xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev.c (revision 94dd93aee32d1616436eb51fb7b58094b9a8d3e8)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/fm/fs/zfs.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/arc.h>
43 #include <sys/zil.h>
44 #include <sys/dsl_scan.h>
45 
46 /*
47  * Virtual device management.
48  */
49 
50 static vdev_ops_t *vdev_ops_table[] = {
51 	&vdev_root_ops,
52 	&vdev_raidz_ops,
53 	&vdev_mirror_ops,
54 	&vdev_replacing_ops,
55 	&vdev_spare_ops,
56 	&vdev_disk_ops,
57 	&vdev_file_ops,
58 	&vdev_missing_ops,
59 	&vdev_hole_ops,
60 	NULL
61 };
62 
63 /* maximum scrub/resilver I/O queue per leaf vdev */
64 int zfs_scrub_limit = 10;
65 
66 /*
67  * Given a vdev type, return the appropriate ops vector.
68  */
69 static vdev_ops_t *
70 vdev_getops(const char *type)
71 {
72 	vdev_ops_t *ops, **opspp;
73 
74 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
75 		if (strcmp(ops->vdev_op_type, type) == 0)
76 			break;
77 
78 	return (ops);
79 }
80 
81 /*
82  * Default asize function: return the MAX of psize with the asize of
83  * all children.  This is what's used by anything other than RAID-Z.
84  */
85 uint64_t
86 vdev_default_asize(vdev_t *vd, uint64_t psize)
87 {
88 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
89 	uint64_t csize;
90 
91 	for (int c = 0; c < vd->vdev_children; c++) {
92 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
93 		asize = MAX(asize, csize);
94 	}
95 
96 	return (asize);
97 }
98 
99 /*
100  * Get the minimum allocatable size. We define the allocatable size as
101  * the vdev's asize rounded to the nearest metaslab. This allows us to
102  * replace or attach devices which don't have the same physical size but
103  * can still satisfy the same number of allocations.
104  */
105 uint64_t
106 vdev_get_min_asize(vdev_t *vd)
107 {
108 	vdev_t *pvd = vd->vdev_parent;
109 
110 	/*
111 	 * If our parent is NULL (inactive spare or cache) or is the root,
112 	 * just return our own asize.
113 	 */
114 	if (pvd == NULL)
115 		return (vd->vdev_asize);
116 
117 	/*
118 	 * The top-level vdev just returns the allocatable size rounded
119 	 * to the nearest metaslab.
120 	 */
121 	if (vd == vd->vdev_top)
122 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
123 
124 	/*
125 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
126 	 * so each child must provide at least 1/Nth of its asize.
127 	 */
128 	if (pvd->vdev_ops == &vdev_raidz_ops)
129 		return (pvd->vdev_min_asize / pvd->vdev_children);
130 
131 	return (pvd->vdev_min_asize);
132 }
133 
134 void
135 vdev_set_min_asize(vdev_t *vd)
136 {
137 	vd->vdev_min_asize = vdev_get_min_asize(vd);
138 
139 	for (int c = 0; c < vd->vdev_children; c++)
140 		vdev_set_min_asize(vd->vdev_child[c]);
141 }
142 
143 vdev_t *
144 vdev_lookup_top(spa_t *spa, uint64_t vdev)
145 {
146 	vdev_t *rvd = spa->spa_root_vdev;
147 
148 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
149 
150 	if (vdev < rvd->vdev_children) {
151 		ASSERT(rvd->vdev_child[vdev] != NULL);
152 		return (rvd->vdev_child[vdev]);
153 	}
154 
155 	return (NULL);
156 }
157 
158 vdev_t *
159 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
160 {
161 	vdev_t *mvd;
162 
163 	if (vd->vdev_guid == guid)
164 		return (vd);
165 
166 	for (int c = 0; c < vd->vdev_children; c++)
167 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
168 		    NULL)
169 			return (mvd);
170 
171 	return (NULL);
172 }
173 
174 void
175 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
176 {
177 	size_t oldsize, newsize;
178 	uint64_t id = cvd->vdev_id;
179 	vdev_t **newchild;
180 
181 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
182 	ASSERT(cvd->vdev_parent == NULL);
183 
184 	cvd->vdev_parent = pvd;
185 
186 	if (pvd == NULL)
187 		return;
188 
189 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
190 
191 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
192 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
193 	newsize = pvd->vdev_children * sizeof (vdev_t *);
194 
195 	newchild = kmem_zalloc(newsize, KM_SLEEP);
196 	if (pvd->vdev_child != NULL) {
197 		bcopy(pvd->vdev_child, newchild, oldsize);
198 		kmem_free(pvd->vdev_child, oldsize);
199 	}
200 
201 	pvd->vdev_child = newchild;
202 	pvd->vdev_child[id] = cvd;
203 
204 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
205 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
206 
207 	/*
208 	 * Walk up all ancestors to update guid sum.
