; 920 } 921 922 mutex_enter(&vd->vdev_probe_lock); 923 ASSERT(vd->vdev_probe_zio == zio); 924 vd->vdev_probe_zio = NULL; 925 mutex_exit(&vd->vdev_probe_lock); 926 927 while ((pio = zio_walk_parents(zio)) != NULL) 928 if (!vdev_accessible(vd, pio)) 929 pio->io_error = ENXIO; 930 931 kmem_free(vps, sizeof (*vps)); 932 } 933 } 934 935 /* 936 * Determine whether this device is accessible by reading and writing 937 * to several known locations: the pad regions of each vdev label 938 * but the first (which we leave alone in case it contains a VTOC). 939 */ 940 zio_t * 941 vdev_probe(vdev_t *vd, zio_t *zio) 942 { 943 spa_t *spa = vd->vdev_spa; 944 vdev_probe_stats_t *vps = NULL; 945 zio_t *pio; 946 947 ASSERT(vd->vdev_ops->vdev_op_leaf); 948 949 /* 950 * Don't probe the probe. 951 */ 952 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 953 return (NULL); 954 955 /* 956 * To prevent 'probe storms' when a device fails, we create 957 * just one probe i/o at a time. All zios that want to probe 958 * this vdev will become parents of the probe io. 959 */ 960 mutex_enter(&vd->vdev_probe_lock); 961 962 if ((pio = vd->vdev_probe_zio) == NULL) { 963 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 964 965 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 966 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 967 ZIO_FLAG_TRYHARD; 968 969 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 970 /* 971 * vdev_cant_read and vdev_cant_write can only 972 * transition from TRUE to FALSE when we have the 973 * SCL_ZIO lock as writer; otherwise they can only 974 * transition from FALSE to TRUE. This ensures that 975 * any zio looking at these values can assume that 976 * failures persist for the life of the I/O. That's 977 * important because when a device has intermittent 978 * connectivity problems, we want to ensure that 979 * they're ascribed to the device (ENXIO) and not 980 * the zio (EIO). 981 * 982 * Since we hold SCL_ZIO as writer here, clear both 983 * values so the probe can reevaluate from first 984 * principles. 985 */ 986 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 987 vd->vdev_cant_read = B_FALSE; 988 vd->vdev_cant_write = B_FALSE; 989 } 990 991 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 992 vdev_probe_done, vps, 993 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 994 995 if (zio != NULL) { 996 vd->vdev_probe_wanted = B_TRUE; 997 spa_async_request(spa, SPA_ASYNC_PROBE); 998 } 999 } 1000 1001 if (zio != NULL) 1002 zio_add_child(zio, pio); 1003 1004 mutex_exit(&vd->vdev_probe_lock); 1005 1006 if (vps == NULL) { 1007 ASSERT(zio != NULL); 1008 return (NULL); 1009 } 1010 1011 for (int l = 1; l < VDEV_LABELS; l++) { 1012 zio_nowait(zio_read_phys(pio, vd, 1013 vdev_label_offset(vd->vdev_psize, l, 1014 offsetof(vdev_label_t, vl_pad2)), 1015 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1016 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1017 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1018 } 1019 1020 if (zio == NULL) 1021 return (pio); 1022 1023 zio_nowait(pio); 1024 return (NULL); 1025 } 1026 1027 static void 1028 vdev_open_child(void *arg) 1029 { 1030 vdev_t *vd = arg; 1031 1032 vd->vdev_open_thread = curthread; 1033 vd->vdev_open_error = vdev_open(vd); 1034 vd->vdev_open_thread = NULL; 1035 } 1036 1037 boolean_t 1038 vdev_uses_zvols(vdev_t *vd) 1039 { 1040 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1041 strlen(ZVOL_DIR)) == 0) 1042 return (B_TRUE); 1043 for (int c = 0; c < vd->vdev_children; c++) 1044 if (vdev_uses_zvols(vd->vdev_child[c])) 1045 return (B_TRUE); 1046 return (B_FALSE); 1047 } 1048 1049 void 1050 vdev_open_children(vdev_t *vd) 1051 { 1052 taskq_t *tq; 1053 int children = vd->vdev_children; 1054 1055 /* 1056 * in order to handle pools on top of zvols, do the opens 1057 * in a single thread so that the same thread holds the 1058 * spa_namespace_lock 1059 */ 1060 if (vdev_uses_zvols(vd)) { 1061 for (int c = 0; c < children; c++) 1062 vd->vdev_child[c]->vdev_open_error = 1063 vdev_open(vd->vdev_child[c]); 1064 return; 1065 } 1066 tq = taskq_create("vdev_open", children, minclsyspri, 1067 children, children, TASKQ_PREPOPULATE); 1068 1069 for (int c = 0; c < children; c++) 1070 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1071 TQ_SLEEP) != NULL); 1072 1073 taskq_destroy(tq); 1074 } 1075 1076 /* 1077 * Prepare a virtual device for access. 1078 */ 1079 int 1080 vdev_open(vdev_t *vd) 1081 { 1082 spa_t *spa = vd->vdev_spa; 1083 int error; 1084 uint64_t osize = 0; 1085 uint64_t asize, psize; 1086 uint64_t ashift = 0; 1087 1088 ASSERT(vd->vdev_open_thread == curthread || 1089 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1090 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1091 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1092 vd->vdev_state == VDEV_STATE_OFFLINE); 1093 1094 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1095 vd->vdev_cant_read = B_FALSE; 1096 vd->vdev_cant_write = B_FALSE; 1097 vd->vdev_min_asize = vdev_get_min_asize(vd); 1098 1099 /* 1100 * If this vdev is not removed, check its fault status. If it's 1101 * faulted, bail out of the open. 1102 */ 1103 if (!vd->vdev_removed && vd->vdev_faulted) { 1104 ASSERT(vd->vdev_children == 0); 1105 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1106 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1107 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1108 vd->vdev_label_aux); 1109 return (ENXIO); 1110 } else if (vd->vdev_offline) { 1111 ASSERT(vd->vdev_children == 0); 1112 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1113 return (ENXIO); 1114 } 1115 1116 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1117 1118 /* 1119 * Reset the vdev_reopening flag so that we actually close 1120 * the vdev on error. 1121 */ 1122 vd->vdev_reopening = B_FALSE; 1123 if (zio_injection_enabled && error == 0) 1124 error = zio_handle_device_injection(vd, NULL, ENXIO); 1125 1126 if (error) { 1127 if (vd->vdev_removed && 1128 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1129 vd->vdev_removed = B_FALSE; 1130 1131 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1132 vd->vdev_stat.vs_aux); 1133 return (error); 1134 } 1135 1136 vd->vdev_removed = B_FALSE; 1137 1138 /* 1139 * Recheck the faulted flag now that we have confirmed that 1140 * the vdev is accessible. If we're faulted, bail. 1141 */ 1142 if (vd->vdev_faulted) { 1143 ASSERT(vd->vdev_children == 0); 1144 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1145 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1146 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1147 vd->vdev_label_aux); 1148 return (ENXIO); 1149 } 1150 1151 if (vd->vdev_degraded) { 1152 ASSERT(vd->vdev_children == 0); 1153 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1154 VDEV_AUX_ERR_EXCEEDED); 1155 } else { 1156 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1157 } 1158 1159 /* 1160 * For hole or missing vdevs we just return success. 1161 */ 1162 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1163 return (0); 1164 1165 for (int c = 0; c < vd->vdev_children; c++) { 1166 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1168 VDEV_AUX_NONE); 1169 break; 1170 } 1171 } 1172 1173 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1174 1175 if (vd->vdev_children == 0) { 1176 if (osize < SPA_MINDEVSIZE) { 1177 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1178 VDEV_AUX_TOO_SMALL); 1179 return (EOVERFLOW); 1180 } 1181 psize = osize; 1182 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1183 } else { 1184 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1185 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1187 VDEV_AUX_TOO_SMALL); 1188 return (EOVERFLOW); 1189 } 1190 psize = 0; 1191 asize = osize; 1192 } 1193 1194 vd->vdev_psize = psize; 1195 1196 /* 1197 * Make sure the allocatable size hasn't shrunk. 1198 */ 1199 if (asize < vd->vdev_min_asize) { 1200 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1201 VDEV_AUX_BAD_LABEL); 1202 return (EINVAL); 1203 } 1204 1205 if (vd->vdev_asize == 0) { 1206 /* 1207 * This is the first-ever open, so use the computed values. 1208 * For testing purposes, a higher ashift can be requested. 1209 */ 1210 vd->vdev_asize = asize; 1211 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1212 } else { 1213 /* 1214 * Make sure the alignment requirement hasn't increased. 1215 */ 1216 if (ashift > vd->vdev_top->vdev_ashift) { 1217 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1218 VDEV_AUX_BAD_LABEL); 1219 return (EINVAL); 1220 } 1221 } 1222 1223 /* 1224 * If all children are healthy and the asize has increased, 1225 * then we've experienced dynamic LUN growth. If automatic 1226 * expansion is enabled then use the additional space. 1227 */ 1228 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1229 (vd->vdev_expanding || spa->spa_autoexpand)) 1230 vd->vdev_asize = asize; 1231 1232 vdev_set_min_asize(vd); 1233 1234 /* 1235 * Ensure we can issue some IO before declaring the 1236 * vdev open for business. 1237 */ 1238 if (vd->vdev_ops->vdev_op_leaf && 1239 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1240 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1241 VDEV_AUX_IO_FAILURE); 1242 return (error); 1243 } 1244 1245 /* 1246 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1247 * resilver. But don't do this if we are doing a reopen for a scrub, 1248 * since this would just restart the scrub we are already doing. 1249 */ 1250 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1251 vdev_resilver_needed(vd, NULL, NULL)) 1252 spa_async_request(spa, SPA_ASYNC_RESILVER); 1253 1254 return (0); 1255 } 1256 1257 /* 1258 * Called once the vdevs are all opened, this routine validates the label 1259 * contents. This needs to be done before vdev_load() so that we don't 1260 * inadvertently do repair I/Os to the wrong device. 1261 * 1262 * This function will only return failure if one of the vdevs indicates that it 1263 * has since been destroyed or exported. This is only possible if 1264 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1265 * will be updated but the function will return 0. 1266 */ 1267 int 1268 vdev_validate(vdev_t *vd) 1269 { 1270 spa_t *spa = vd->vdev_spa; 1271 nvlist_t *label; 1272 uint64_t guid, top_guid; 1273 uint64_t state; 1274 1275 for (int c = 0; c < vd->vdev_children; c++) 1276 if (vdev_validate(vd->vdev_child[c]) != 0) 1277 return (EBADF); 1278 1279 /* 1280 * If the device has already failed, or was marked offline, don't do 1281 * any further validation. Otherwise, label I/O will fail and we will 1282 * overwrite the previous state. 1283 */ 1284 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1285 1286 if ((label = vdev_label_read_config(vd)) == NULL) { 1287 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1288 VDEV_AUX_BAD_LABEL); 1289 return (0); 1290 } 1291 1292 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1293 &guid) != 0 || guid != spa_guid(spa)) { 1294 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1295 VDEV_AUX_CORRUPT_DATA); 1296 nvlist_free(label); 1297 return (0); 1298 } 1299 1300 /* 1301 * If this vdev just became a top-level vdev because its 1302 * sibling was detached, it will have adopted the parent's 1303 * vdev guid -- but the label may or may not be on disk yet. 1304 * Fortunately, either version of the label will have the 1305 * same top guid, so if we're a top-level vdev, we can 1306 * safely compare to that instead. 1307 */ 1308 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1309 &guid) != 0 || 1310 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1311 &top_guid) != 0 || 1312 (vd->vdev_guid != guid && 1313 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1314 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1315 VDEV_AUX_CORRUPT_DATA); 1316 nvlist_free(label); 1317 return (0); 1318 } 1319 1320 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1321 &state) != 0) { 1322 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1323 VDEV_AUX_CORRUPT_DATA); 1324 nvlist_free(label); 1325 return (0); 1326 } 1327 1328 nvlist_free(label); 1329 1330 /* 1331 * If spa->spa_load_verbatim is true, no need to check the 1332 * state of the pool. 1333 */ 1334 if (!spa->spa_load_verbatim && 1335 spa->spa_load_state == SPA_LOAD_OPEN && 1336 state != POOL_STATE_ACTIVE) 1337 return (EBADF); 1338 1339 /* 1340 * If we were able to open and validate a vdev that was 1341 * previously marked permanently unavailable, clear that state 1342 * now. 1343 */ 1344 if (vd->vdev_not_present) 1345 vd->vdev_not_present = 0; 1346 } 1347 1348 return (0); 1349 } 1350 1351 /* 1352 * Close a virtual device. 1353 */ 1354 void 1355 vdev_close(vdev_t *vd) 1356 { 1357 spa_t *spa = vd->vdev_spa; 1358 vdev_t *pvd = vd->vdev_parent; 1359 1360 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1361 1362 if (pvd != NULL && pvd->vdev_reopening) 1363 vd->vdev_reopening = pvd->vdev_reopening; 1364 1365 vd->vdev_ops->vdev_op_close(vd); 1366 1367 vdev_cache_purge(vd); 1368 1369 /* 1370 * We record the previous state before we close it, so that if we are 1371 * doing a reopen(), we don't generate FMA ereports if we notice that 1372 * it's still faulted. 1373 */ 1374 vd->vdev_prevstate = vd->vdev_state; 1375 1376 if (vd->vdev_offline) 1377 vd->vdev_state = VDEV_STATE_OFFLINE; 1378 else 1379 vd->vdev_state = VDEV_STATE_CLOSED; 1380 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1381 } 1382 1383 /* 1384 * Reopen all interior vdevs and any unopened leaves. We don't actually 1385 * reopen leaf vdevs which had previously been opened as they might deadlock 1386 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1387 * If the leaf has never been opened then open it, as usual. 1388 */ 1389 void 1390 vdev_reopen(vdev_t *vd) 1391 { 1392 spa_t *spa = vd->vdev_spa; 1393 1394 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1395 1396 vd->vdev_reopening = B_TRUE; 1397 vdev_close(vd); 1398 (void) vdev_open(vd); 1399 1400 /* 1401 * Call vdev_validate() here to make sure we have the same device. 1402 * Otherwise, a device with an invalid label could be successfully 1403 * opened in response to vdev_reopen(). 1404 */ 1405 if (vd->vdev_aux) { 1406 (void) vdev_validate_aux(vd); 1407 if (vdev_readable(vd) && vdev_writeable(vd) && 1408 vd->vdev_aux == &spa->spa_l2cache && 1409 !l2arc_vdev_present(vd)) 1410 l2arc_add_vdev(spa, vd); 1411 } else { 1412 (void) vdev_validate(vd); 1413 } 1414 1415 /* 1416 * Reassess parent vdev's health. 1417 */ 1418 vdev_propagate_state(vd); 1419 } 1420 1421 int 1422 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1423 { 1424 int error; 1425 1426 /* 1427 * Normally, partial opens (e.g. of a mirror) are allowed. 1428 * For a create, however, we want to fail the request if 1429 * there are any components we can't open. 1430 */ 1431 error = vdev_open(vd); 1432 1433 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1434 vdev_close(vd); 1435 return (error ? error : ENXIO); 1436 } 1437 1438 /* 1439 * Recursively initialize all labels. 1440 */ 1441 if ((error = vdev_label_init(vd, txg, isreplacing ? 1442 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1443 vdev_close(vd); 1444 return (error); 1445 } 1446 1447 return (0); 1448 } 1449 1450 void 1451 vdev_metaslab_set_size(vdev_t *vd) 1452 { 1453 /* 1454 * Aim for roughly 200 metaslabs per vdev. 1455 */ 1456 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1457 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1458 } 1459 1460 void 1461 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1462 { 1463 ASSERT(vd == vd->vdev_top); 1464 ASSERT(!vd->vdev_ishole); 1465 ASSERT(ISP2(flags)); 1466 1467 if (flags & VDD_METASLAB) 1468 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1469 1470 if (flags & VDD_DTL) 1471 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1472 1473 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1474 } 1475 1476 /* 1477 * DTLs. 1478 * 1479 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1480 * the vdev has less than perfect replication. There are three kinds of DTL: 1481 * 1482 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1483 * 1484 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1485 * 1486 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1487 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1488 * txgs that was scrubbed. 