209 	 */
210 	for (; pvd != NULL; pvd = pvd->vdev_parent)
211 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
212 }
213 
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 	int c;
218 	uint_t id = cvd->vdev_id;
219 
220 	ASSERT(cvd->vdev_parent == pvd);
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id < pvd->vdev_children);
226 	ASSERT(pvd->vdev_child[id] == cvd);
227 
228 	pvd->vdev_child[id] = NULL;
229 	cvd->vdev_parent = NULL;
230 
231 	for (c = 0; c < pvd->vdev_children; c++)
232 		if (pvd->vdev_child[c])
233 			break;
234 
235 	if (c == pvd->vdev_children) {
236 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 		pvd->vdev_child = NULL;
238 		pvd->vdev_children = 0;
239 	}
240 
241 	/*
242 	 * Walk up all ancestors to update guid sum.
243 	 */
244 	for (; pvd != NULL; pvd = pvd->vdev_parent)
245 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 }
247 
248 /*
249  * Remove any holes in the child array.
250  */
251 void
252 vdev_compact_children(vdev_t *pvd)
253 {
254 	vdev_t **newchild, *cvd;
255 	int oldc = pvd->vdev_children;
256 	int newc;
257 
258 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
259 
260 	for (int c = newc = 0; c < oldc; c++)
261 		if (pvd->vdev_child[c])
262 			newc++;
263 
264 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
265 
266 	for (int c = newc = 0; c < oldc; c++) {
267 		if ((cvd = pvd->vdev_child[c]) != NULL) {
268 			newchild[newc] = cvd;
269 			cvd->vdev_id = newc++;
270 		}
271 	}
272 
273 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
274 	pvd->vdev_child = newchild;
275 	pvd->vdev_children = newc;
276 }
277 
278 /*
279  * Allocate and minimally initialize a vdev_t.
280  */
281 vdev_t *
282 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
283 {
284 	vdev_t *vd;
285 
286 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
287 
288 	if (spa->spa_root_vdev == NULL) {
289 		ASSERT(ops == &vdev_root_ops);
290 		spa->spa_root_vdev = vd;
291 		spa->spa_load_guid = spa_generate_guid(NULL);
292 	}
293 
294 	if (guid == 0 && ops != &vdev_hole_ops) {
295 		if (spa->spa_root_vdev == vd) {
296 			/*
297 			 * The root vdev's guid will also be the pool guid,
298 			 * which must be unique among all pools.
299 			 */
300 			guid = spa_generate_guid(NULL);
301 		} else {
302 			/*
303 			 * Any other vdev's guid must be unique within the pool.
304 			 */
305 			guid = spa_generate_guid(spa);
306 		}
307 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 	}
309 
310 	vd->vdev_spa = spa;
311 	vd->vdev_id = id;
312 	vd->vdev_guid = guid;
313 	vd->vdev_guid_sum = guid;
314 	vd->vdev_ops = ops;
315 	vd->vdev_state = VDEV_STATE_CLOSED;
316 	vd->vdev_ishole = (ops == &vdev_hole_ops);
317 
318 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
319 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
320 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
321 	for (int t = 0; t < DTL_TYPES; t++) {
322 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
323 		    &vd->vdev_dtl_lock);
324 	}
325 	txg_list_create(&vd->vdev_ms_list,
326 	    offsetof(struct metaslab, ms_txg_node));
327 	txg_list_create(&vd->vdev_dtl_list,
328 	    offsetof(struct vdev, vdev_dtl_node));
329 	vd->vdev_stat.vs_timestamp = gethrtime();
330 	vdev_queue_init(vd);
331 	vdev_cache_init(vd);
332 
333 	return (vd);
334 }
335 
336 /*
337  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
338  * creating a new vdev or loading an existing one - the behavior is slightly
339  * different for each case.