1489 * 1490 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1491 * persistent errors or just some device being offline. 1492 * Unlike the other three, the DTL_OUTAGE map is not generally 1493 * maintained; it's only computed when needed, typically to 1494 * determine whether a device can be detached. 1495 * 1496 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1497 * either has the data or it doesn't. 1498 * 1499 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1500 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1501 * if any child is less than fully replicated, then so is its parent. 1502 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1503 * comprising only those txgs which appear in 'maxfaults' or more children; 1504 * those are the txgs we don't have enough replication to read. For example, 1505 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1506 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1507 * two child DTL_MISSING maps. 1508 * 1509 * It should be clear from the above that to compute the DTLs and outage maps 1510 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1511 * Therefore, that is all we keep on disk. When loading the pool, or after 1512 * a configuration change, we generate all other DTLs from first principles. 1513 */ 1514 void 1515 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1516 { 1517 space_map_t *sm = &vd->vdev_dtl[t]; 1518 1519 ASSERT(t < DTL_TYPES); 1520 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1521 1522 mutex_enter(sm->sm_lock); 1523 if (!space_map_contains(sm, txg, size)) 1524 space_map_add(sm, txg, size); 1525 mutex_exit(sm->sm_lock); 1526 } 1527 1528 boolean_t 1529 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1530 { 1531 space_map_t *sm = &vd->vdev_dtl[t]; 1532 boolean_t dirty = B_FALSE; 1533 1534 ASSERT(t < DTL_TYPES); 1535 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1536 1537 mutex_enter(sm->sm_lock); 1538 if (sm->sm_space != 0) 1539 dirty = space_map_contains(sm, txg, size); 1540 mutex_exit(sm->sm_lock); 1541 1542 return (dirty); 1543 } 1544 1545 boolean_t 1546 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1547 { 1548 space_map_t *sm = &vd->vdev_dtl[t]; 1549 boolean_t empty; 1550 1551 mutex_enter(sm->sm_lock); 1552 empty = (sm->sm_space == 0); 1553 mutex_exit(sm->sm_lock); 1554 1555 return (empty); 1556 } 1557 1558 /* 1559 * Reassess DTLs after a config change or scrub completion. 1560 */ 1561 void 1562 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1563 { 1564 spa_t *spa = vd->vdev_spa; 1565 avl_tree_t reftree; 1566 int minref; 1567 1568 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1569 1570 for (int c = 0; c < vd->vdev_children; c++) 1571 vdev_dtl_reassess(vd->vdev_child[c], txg, 1572 scrub_txg, scrub_done); 1573 1574 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1575 return; 1576 1577 if (vd->vdev_ops->vdev_op_leaf) { 1578 mutex_enter(&vd->vdev_dtl_lock); 1579 if (scrub_txg != 0 && 1580 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1581 /* XXX should check scrub_done? */ 1582 /* 1583 * We completed a scrub up to scrub_txg. If we 1584 * did it without rebooting, then the scrub dtl 1585 * will be valid, so excise the old region and 1586 * fold in the scrub dtl. Otherwise, leave the 1587 * dtl as-is if there was an error. 1588 * 1589 * There's little trick here: to excise the beginning 1590 * of the DTL_MISSING map, we put it into a reference 1591 * tree and then add a segment with refcnt -1 that 1592 * covers the range [0, scrub_txg). This means 1593 * that each txg in that range has refcnt -1 or 0. 1594 * We then add DTL_SCRUB with a refcnt of 2, so that 1595 * entries in the range [0, scrub_txg) will have a 1596 * positive refcnt -- either 1 or 2. We then convert 1597 * the reference tree into the new DTL_MISSING map. 1598 */ 1599 space_map_ref_create(&reftree); 1600 space_map_ref_add_map(&reftree, 1601 &vd->vdev_dtl[DTL_MISSING], 1); 1602 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1603 space_map_ref_add_map(&reftree, 1604 &vd->vdev_dtl[DTL_SCRUB], 2); 1605 space_map_ref_generate_map(&reftree, 1606 &vd->vdev_dtl[DTL_MISSING], 1); 1607 space_map_ref_destroy(&reftree); 1608 } 1609 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1610 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1611 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1612 if (scrub_done) 1613 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1614 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1615 if (!vdev_readable(vd)) 1616 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1617 else 1618 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1619 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1620 mutex_exit(&vd->vdev_dtl_lock); 1621 1622 if (txg != 0) 1623 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1624 return; 1625 } 1626 1627 mutex_enter(&vd->vdev_dtl_lock); 1628 for (int t = 0; t < DTL_TYPES; t++) { 1629 /* account for child's outage in parent's missing map */ 1630 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1631 if (t == DTL_SCRUB) 1632 continue; /* leaf vdevs only */ 1633 if (t == DTL_PARTIAL) 1634 minref = 1; /* i.e. non-zero */ 1635 else if (vd->vdev_nparity != 0) 1636 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1637 else 1638 minref = vd->vdev_children; /* any kind of mirror */ 1639 space_map_ref_create(&reftree); 1640 for (int c = 0; c < vd->vdev_children; c++) { 1641 vdev_t *cvd = vd->vdev_child[c]; 1642 mutex_enter(&cvd->vdev_dtl_lock); 1643 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1); 1644 mutex_exit(&cvd->vdev_dtl_lock); 1645 } 1646 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1647 space_map_ref_destroy(&reftree); 1648 } 1649 mutex_exit(&vd->vdev_dtl_lock); 1650 } 1651 1652 static int 1653 vdev_dtl_load(vdev_t *vd) 1654 { 1655 spa_t *spa = vd->vdev_spa; 1656 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1657 objset_t *mos = spa->spa_meta_objset; 1658 dmu_buf_t *db; 1659 int error; 1660 1661 ASSERT(vd->vdev_children == 0); 1662 1663 if (smo->smo_object == 0) 1664 return (0); 1665 1666 ASSERT(!vd->vdev_ishole); 1667 1668 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1669 return (error); 1670 1671 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1672 bcopy(db->db_data, smo, sizeof (*smo)); 1673 dmu_buf_rele(db, FTAG); 1674 1675 mutex_enter(&vd->vdev_dtl_lock); 1676 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1677 NULL, SM_ALLOC, smo, mos); 1678 mutex_exit(&vd->vdev_dtl_lock); 1679 1680 return (error); 1681 } 1682 1683 void 1684 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1685 { 1686 spa_t *spa = vd->vdev_spa; 1687 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1688 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1689 objset_t *mos = spa->spa_meta_objset; 1690 space_map_t smsync; 1691 kmutex_t smlock; 1692 dmu_buf_t *db; 1693 dmu_tx_t *tx; 1694 1695 ASSERT(!vd->vdev_ishole); 1696 1697 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1698 1699 if (vd->vdev_detached) { 1700 if (smo->smo_object != 0) { 1701 int err = dmu_object_free(mos, smo->smo_object, tx); 1702 ASSERT3U(err, ==, 0); 1703 smo->smo_object = 0; 1704 } 1705 dmu_tx_commit(tx); 1706 return; 1707 } 1708 1709 if (smo->smo_object == 0) { 1710 ASSERT(smo->smo_objsize == 0); 1711 ASSERT(smo->smo_alloc == 0); 1712 smo->smo_object = dmu_object_alloc(mos, 1713 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1714 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1715 ASSERT(smo->smo_object != 0); 1716 vdev_config_dirty(vd->vdev_top); 1717 } 1718 1719 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1720 1721 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1722 &smlock); 1723 1724 mutex_enter(&smlock); 1725 1726 mutex_enter(&vd->vdev_dtl_lock); 1727 space_map_walk(sm, space_map_add, &smsync); 1728 mutex_exit(&vd->vdev_dtl_lock); 1729 1730 space_map_truncate(smo, mos, tx); 1731 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1732 1733 space_map_destroy(&smsync); 1734 1735 mutex_exit(&smlock); 1736 mutex_destroy(&smlock); 1737 1738 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1739 dmu_buf_will_dirty(db, tx); 1740 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1741 bcopy(smo, db->db_data, sizeof (*smo)); 1742 dmu_buf_rele(db, FTAG); 1743 1744 dmu_tx_commit(tx); 1745 } 1746 1747 /* 1748 * Determine whether the specified vdev can be offlined/detached/removed 1749 * without losing data. 1750 */ 1751 boolean_t 1752 vdev_dtl_required(vdev_t *vd) 1753 { 1754 spa_t *spa = vd->vdev_spa; 1755 vdev_t *tvd = vd->vdev_top; 1756 uint8_t cant_read = vd->vdev_cant_read; 1757 boolean_t required; 1758 1759 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1760 1761 if (vd == spa->spa_root_vdev || vd == tvd) 1762 return (B_TRUE); 1763 1764 /* 1765 * Temporarily mark the device as unreadable, and then determine 1766 * whether this results in any DTL outages in the top-level vdev. 1767 * If not, we can safely offline/detach/remove the device. 1768 */ 1769 vd->vdev_cant_read = B_TRUE; 1770 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1771 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1772 vd->vdev_cant_read = cant_read; 1773 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1774 1775 return (required); 1776 } 1777 1778 /* 1779 * Determine if resilver is needed, and if so the txg range. 1780 */ 1781 boolean_t 1782 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1783 { 1784 boolean_t needed = B_FALSE; 1785 uint64_t thismin = UINT64_MAX; 1786 uint64_t thismax = 0; 1787 1788 if (vd->vdev_children == 0) { 1789 mutex_enter(&vd->vdev_dtl_lock); 1790 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1791 vdev_writeable(vd)) { 1792 space_seg_t *ss; 1793 1794 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1795 thismin = ss->ss_start - 1; 1796 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1797 thismax = ss->ss_end; 1798 needed = B_TRUE; 1799 } 1800 mutex_exit(&vd->vdev_dtl_lock); 1801 } else { 1802 for (int c = 0; c < vd->vdev_children; c++) { 1803 vdev_t *cvd = vd->vdev_child[c]; 1804 uint64_t cmin, cmax; 1805 1806 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1807 thismin = MIN(thismin, cmin); 1808 thismax = MAX(thismax, cmax); 1809 needed = B_TRUE; 1810 } 1811 } 1812 } 1813 1814 if (needed && minp) { 1815 *minp = thismin; 1816 *maxp = thismax; 1817 } 1818 return (needed); 1819 } 1820 1821 void 1822 vdev_load(vdev_t *vd) 1823 { 1824 /* 1825 * Recursively load all children. 1826 */ 1827 for (int c = 0; c < vd->vdev_children; c++) 1828 vdev_load(vd->vdev_child[c]); 1829 1830 /* 1831 * If this is a top-level vdev, initialize its metaslabs. 1832 */ 1833 if (vd == vd->vdev_top && !vd->vdev_ishole && 1834 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1835 vdev_metaslab_init(vd, 0) != 0)) 1836 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1837 VDEV_AUX_CORRUPT_DATA); 1838 1839 /* 1840 * If this is a leaf vdev, load its DTL. 1841 */ 1842 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1843 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1844 VDEV_AUX_CORRUPT_DATA); 1845 } 1846 1847 /* 1848 * The special vdev case is used for hot spares and l2cache devices. Its 1849 * sole purpose it to set the vdev state for the associated vdev. To do this, 1850 * we make sure that we can open the underlying device, then try to read the 1851 * label, and make sure that the label is sane and that it hasn't been 1852 * repurposed to another pool. 1853 */ 1854 int 1855 vdev_validate_aux(vdev_t *vd) 1856 { 1857 nvlist_t *label; 1858 uint64_t guid, version; 1859 uint64_t state; 1860 1861 if (!vdev_readable(vd)) 1862 return (0); 1863 1864 if ((label = vdev_label_read_config(vd)) == NULL) { 1865 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1866 VDEV_AUX_CORRUPT_DATA); 1867 return (-1); 1868 } 1869 1870 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1871 version > SPA_VERSION || 1872 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1873 guid != vd->vdev_guid || 1874 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1875 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1876 VDEV_AUX_CORRUPT_DATA); 1877 nvlist_free(label); 1878 return (-1); 1879 } 1880 1881 /* 1882 * We don't actually check the pool state here. If it's in fact in 1883 * use by another pool, we update this fact on the fly when requested. 1884 */ 1885 nvlist_free(label); 1886 return (0); 1887 } 1888 1889 void 1890 vdev_remove(vdev_t *vd, uint64_t txg) 1891 { 1892 spa_t *spa = vd->vdev_spa; 1893 objset_t *mos = spa->spa_meta_objset; 1894 dmu_tx_t *tx; 1895 1896 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 1897 1898 if (vd->vdev_dtl_smo.smo_object) { 1899 ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0); 1900 (void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx); 1901 vd->vdev_dtl_smo.smo_object = 0; 1902 } 1903 1904 if (vd->vdev_ms != NULL) { 1905 for (int m = 0; m < vd->vdev_ms_count; m++) { 1906 metaslab_t *msp = vd->vdev_ms[m]; 1907 1908 if (msp == NULL || msp->ms_smo.smo_object == 0) 1909 continue; 1910 1911 ASSERT3U(msp->ms_smo.smo_alloc, ==, 0); 1912 (void) dmu_object_free(mos, msp->ms_smo.smo_object, tx); 1913 msp->ms_smo.smo_object = 0; 1914 } 1915 } 1916 1917 if (vd->vdev_ms_array) { 1918 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 1919 vd->vdev_ms_array = 0; 1920 vd->vdev_ms_shift = 0; 1921 } 1922 dmu_tx_commit(tx); 1923 } 1924 1925 void 1926 vdev_sync_done(vdev_t *vd, uint64_t txg) 1927 { 1928 metaslab_t *msp; 1929 1930 ASSERT(!vd->vdev_ishole); 1931 1932 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1933 metaslab_sync_done(msp, txg); 1934 } 1935 1936 void 1937 vdev_sync(vdev_t *vd, uint64_t txg) 1938 { 1939 spa_t *spa = vd->vdev_spa; 1940 vdev_t *lvd; 1941 metaslab_t *msp; 1942 dmu_tx_t *tx; 1943 1944 ASSERT(!vd->vdev_ishole); 1945 1946 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1947 ASSERT(vd == vd->vdev_top); 1948 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1949 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1950 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1951 ASSERT(vd->vdev_ms_array != 0); 1952 vdev_config_dirty(vd); 1953 dmu_tx_commit(tx); 1954 } 1955 1956 if (vd->vdev_removing) 1957 vdev_remove(vd, txg); 1958 1959 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1960 metaslab_sync(msp, txg); 1961 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1962 } 1963 1964 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1965 vdev_dtl_sync(lvd, txg); 1966 1967 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1968 } 1969 1970 uint64_t 1971 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1972 { 1973 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1974 } 1975 1976 /* 1977 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1978 * not be opened, and no I/O is attempted. 1979 */ 1980 int 1981 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 1982 { 1983 vdev_t *vd; 1984 1985 spa_vdev_state_enter(spa, SCL_NONE); 1986 1987 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1988 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1989 1990 if (!vd->vdev_ops->vdev_op_leaf) 1991 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1992 1993 /* 1994 * We don't directly use the aux state here, but if we do a 1995 * vdev_reopen(), we need this value to be present to remember why we 1996 * were faulted. 1997 */ 1998 vd->vdev_label_aux = aux; 1999 2000 /* 2001 * Faulted state takes precedence over degraded. 