340  */
341 int
342 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
343     int alloctype)
344 {
345 	vdev_ops_t *ops;
346 	char *type;
347 	uint64_t guid = 0, islog, nparity;
348 	vdev_t *vd;
349 
350 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
351 
352 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
353 		return (EINVAL);
354 
355 	if ((ops = vdev_getops(type)) == NULL)
356 		return (EINVAL);
357 
358 	/*
359 	 * If this is a load, get the vdev guid from the nvlist.
360 	 * Otherwise, vdev_alloc_common() will generate one for us.
361 	 */
362 	if (alloctype == VDEV_ALLOC_LOAD) {
363 		uint64_t label_id;
364 
365 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
366 		    label_id != id)
367 			return (EINVAL);
368 
369 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
370 			return (EINVAL);
371 	} else if (alloctype == VDEV_ALLOC_SPARE) {
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (EINVAL);
374 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (EINVAL);
380 	}
381 
382 	/*
383 	 * The first allocated vdev must be of type 'root'.
384 	 */
385 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
386 		return (EINVAL);
387 
388 	/*
389 	 * Determine whether we're a log vdev.
390 	 */
391 	islog = 0;
392 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
393 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
394 		return (ENOTSUP);
395 
396 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
397 		return (ENOTSUP);
398 
399 	/*
400 	 * Set the nparity property for RAID-Z vdevs.
401 	 */
402 	nparity = -1ULL;
403 	if (ops == &vdev_raidz_ops) {
404 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
405 		    &nparity) == 0) {
406 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
407 				return (EINVAL);
408 			/*
409 			 * Previous versions could only support 1 or 2 parity
410 			 * device.
411 			 */
412 			if (nparity > 1 &&
413 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
414 				return (ENOTSUP);
415 			if (nparity > 2 &&
416 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
417 				return (ENOTSUP);
418 		} else {
419 			/*
420 			 * We require the parity to be specified for SPAs that
421 			 * support multiple parity levels.
422 			 */
423 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
424 				return (EINVAL);
425 			/*
426 			 * Otherwise, we default to 1 parity device for RAID-Z.
427 			 */
428 			nparity = 1;
429 		}
430 	} else {
431 		nparity = 0;
432 	}
433 	ASSERT(nparity != -1ULL);
434 
435 	vd = vdev_alloc_common(spa, id, guid, ops);
436 
437 	vd->vdev_islog = islog;
438 	vd->vdev_nparity = nparity;
439 
440 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
441 		vd->vdev_path = spa_strdup(vd->vdev_path);
442 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
443 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
445 	    &vd->vdev_physpath) == 0)
446 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
448 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
449 
450 	/*
451 	 * Set the whole_disk property.  If it's not specified, leave the value
452 	 * as -1.
453 	 */
454 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
455 	    &vd->vdev_wholedisk) != 0)
456 		vd->vdev_wholedisk = -1ULL;
457 
458 	/*
459 	 * Look for the 'not present' flag.  This will only be set if the device
460 	 * was not present at the time of import.
461 	 */
462 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
463 	    &vd->vdev_not_present);
464 
465 	/*
466 	 * Get the alignment requirement.
467 	 */
468 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
469 
470 	/*
471 	 * Retrieve the vdev creation time.
472 	 */
473 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
474 	    &vd->vdev_crtxg);
475 
476 	/*
477 	 * If we're a top-level vdev, try to load the allocation parameters.
478 	 */
479 	if (parent && !parent->vdev_parent &&
480 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
481 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
482 		    &vd->vdev_ms_array);
483 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
484 		    &vd->vdev_ms_shift);
485 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
486 		    &vd->vdev_asize);
487 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
488 		    &vd->vdev_removing);
489 	}
490 
491 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
492 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 		    alloctype == VDEV_ALLOC_ADD ||
494 		    alloctype == VDEV_ALLOC_SPLIT ||
495 		    alloctype == VDEV_ALLOC_ROOTPOOL);
496 		vd->vdev_mg = metaslab_group_create(islog ?
497 		    spa_log_class(spa) : spa_normal_class(spa), vd);
498 	}
499 
500 	/*
501 	 * If we're a leaf vdev, try to load the DTL object and other state.