2002 */ 2003 vd->vdev_faulted = 1ULL; 2004 vd->vdev_degraded = 0ULL; 2005 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2006 2007 /* 2008 * If marking the vdev as faulted cause the top-level vdev to become 2009 * unavailable, then back off and simply mark the vdev as degraded 2010 * instead. 2011 */ 2012 if (vdev_is_dead(vd->vdev_top) && !vd->vdev_islog && 2013 vd->vdev_aux == NULL) { 2014 vd->vdev_degraded = 1ULL; 2015 vd->vdev_faulted = 0ULL; 2016 2017 /* 2018 * If we reopen the device and it's not dead, only then do we 2019 * mark it degraded. 2020 */ 2021 vdev_reopen(vd); 2022 2023 if (vdev_readable(vd)) 2024 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2025 } 2026 2027 return (spa_vdev_state_exit(spa, vd, 0)); 2028 } 2029 2030 /* 2031 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2032 * user that something is wrong. The vdev continues to operate as normal as far 2033 * as I/O is concerned. 2034 */ 2035 int 2036 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2037 { 2038 vdev_t *vd; 2039 2040 spa_vdev_state_enter(spa, SCL_NONE); 2041 2042 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2043 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2044 2045 if (!vd->vdev_ops->vdev_op_leaf) 2046 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2047 2048 /* 2049 * If the vdev is already faulted, then don't do anything. 2050 */ 2051 if (vd->vdev_faulted || vd->vdev_degraded) 2052 return (spa_vdev_state_exit(spa, NULL, 0)); 2053 2054 vd->vdev_degraded = 1ULL; 2055 if (!vdev_is_dead(vd)) 2056 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2057 aux); 2058 2059 return (spa_vdev_state_exit(spa, vd, 0)); 2060 } 2061 2062 /* 2063 * Online the given vdev. If 'unspare' is set, it implies two things. First, 2064 * any attached spare device should be detached when the device finishes 2065 * resilvering. Second, the online should be treated like a 'test' online case, 2066 * so no FMA events are generated if the device fails to open. 2067 */ 2068 int 2069 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2070 { 2071 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2072 2073 spa_vdev_state_enter(spa, SCL_NONE); 2074 2075 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2076 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2077 2078 if (!vd->vdev_ops->vdev_op_leaf) 2079 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2080 2081 tvd = vd->vdev_top; 2082 vd->vdev_offline = B_FALSE; 2083 vd->vdev_tmpoffline = B_FALSE; 2084 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2085 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2086 2087 /* XXX - L2ARC 1.0 does not support expansion */ 2088 if (!vd->vdev_aux) { 2089 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2090 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2091 } 2092 2093 vdev_reopen(tvd); 2094 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2095 2096 if (!vd->vdev_aux) { 2097 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2098 pvd->vdev_expanding = B_FALSE; 2099 } 2100 2101 if (newstate) 2102 *newstate = vd->vdev_state; 2103 if ((flags & ZFS_ONLINE_UNSPARE) && 2104 !vdev_is_dead(vd) && vd->vdev_parent && 2105 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2106 vd->vdev_parent->vdev_child[0] == vd) 2107 vd->vdev_unspare = B_TRUE; 2108 2109 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2110 2111 /* XXX - L2ARC 1.0 does not support expansion */ 2112 if (vd->vdev_aux) 2113 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2114 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2115 } 2116 return (spa_vdev_state_exit(spa, vd, 0)); 2117 } 2118 2119 int 2120 vdev_offline_log(spa_t *spa) 2121 { 2122 int error = 0; 2123 2124 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 2125 NULL, DS_FIND_CHILDREN)) == 0) { 2126 2127 /* 2128 * We successfully offlined the log device, sync out the 2129 * current txg so that the "stubby" block can be removed 2130 * by zil_sync(). 2131 */ 2132 txg_wait_synced(spa->spa_dsl_pool, 0); 2133 } 2134 return (error); 2135 } 2136 2137 int 2138 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2139 { 2140 vdev_t *vd, *tvd; 2141 int error = 0; 2142 uint64_t generation; 2143 metaslab_group_t *mg; 2144 2145 top: 2146 spa_vdev_state_enter(spa, SCL_ALLOC); 2147 2148 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2149 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2150 2151 if (!vd->vdev_ops->vdev_op_leaf) 2152 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2153 2154 tvd = vd->vdev_top; 2155 mg = tvd->vdev_mg; 2156 generation = spa->spa_config_generation + 1; 2157 2158 /* 2159 * If the device isn't already offline, try to offline it. 2160 */ 2161 if (!vd->vdev_offline) { 2162 /* 2163 * If this device has the only valid copy of some data, 2164 * don't allow it to be offlined. Log devices are always 2165 * expendable. 2166 */ 2167 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2168 vdev_dtl_required(vd)) 2169 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2170 2171 /* 2172 * If the top-level is a slog and it has had allocations 2173 * then proceed. We check that the vdev's metaslab group 2174 * is not NULL since it's possible that we may have just 2175 * added this vdev but not yet initialized its metaslabs. 2176 */ 2177 if (tvd->vdev_islog && mg != NULL) { 2178 /* 2179 * Prevent any future allocations. 2180 */ 2181 metaslab_class_remove(spa->spa_log_class, mg); 2182 (void) spa_vdev_state_exit(spa, vd, 0); 2183 2184 error = vdev_offline_log(spa); 2185 2186 spa_vdev_state_enter(spa, SCL_ALLOC); 2187 2188 /* 2189 * Check to see if the config has changed. 2190 */ 2191 if (error || generation != spa->spa_config_generation) { 2192 metaslab_class_add(spa->spa_log_class, mg); 2193 if (error) 2194 return (spa_vdev_state_exit(spa, 2195 vd, error)); 2196 (void) spa_vdev_state_exit(spa, vd, 0); 2197 goto top; 2198 } 2199 ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0); 2200 } 2201 2202 /* 2203 * Offline this device and reopen its top-level vdev. 2204 * If the top-level vdev is a log device then just offline 2205 * it. Otherwise, if this action results in the top-level 2206 * vdev becoming unusable, undo it and fail the request. 2207 */ 2208 vd->vdev_offline = B_TRUE; 2209 vdev_reopen(tvd); 2210 2211 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2212 vdev_is_dead(tvd)) { 2213 vd->vdev_offline = B_FALSE; 2214 vdev_reopen(tvd); 2215 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2216 } 2217 2218 /* 2219 * Add the device back into the metaslab rotor so that 2220 * once we online the device it's open for business. 2221 */ 2222 if (tvd->vdev_islog && mg != NULL) 2223 metaslab_class_add(spa->spa_log_class, mg); 2224 } 2225 2226 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2227 2228 return (spa_vdev_state_exit(spa, vd, 0)); 2229 } 2230 2231 /* 2232 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2233 * vdev_offline(), we assume the spa config is locked. We also clear all 2234 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2235 */ 2236 void 2237 vdev_clear(spa_t *spa, vdev_t *vd) 2238 { 2239 vdev_t *rvd = spa->spa_root_vdev; 2240 2241 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2242 2243 if (vd == NULL) 2244 vd = rvd; 2245 2246 vd->vdev_stat.vs_read_errors = 0; 2247 vd->vdev_stat.vs_write_errors = 0; 2248 vd->vdev_stat.vs_checksum_errors = 0; 2249 2250 for (int c = 0; c < vd->vdev_children; c++) 2251 vdev_clear(spa, vd->vdev_child[c]); 2252 2253 /* 2254 * If we're in the FAULTED state or have experienced failed I/O, then 2255 * clear the persistent state and attempt to reopen the device. We 2256 * also mark the vdev config dirty, so that the new faulted state is 2257 * written out to disk. 2258 */ 2259 if (vd->vdev_faulted || vd->vdev_degraded || 2260 !vdev_readable(vd) || !vdev_writeable(vd)) { 2261 2262 /* 2263 * When reopening in reponse to a clear event, it may be due to 2264 * a fmadm repair request. In this case, if the device is 2265 * still broken, we want to still post the ereport again. 2266 */ 2267 vd->vdev_forcefault = B_TRUE; 2268 2269 vd->vdev_faulted = vd->vdev_degraded = 0; 2270 vd->vdev_cant_read = B_FALSE; 2271 vd->vdev_cant_write = B_FALSE; 2272 2273 vdev_reopen(vd); 2274 2275 vd->vdev_forcefault = B_FALSE; 2276 2277 if (vd != rvd) 2278 vdev_state_dirty(vd->vdev_top); 2279 2280 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2281 spa_async_request(spa, SPA_ASYNC_RESILVER); 2282 2283 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2284 } 2285 2286 /* 2287 * When clearing a FMA-diagnosed fault, we always want to 2288 * unspare the device, as we assume that the original spare was 2289 * done in response to the FMA fault. 2290 */ 2291 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2292 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2293 vd->vdev_parent->vdev_child[0] == vd) 2294 vd->vdev_unspare = B_TRUE; 2295 } 2296 2297 boolean_t 2298 vdev_is_dead(vdev_t *vd) 2299 { 2300 /* 2301 * Holes and missing devices are always considered "dead". 2302 * This simplifies the code since we don't have to check for 2303 * these types of devices in the various code paths. 2304 * Instead we rely on the fact that we skip over dead devices 2305 * before issuing I/O to them. 2306 */ 2307 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2308 vd->vdev_ops == &vdev_missing_ops); 2309 } 2310 2311 boolean_t 2312 vdev_readable(vdev_t *vd) 2313 { 2314 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2315 } 2316 2317 boolean_t 2318 vdev_writeable(vdev_t *vd) 2319 { 2320 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2321 } 2322 2323 boolean_t 2324 vdev_allocatable(vdev_t *vd) 2325 { 2326 uint64_t state = vd->vdev_state; 2327 2328 /* 2329 * We currently allow allocations from vdevs which may be in the 2330 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2331 * fails to reopen then we'll catch it later when we're holding 2332 * the proper locks. Note that we have to get the vdev state 2333 * in a local variable because although it changes atomically, 2334 * we're asking two separate questions about it. 2335 */ 2336 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2337 !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing); 2338 } 2339 2340 boolean_t 2341 vdev_accessible(vdev_t *vd, zio_t *zio) 2342 { 2343 ASSERT(zio->io_vd == vd); 2344 2345 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2346 return (B_FALSE); 2347 2348 if (zio->io_type == ZIO_TYPE_READ) 2349 return (!vd->vdev_cant_read); 2350 2351 if (zio->io_type == ZIO_TYPE_WRITE) 2352 return (!vd->vdev_cant_write); 2353 2354 return (B_TRUE); 2355 } 2356 2357 /* 2358 * Get statistics for the given vdev. 2359 */ 2360 void 2361 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2362 { 2363 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2364 2365 mutex_enter(&vd->vdev_stat_lock); 2366 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2367 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2368 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2369 vs->vs_state = vd->vdev_state; 2370 vs->vs_rsize = vdev_get_min_asize(vd); 2371 if (vd->vdev_ops->vdev_op_leaf) 2372 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2373 mutex_exit(&vd->vdev_stat_lock); 2374 2375 /* 2376 * If we're getting stats on the root vdev, aggregate the I/O counts 2377 * over all top-level vdevs (i.e. the direct children of the root). 2378 */ 2379 if (vd == rvd) { 2380 for (int c = 0; c < rvd->vdev_children; c++) { 2381 vdev_t *cvd = rvd->vdev_child[c]; 2382 vdev_stat_t *cvs = &cvd->vdev_stat; 2383 2384 mutex_enter(&vd->vdev_stat_lock); 2385 for (int t = 0; t < ZIO_TYPES; t++) { 2386 vs->vs_ops[t] += cvs->vs_ops[t]; 2387 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2388 } 2389 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2390 mutex_exit(&vd->vdev_stat_lock); 2391 } 2392 } 2393 } 2394 2395 void 2396 vdev_clear_stats(vdev_t *vd) 2397 { 2398 mutex_enter(&vd->vdev_stat_lock); 2399 vd->vdev_stat.vs_space = 0; 2400 vd->vdev_stat.vs_dspace = 0; 2401 vd->vdev_stat.vs_alloc = 0; 2402 mutex_exit(&vd->vdev_stat_lock); 2403 } 2404 2405 void 2406 vdev_stat_update(zio_t *zio, uint64_t psize) 2407 { 2408 spa_t *spa = zio->io_spa; 2409 vdev_t *rvd = spa->spa_root_vdev; 2410 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2411 vdev_t *pvd; 2412 uint64_t txg = zio->io_txg; 2413 vdev_stat_t *vs = &vd->vdev_stat; 2414 zio_type_t type = zio->io_type; 2415 int flags = zio->io_flags; 2416 2417 /* 2418 * If this i/o is a gang leader, it didn't do any actual work. 2419 */ 2420 if (zio->io_gang_tree) 2421 return; 2422 2423 if (zio->io_error == 0) { 2424 /* 2425 * If this is a root i/o, don't count it -- we've already 2426 * counted the top-level vdevs, and vdev_get_stats() will 2427 * aggregate them when asked. This reduces contention on 2428 * the root vdev_stat_lock and implicitly handles blocks 2429 * that compress away to holes, for which there is no i/o. 2430 * (Holes never create vdev children, so all the counters 2431 * remain zero, which is what we want.) 2432 * 2433 * Note: this only applies to successful i/o (io_error == 0) 2434 * because unlike i/o counts, errors are not additive. 2435 * When reading a ditto block, for example, failure of 2436 * one top-level vdev does not imply a root-level error. 2437 */ 2438 if (vd == rvd) 2439 return; 2440 2441 ASSERT(vd == zio->io_vd); 2442 2443 if (flags & ZIO_FLAG_IO_BYPASS) 2444 return; 2445 2446 mutex_enter(&vd->vdev_stat_lock); 2447 2448 if (flags & ZIO_FLAG_IO_REPAIR) { 2449 if (flags & ZIO_FLAG_SCRUB_THREAD) 2450 vs->vs_scrub_repaired += psize; 2451 if (flags & ZIO_FLAG_SELF_HEAL) 2452 vs->vs_self_healed += psize; 2453 } 2454 2455 vs->vs_ops[type]++; 2456 vs->vs_bytes[type] += psize; 2457 2458 mutex_exit(&vd->vdev_stat_lock); 2459 return; 2460 } 2461 2462 if (flags & ZIO_FLAG_SPECULATIVE) 2463 return; 2464 2465 /* 2466 * If this is an I/O error that is going to be retried, then ignore the 2467 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2468 * hard errors, when in reality they can happen for any number of 2469 * innocuous reasons (bus resets, MPxIO link failure, etc). 2470 */ 2471 if (zio->io_error == EIO && 2472 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2473 return; 2474 2475 /* 2476 * Intent logs writes won't propagate their error to the root 2477 * I/O so don't mark these types of failures as pool-level 2478 * errors. 2479 */ 2480 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2481 return; 2482 2483 mutex_enter(&vd->vdev_stat_lock); 2484 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2485 if (zio->io_error == ECKSUM) 2486 vs->vs_checksum_errors++; 2487 else 2488 vs->vs_read_errors++; 2489 } 2490 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2491 vs->vs_write_errors++; 2492 mutex_exit(&vd->vdev_stat_lock); 2493 2494 if (type == ZIO_TYPE_WRITE && txg != 0 && 2495 (!(flags & ZIO_FLAG_IO_REPAIR) || 2496 (flags & ZIO_FLAG_SCRUB_THREAD) || 2497 spa->spa_claiming)) { 2498 /* 2499 * This is either a normal write (not a repair), or it's 2500 * a repair induced by the scrub thread, or it's a repair 2501 * made by zil_claim() during spa_load() in the first txg. 2502 * In the normal case, we commit the DTL change in the same 2503 * txg as the block was born. In the scrub-induced repair 2504 * case, we know that scrubs run in first-pass syncing context, 2505 * so we commit the DTL change in spa_syncing_txg(spa). 2506 * In the zil_claim() case, we commit in spa_first_txg(spa). 2507 * 2508 * We currently do not make DTL entries for failed spontaneous 2509 * self-healing writes triggered by normal (non-scrubbing) 2510 * reads, because we have no transactional context in which to 2511 * do so -- and it's not clear that it'd be desirable anyway. 