502 	 */
503 	if (vd->vdev_ops->vdev_op_leaf &&
504 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 		if (alloctype == VDEV_ALLOC_LOAD) {
507 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 			    &vd->vdev_dtl_smo.smo_object);
509 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 			    &vd->vdev_unspare);
511 		}
512 
513 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 			uint64_t spare = 0;
515 
516 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 			    &spare) == 0 && spare)
518 				spa_spare_add(vd);
519 		}
520 
521 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 		    &vd->vdev_offline);
523 
524 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVERING,
525 		    &vd->vdev_resilvering);
526 
527 		/*
528 		 * When importing a pool, we want to ignore the persistent fault
529 		 * state, as the diagnosis made on another system may not be
530 		 * valid in the current context.  Local vdevs will
531 		 * remain in the faulted state.
532 		 */
533 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 			    &vd->vdev_faulted);
536 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 			    &vd->vdev_degraded);
538 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 			    &vd->vdev_removed);
540 
541 			if (vd->vdev_faulted || vd->vdev_degraded) {
542 				char *aux;
543 
544 				vd->vdev_label_aux =
545 				    VDEV_AUX_ERR_EXCEEDED;
546 				if (nvlist_lookup_string(nv,
547 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 				    strcmp(aux, "external") == 0)
549 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 			}
551 		}
552 	}
553 
554 	/*
555 	 * Add ourselves to the parent's list of children.
556 	 */
557 	vdev_add_child(parent, vd);
558 
559 	*vdp = vd;
560 
561 	return (0);
562 }
563 
564 void
565 vdev_free(vdev_t *vd)
566 {
567 	spa_t *spa = vd->vdev_spa;
568 
569 	/*
570 	 * vdev_free() implies closing the vdev first.  This is simpler than
571 	 * trying to ensure complicated semantics for all callers.
572 	 */
573 	vdev_close(vd);
574 
575 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577 
578 	/*
579 	 * Free all children.
580 	 */
581 	for (int c = 0; c < vd->vdev_children; c++)
582 		vdev_free(vd->vdev_child[c]);
583 
584 	ASSERT(vd->vdev_child == NULL);
585 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586 
587 	/*
588 	 * Discard allocation state.
589 	 */
590 	if (vd->vdev_mg != NULL) {
591 		vdev_metaslab_fini(vd);
592 		metaslab_group_destroy(vd->vdev_mg);
593 	}
594 
595 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
598 
599 	/*
600 	 * Remove this vdev from its parent's child list.
601 	 */
602 	vdev_remove_child(vd->vdev_parent, vd);
603 
604 	ASSERT(vd->vdev_parent == NULL);
605 
606 	/*
607 	 * Clean up vdev structure.
608 	 */
609 	vdev_queue_fini(vd);
610 	vdev_cache_fini(vd);
611 
612 	if (vd->vdev_path)
613 		spa_strfree(vd->vdev_path);
614 	if (vd->vdev_devid)
615 		spa_strfree(vd->vdev_devid);
616 	if (vd->vdev_physpath)
617 		spa_strfree(vd->vdev_physpath);
618 	if (vd->vdev_fru)
619 		spa_strfree(vd->vdev_fru);
620 
621 	if (vd->vdev_isspare)
622 		spa_spare_remove(vd);
623 	if (vd->vdev_isl2cache)
624 		spa_l2cache_remove(vd);
625 
626 	txg_list_destroy(&vd->vdev_ms_list);
627 	txg_list_destroy(&vd->vdev_dtl_list);
628 
629 	mutex_enter(&vd->vdev_dtl_lock);
630 	for (int t = 0; t < DTL_TYPES; t++) {
631 		space_map_unload(&vd->vdev_dtl[t]);
632 		space_map_destroy(&vd->vdev_dtl[t]);
633 	}
634 	mutex_exit(&vd->vdev_dtl_lock);
635 
636 	mutex_destroy(&vd->vdev_dtl_lock);
637 	mutex_destroy(&vd->vdev_stat_lock);
638 	mutex_destroy(&vd->vdev_probe_lock);
639 
640 	if (vd == spa->spa_root_vdev)
641 		spa->spa_root_vdev = NULL;
642 
643 	kmem_free(vd, sizeof (vdev_t));
644 }
645 
646 /*
647  * Transfer top-level vdev state from svd to tvd.
648  */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652 	spa_t *spa = svd->vdev_spa;
653 	metaslab_t *msp;
654 	vdev_t *vd;
655 	int t;
656 
657 	ASSERT(tvd == tvd->vdev_top);
658 
659 	tvd->vdev_ms_array = svd->vdev_ms_array;
660 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 	tvd->vdev_ms_count = svd->vdev_ms_count;
662 
663 	svd->vdev_ms_array = 0;
664 	svd->vdev_ms_shift = 0;
665 	svd->vdev_ms_count = 0;
666 
667 	if (tvd->vdev_mg)
668 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
669 	tvd->vdev_mg = svd->vdev_mg;
670 	tvd->vdev_ms = svd->vdev_ms;
671 
672 	svd->vdev_mg = NULL;
673 	svd->vdev_ms = NULL;
674 
675 	if (tvd->vdev_mg != NULL)
676 		tvd->vdev_mg->mg_vd = tvd;
677 
678 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
679 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
680 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
681 
682 	svd->vdev_stat.vs_alloc = 0;
683 	svd->vdev_stat.vs_space = 0;
684 	svd->vdev_stat.vs_dspace = 0;
685 
686 	for (t = 0; t < TXG_SIZE; t++) {
687 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
688 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
689 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
690 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
691 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
692 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
693 	}
694 
695 	if (list_link_active(&svd->vdev_config_dirty_node)) {
696 		vdev_config_clean(svd);
697 		vdev_config_dirty(tvd);
698 	}
699 
700 	if (list_link_active(&svd->vdev_state_dirty_node)) {
701 		vdev_state_clean(svd);
702 		vdev_state_dirty(tvd);
703 	}
704 
705 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
706 	svd->vdev_deflate_ratio = 0;
707 
708 	tvd->vdev_islog = svd->vdev_islog;
709 	svd->vdev_islog = 0;
710 }
711 
712 static void
713 vdev_top_update(vdev_t *tvd, vdev_t *vd)
714 {
715 	if (vd == NULL)
716 		return;
717 
718 	vd->vdev_top = tvd;
719 
720 	for (int c = 0; c < vd->vdev_children; c++)
721 		vdev_top_update(tvd, vd->vdev_child[c]);
722 }
723 
724 /*
725  * Add a mirror/replacing vdev above an existing vdev.
726  */
727 vdev_t *
728 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
729 {
730 	spa_t *spa = cvd->vdev_spa;
731 	vdev_t *pvd = cvd->vdev_parent;
732 	vdev_t *mvd;
733 
734 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
735 
736 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
737 
738 	mvd->vdev_asize = cvd->vdev_asize;
739 	mvd->vdev_min_asize = cvd->vdev_min_asize;
740 	mvd->vdev_max_asize = cvd->vdev_max_asize;
741 	mvd->vdev_ashift = cvd->vdev_ashift;
742 	mvd->vdev_state = cvd->vdev_state;
743 	mvd->vdev_crtxg = cvd->vdev_crtxg;
744 
745 	vdev_remove_child(pvd, cvd);
746 	vdev_add_child(pvd, mvd);
747 	cvd->vdev_id = mvd->vdev_children;
748 	vdev_add_child(mvd, cvd);
749 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
750 
751 	if (mvd == mvd->vdev_top)
752 		vdev_top_transfer(cvd, mvd);
753 
754 	return (mvd);
755 }
756 
757 /*
758  * Remove a 1-way mirror/replacing vdev from the tree.
759  */
760 void
761 vdev_remove_parent(vdev_t *cvd)
762 {
763 	vdev_t *mvd = cvd->vdev_parent;
764 	vdev_t *pvd = mvd->vdev_parent;
765 
766 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
767 
768 	ASSERT(mvd->vdev_children == 1);
769 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
770 	    mvd->vdev_ops == &vdev_replacing_ops ||
771 	    mvd->vdev_ops == &vdev_spare_ops);
772 	cvd->vdev_ashift = mvd->vdev_ashift;
773 
774 	vdev_remove_child(mvd, cvd);
775 	vdev_remove_child(pvd, mvd);
776 
777 	/*
778 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
779 	 * Otherwise, we could have detached an offline device, and when we
780 	 * go to import the pool we'll think we have two top-level vdevs,
781 	 * instead of a different version of the same top-level vdev.