2512 */ 2513 if (vd->vdev_ops->vdev_op_leaf) { 2514 uint64_t commit_txg = txg; 2515 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2516 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2517 ASSERT(spa_sync_pass(spa) == 1); 2518 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2519 commit_txg = spa_syncing_txg(spa); 2520 } else if (spa->spa_claiming) { 2521 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2522 commit_txg = spa_first_txg(spa); 2523 } 2524 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2525 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2526 return; 2527 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2528 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2529 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2530 } 2531 if (vd != rvd) 2532 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2533 } 2534 } 2535 2536 void 2537 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2538 { 2539 vdev_stat_t *vs = &vd->vdev_stat; 2540 2541 for (int c = 0; c < vd->vdev_children; c++) 2542 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2543 2544 mutex_enter(&vd->vdev_stat_lock); 2545 2546 if (type == POOL_SCRUB_NONE) { 2547 /* 2548 * Update completion and end time. Leave everything else alone 2549 * so we can report what happened during the previous scrub. 2550 */ 2551 vs->vs_scrub_complete = complete; 2552 vs->vs_scrub_end = gethrestime_sec(); 2553 } else { 2554 vs->vs_scrub_type = type; 2555 vs->vs_scrub_complete = 0; 2556 vs->vs_scrub_examined = 0; 2557 vs->vs_scrub_repaired = 0; 2558 vs->vs_scrub_start = gethrestime_sec(); 2559 vs->vs_scrub_end = 0; 2560 } 2561 2562 mutex_exit(&vd->vdev_stat_lock); 2563 } 2564 2565 /* 2566 * Update the in-core space usage stats for this vdev, its metaslab class, 2567 * and the root vdev. 2568 */ 2569 void 2570 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2571 int64_t space_delta) 2572 { 2573 int64_t dspace_delta = space_delta; 2574 spa_t *spa = vd->vdev_spa; 2575 vdev_t *rvd = spa->spa_root_vdev; 2576 metaslab_group_t *mg = vd->vdev_mg; 2577 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2578 2579 ASSERT(vd == vd->vdev_top); 2580 2581 /* 2582 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2583 * factor. We must calculate this here and not at the root vdev 2584 * because the root vdev's psize-to-asize is simply the max of its 2585 * childrens', thus not accurate enough for us. 2586 */ 2587 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2588 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2589 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2590 vd->vdev_deflate_ratio; 2591 2592 mutex_enter(&vd->vdev_stat_lock); 2593 vd->vdev_stat.vs_alloc += alloc_delta; 2594 vd->vdev_stat.vs_space += space_delta; 2595 vd->vdev_stat.vs_dspace += dspace_delta; 2596 mutex_exit(&vd->vdev_stat_lock); 2597 2598 if (mc == spa_normal_class(spa)) { 2599 mutex_enter(&rvd->vdev_stat_lock); 2600 rvd->vdev_stat.vs_alloc += alloc_delta; 2601 rvd->vdev_stat.vs_space += space_delta; 2602 rvd->vdev_stat.vs_dspace += dspace_delta; 2603 mutex_exit(&rvd->vdev_stat_lock); 2604 } 2605 2606 if (mc != NULL) { 2607 ASSERT(rvd == vd->vdev_parent); 2608 ASSERT(vd->vdev_ms_count != 0); 2609 2610 metaslab_class_space_update(mc, 2611 alloc_delta, defer_delta, space_delta, dspace_delta); 2612 } 2613 } 2614 2615 /* 2616 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2617 * so that it will be written out next time the vdev configuration is synced. 2618 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2619 */ 2620 void 2621 vdev_config_dirty(vdev_t *vd) 2622 { 2623 spa_t *spa = vd->vdev_spa; 2624 vdev_t *rvd = spa->spa_root_vdev; 2625 int c; 2626 2627 /* 2628 * If this is an aux vdev (as with l2cache and spare devices), then we 2629 * update the vdev config manually and set the sync flag. 2630 */ 2631 if (vd->vdev_aux != NULL) { 2632 spa_aux_vdev_t *sav = vd->vdev_aux; 2633 nvlist_t **aux; 2634 uint_t naux; 2635 2636 for (c = 0; c < sav->sav_count; c++) { 2637 if (sav->sav_vdevs[c] == vd) 2638 break; 2639 } 2640 2641 if (c == sav->sav_count) { 2642 /* 2643 * We're being removed. There's nothing more to do. 2644 */ 2645 ASSERT(sav->sav_sync == B_TRUE); 2646 return; 2647 } 2648 2649 sav->sav_sync = B_TRUE; 2650 2651 if (nvlist_lookup_nvlist_array(sav->sav_config, 2652 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2653 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2654 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2655 } 2656 2657 ASSERT(c < naux); 2658 2659 /* 2660 * Setting the nvlist in the middle if the array is a little 2661 * sketchy, but it will work. 2662 */ 2663 nvlist_free(aux[c]); 2664 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2665 2666 return; 2667 } 2668 2669 /* 2670 * The dirty list is protected by the SCL_CONFIG lock. The caller 2671 * must either hold SCL_CONFIG as writer, or must be the sync thread 2672 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2673 * so this is sufficient to ensure mutual exclusion. 2674 */ 2675 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2676 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2677 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2678 2679 if (vd == rvd) { 2680 for (c = 0; c < rvd->vdev_children; c++) 2681 vdev_config_dirty(rvd->vdev_child[c]); 2682 } else { 2683 ASSERT(vd == vd->vdev_top); 2684 2685 if (!list_link_active(&vd->vdev_config_dirty_node) && 2686 !vd->vdev_ishole) 2687 list_insert_head(&spa->spa_config_dirty_list, vd); 2688 } 2689 } 2690 2691 void 2692 vdev_config_clean(vdev_t *vd) 2693 { 2694 spa_t *spa = vd->vdev_spa; 2695 2696 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2697 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2698 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2699 2700 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2701 list_remove(&spa->spa_config_dirty_list, vd); 2702 } 2703 2704 /* 2705 * Mark a top-level vdev's state as dirty, so that the next pass of 2706 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2707 * the state changes from larger config changes because they require 2708 * much less locking, and are often needed for administrative actions. 2709 */ 2710 void 2711 vdev_state_dirty(vdev_t *vd) 2712 { 2713 spa_t *spa = vd->vdev_spa; 2714 2715 ASSERT(vd == vd->vdev_top); 2716 2717 /* 2718 * The state list is protected by the SCL_STATE lock. The caller 2719 * must either hold SCL_STATE as writer, or must be the sync thread 2720 * (which holds SCL_STATE as reader). There's only one sync thread, 2721 * so this is sufficient to ensure mutual exclusion. 2722 */ 2723 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2724 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2725 spa_config_held(spa, SCL_STATE, RW_READER))); 2726 2727 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2728 list_insert_head(&spa->spa_state_dirty_list, vd); 2729 } 2730 2731 void 2732 vdev_state_clean(vdev_t *vd) 2733 { 2734 spa_t *spa = vd->vdev_spa; 2735 2736 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2737 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2738 spa_config_held(spa, SCL_STATE, RW_READER))); 2739 2740 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2741 list_remove(&spa->spa_state_dirty_list, vd); 2742 } 2743 2744 /* 2745 * Propagate vdev state up from children to parent. 2746 */ 2747 void 2748 vdev_propagate_state(vdev_t *vd) 2749 { 2750 spa_t *spa = vd->vdev_spa; 2751 vdev_t *rvd = spa->spa_root_vdev; 2752 int degraded = 0, faulted = 0; 2753 int corrupted = 0; 2754 vdev_t *child; 2755 2756 if (vd->vdev_children > 0) { 2757 for (int c = 0; c < vd->vdev_children; c++) { 2758 child = vd->vdev_child[c]; 2759 2760 /* 2761 * Don't factor holes into the decision. 2762 */ 2763 if (child->vdev_ishole) 2764 continue; 2765 2766 if (!vdev_readable(child) || 2767 (!vdev_writeable(child) && spa_writeable(spa))) { 2768 /* 2769 * Root special: if there is a top-level log 2770 * device, treat the root vdev as if it were 2771 * degraded. 