782 	 */
783 	if (mvd->vdev_top == mvd) {
784 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
785 		cvd->vdev_orig_guid = cvd->vdev_guid;
786 		cvd->vdev_guid += guid_delta;
787 		cvd->vdev_guid_sum += guid_delta;
788 	}
789 	cvd->vdev_id = mvd->vdev_id;
790 	vdev_add_child(pvd, cvd);
791 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
792 
793 	if (cvd == cvd->vdev_top)
794 		vdev_top_transfer(mvd, cvd);
795 
796 	ASSERT(mvd->vdev_children == 0);
797 	vdev_free(mvd);
798 }
799 
800 int
801 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
802 {
803 	spa_t *spa = vd->vdev_spa;
804 	objset_t *mos = spa->spa_meta_objset;
805 	uint64_t m;
806 	uint64_t oldc = vd->vdev_ms_count;
807 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
808 	metaslab_t **mspp;
809 	int error;
810 
811 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
812 
813 	/*
814 	 * This vdev is not being allocated from yet or is a hole.
815 	 */
816 	if (vd->vdev_ms_shift == 0)
817 		return (0);
818 
819 	ASSERT(!vd->vdev_ishole);
820 
821 	/*
822 	 * Compute the raidz-deflation ratio.  Note, we hard-code
823 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
824 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
825 	 * or we will inconsistently account for existing bp's.
826 	 */
827 	vd->vdev_deflate_ratio = (1 << 17) /
828 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
829 
830 	ASSERT(oldc <= newc);
831 
832 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
833 
834 	if (oldc != 0) {
835 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
836 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
837 	}
838 
839 	vd->vdev_ms = mspp;
840 	vd->vdev_ms_count = newc;
841 
842 	for (m = oldc; m < newc; m++) {
843 		space_map_obj_t smo = { 0, 0, 0 };
844 		if (txg == 0) {
845 			uint64_t object = 0;
846 			error = dmu_read(mos, vd->vdev_ms_array,
847 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
848 			    DMU_READ_PREFETCH);
849 			if (error)
850 				return (error);
851 			if (object != 0) {
852 				dmu_buf_t *db;
853 				error = dmu_bonus_hold(mos, object, FTAG, &db);
854 				if (error)
855 					return (error);
856 				ASSERT3U(db->db_size, >=, sizeof (smo));
857 				bcopy(db->db_data, &smo, sizeof (smo));
858 				ASSERT3U(smo.smo_object, ==, object);
859 				dmu_buf_rele(db, FTAG);
860 			}
861 		}
862 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
863 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
864 	}
865 
866 	if (txg == 0)
867 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
868 
869 	/*
870 	 * If the vdev is being removed we don't activate
871 	 * the metaslabs since we want to ensure that no new
872 	 * allocations are performed on this device.
873 	 */
874 	if (oldc == 0 && !vd->vdev_removing)
875 		metaslab_group_activate(vd->vdev_mg);
876 
877 	if (txg == 0)
878 		spa_config_exit(spa, SCL_ALLOC, FTAG);
879 
880 	return (0);
881 }
882 
883 void
884 vdev_metaslab_fini(vdev_t *vd)
885 {
886 	uint64_t m;
887 	uint64_t count = vd->vdev_ms_count;
888 
889 	if (vd->vdev_ms != NULL) {
890 		metaslab_group_passivate(vd->vdev_mg);
891 		for (m = 0; m < count; m++)
892 			if (vd->vdev_ms[m] != NULL)
893 				metaslab_fini(vd->vdev_ms[m]);
894 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
895 		vd->vdev_ms = NULL;
896 	}
897 }
898 
899 typedef struct vdev_probe_stats {
900 	boolean_t	vps_readable;
901 	boolean_t	vps_writeable;
902 	int		vps_flags;
903 } vdev_probe_stats_t;
904 
905 static void
906 vdev_probe_done(zio_t *zio)
907 {
908 	spa_t *spa = zio->io_spa;
909 	vdev_t *vd = zio->io_vd;
910 	vdev_probe_stats_t *vps = zio->io_private;
911 
912 	ASSERT(vd->vdev_probe_zio != NULL);
913 
914 	if (zio->io_type == ZIO_TYPE_READ) {
915 		if (zio->io_error == 0)
916 			vps->vps_readable = 1;
917 		if (zio->io_error == 0 && spa_writeable(spa)) {
918 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
919 			    zio->io_offset, zio->io_size, zio->io_data,