2772 */ 2773 if (child->vdev_islog && vd == rvd) 2774 degraded++; 2775 else 2776 faulted++; 2777 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2778 degraded++; 2779 } 2780 2781 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2782 corrupted++; 2783 } 2784 2785 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2786 2787 /* 2788 * Root special: if there is a top-level vdev that cannot be 2789 * opened due to corrupted metadata, then propagate the root 2790 * vdev's aux state as 'corrupt' rather than 'insufficient 2791 * replicas'. 2792 */ 2793 if (corrupted && vd == rvd && 2794 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2795 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2796 VDEV_AUX_CORRUPT_DATA); 2797 } 2798 2799 if (vd->vdev_parent) 2800 vdev_propagate_state(vd->vdev_parent); 2801 } 2802 2803 /* 2804 * Set a vdev's state. If this is during an open, we don't update the parent 2805 * state, because we're in the process of opening children depth-first. 2806 * Otherwise, we propagate the change to the parent. 2807 * 2808 * If this routine places a device in a faulted state, an appropriate ereport is 2809 * generated. 2810 */ 2811 void 2812 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2813 { 2814 uint64_t save_state; 2815 spa_t *spa = vd->vdev_spa; 2816 2817 if (state == vd->vdev_state) { 2818 vd->vdev_stat.vs_aux = aux; 2819 return; 2820 } 2821 2822 save_state = vd->vdev_state; 2823 2824 vd->vdev_state = state; 2825 vd->vdev_stat.vs_aux = aux; 2826 2827 /* 2828 * If we are setting the vdev state to anything but an open state, then 2829 * always close the underlying device. Otherwise, we keep accessible 2830 * but invalid devices open forever. We don't call vdev_close() itself, 2831 * because that implies some extra checks (offline, etc) that we don't 2832 * want here. This is limited to leaf devices, because otherwise 2833 * closing the device will affect other children. 2834 */ 2835 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2836 vd->vdev_ops->vdev_op_close(vd); 2837 2838 /* 2839 * If we have brought this vdev back into service, we need 2840 * to notify fmd so that it can gracefully repair any outstanding 2841 * cases due to a missing device. We do this in all cases, even those 2842 * that probably don't correlate to a repaired fault. This is sure to 2843 * catch all cases, and we let the zfs-retire agent sort it out. If 2844 * this is a transient state it's OK, as the retire agent will 2845 * double-check the state of the vdev before repairing it. 2846 */ 2847 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 2848 vd->vdev_prevstate != state) 2849 zfs_post_state_change(spa, vd); 2850 2851 if (vd->vdev_removed && 2852 state == VDEV_STATE_CANT_OPEN && 2853 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2854 /* 2855 * If the previous state is set to VDEV_STATE_REMOVED, then this 2856 * device was previously marked removed and someone attempted to 2857 * reopen it. If this failed due to a nonexistent device, then 2858 * keep the device in the REMOVED state. We also let this be if 2859 * it is one of our special test online cases, which is only 2860 * attempting to online the device and shouldn't generate an FMA 2861 * fault. 2862 */ 2863 vd->vdev_state = VDEV_STATE_REMOVED; 2864 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2865 } else if (state == VDEV_STATE_REMOVED) { 2866 vd->vdev_removed = B_TRUE; 2867 } else if (state == VDEV_STATE_CANT_OPEN) { 2868 /* 2869 * If we fail to open a vdev during an import, we mark it as 2870 * "not available", which signifies that it was never there to 2871 * begin with. Failure to open such a device is not considered 2872 * an error. 2873 */ 2874 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2875 vd->vdev_ops->vdev_op_leaf) 2876 vd->vdev_not_present = 1; 2877 2878 /* 2879 * Post the appropriate ereport. If the 'prevstate' field is 2880 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2881 * that this is part of a vdev_reopen(). In this case, we don't 2882 * want to post the ereport if the device was already in the 2883 * CANT_OPEN state beforehand. 2884 * 2885 * If the 'checkremove' flag is set, then this is an attempt to 2886 * online the device in response to an insertion event. If we 2887 * hit this case, then we have detected an insertion event for a 2888 * faulted or offline device that wasn't in the removed state. 2889 * In this scenario, we don't post an ereport because we are 2890 * about to replace the device, or attempt an online with 2891 * vdev_forcefault, which will generate the fault for us. 2892 */ 2893 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2894 !vd->vdev_not_present && !vd->vdev_checkremove && 2895 vd != spa->spa_root_vdev) { 2896 const char *class; 2897 2898 switch (aux) { 2899 case VDEV_AUX_OPEN_FAILED: 2900 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2901 break; 2902 case VDEV_AUX_CORRUPT_DATA: 2903 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2904 break; 2905 case VDEV_AUX_NO_REPLICAS: 2906 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2907 break; 2908 case VDEV_AUX_BAD_GUID_SUM: 2909 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2910 break; 2911 case VDEV_AUX_TOO_SMALL: 2912 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2913 break; 2914 case VDEV_AUX_BAD_LABEL: 2915 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2916 break; 2917 case VDEV_AUX_IO_FAILURE: 2918 class = FM_EREPORT_ZFS_IO_FAILURE; 2919 break; 2920 default: 2921 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2922 } 2923 2924 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2925 } 2926 2927 /* Erase any notion of persistent removed state */ 2928 vd->vdev_removed = B_FALSE; 2929 } else { 2930 vd->vdev_removed = B_FALSE; 2931 } 2932 2933 if (!isopen && vd->vdev_parent) 2934 vdev_propagate_state(vd->vdev_parent); 2935 } 2936 2937 /* 2938 * Check the vdev configuration to ensure that it's capable of supporting 2939 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2940 * In addition, only a single top-level vdev is allowed and none of the leaves 2941 * can be wholedisks. 2942 */ 2943 boolean_t 2944 vdev_is_bootable(vdev_t *vd) 2945 { 2946 if (!vd->vdev_ops->vdev_op_leaf) { 2947 char *vdev_type = vd->vdev_ops->vdev_op_type; 2948 2949 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2950 vd->vdev_children > 1) { 2951 return (B_FALSE); 2952 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2953 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2954 return (B_FALSE); 2955 } 2956 } else if (vd->vdev_wholedisk == 1) { 2957 return (B_FALSE); 2958 } 2959 2960 for (int c = 0; c < vd->vdev_children; c++) { 2961 if (!vdev_is_bootable(vd->vdev_child[c])) 2962 return (B_FALSE); 2963 } 2964 return (B_TRUE); 2965 } 2966 2967 /* 2968 * Load the state from the original vdev tree (ovd) which 2969 * we've retrieved from the MOS config object. If the original 2970 * vdev was offline then we transfer that state to the device 2971 * in the current vdev tree (nvd). 2972 */ 2973 void 2974 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 2975 { 2976 spa_t *spa = nvd->vdev_spa; 2977 2978 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2979 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 2980 2981 for (int c = 0; c < nvd->vdev_children; c++) 2982 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 2983 2984 if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) { 2985 /* 2986 * It would be nice to call vdev_offline() 2987 * directly but the pool isn't fully loaded and 2988 * the txg threads have not been started yet. 2989 */ 2990 nvd->vdev_offline = ovd->vdev_offline; 2991 vdev_reopen(nvd->vdev_top); 2992 } 2993 } 2994 2995 /* 2996 * Expand a vdev if possible. 2997 */ 2998 void 2999 vdev_expand(vdev_t *vd, uint64_t txg) 3000 { 3001 ASSERT(vd->vdev_top == vd); 3002 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3003 3004 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3005 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3006 vdev_config_dirty(vd); 3007 } 3008 } 3009