920 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
921 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
922 		} else {
923 			zio_buf_free(zio->io_data, zio->io_size);
924 		}
925 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
926 		if (zio->io_error == 0)
927 			vps->vps_writeable = 1;
928 		zio_buf_free(zio->io_data, zio->io_size);
929 	} else if (zio->io_type == ZIO_TYPE_NULL) {
930 		zio_t *pio;
931 
932 		vd->vdev_cant_read |= !vps->vps_readable;
933 		vd->vdev_cant_write |= !vps->vps_writeable;
934 
935 		if (vdev_readable(vd) &&
936 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
937 			zio->io_error = 0;
938 		} else {
939 			ASSERT(zio->io_error != 0);
940 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
941 			    spa, vd, NULL, 0, 0);
942 			zio->io_error = ENXIO;
943 		}
944 
945 		mutex_enter(&vd->vdev_probe_lock);
946 		ASSERT(vd->vdev_probe_zio == zio);
947 		vd->vdev_probe_zio = NULL;
948 		mutex_exit(&vd->vdev_probe_lock);
949 
950 		while ((pio = zio_walk_parents(zio)) != NULL)
951 			if (!vdev_accessible(vd, pio))
952 				pio->io_error = ENXIO;
953 
954 		kmem_free(vps, sizeof (*vps));
955 	}
956 }
957 
958 /*
959  * Determine whether this device is accessible by reading and writing
960  * to several known locations: the pad regions of each vdev label
961  * but the first (which we leave alone in case it contains a VTOC).
962  */
963 zio_t *
964 vdev_probe(vdev_t *vd, zio_t *zio)
965 {
966 	spa_t *spa = vd->vdev_spa;
967 	vdev_probe_stats_t *vps = NULL;
968 	zio_t *pio;
969 
970 	ASSERT(vd->vdev_ops->vdev_op_leaf);
971 
972 	/*
973 	 * Don't probe the probe.
974 	 */
975 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
976 		return (NULL);
977 
978 	/*
979 	 * To prevent 'probe storms' when a device fails, we create
980 	 * just one probe i/o at a time.  All zios that want to probe
981 	 * this vdev will become parents of the probe io.
982 	 */
983 	mutex_enter(&vd->vdev_probe_lock);
984 
985 	if ((pio = vd->vdev_probe_zio) == NULL) {
986 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
987 
988 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
989 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
990 		    ZIO_FLAG_TRYHARD;
991 
992 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
993 			/*
994 			 * vdev_cant_read and vdev_cant_write can only
995 			 * transition from TRUE to FALSE when we have the
996 			 * SCL_ZIO lock as writer; otherwise they can only
997 			 * transition from FALSE to TRUE.  This ensures that
998 			 * any zio looking at these values can assume that
999 			 * failures persist for the life of the I/O.  That's
1000 			 * important because when a device has intermittent
1001 			 * connectivity problems, we want to ensure that
1002 			 * they're ascribed to the device (ENXIO) and not
1003 			 * the zio (EIO).
1004 			 *
1005 			 * Since we hold SCL_ZIO as writer here, clear both
1006 			 * values so the probe can reevaluate from first
1007 			 * principles.
1008 			 */
1009 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1010 			vd->vdev_cant_read = B_FALSE;
1011 			vd->vdev_cant_write = B_FALSE;
1012 		}
1013 
1014 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1015 		    vdev_probe_done, vps,
1016 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1017 
1018 		/*
1019 		 * We can't change the vdev state in this context, so we
1020 		 * kick off an async task to do it on our behalf.
1021 		 */
1022 		if (zio != NULL) {
1023 			vd->vdev_probe_wanted = B_TRUE;
1024 			spa_async_request(spa, SPA_ASYNC_PROBE);
1025 		}
1026 	}
1027 
1028 	if (zio != NULL)
1029 		zio_add_child(zio, pio);
1030 
1031 	mutex_exit(&vd->vdev_probe_lock);
1032 
1033 	if (vps == NULL) {
1034 		ASSERT(zio != NULL);
1035 		return (NULL);
1036 	}
1037 
1038 	for (int l = 1; l < VDEV_LABELS; l++) {
1039 		zio_nowait(zio_read_phys(pio, vd,
1040 		    vdev_label_offset(vd->vdev_psize, l,
1041 		    offsetof(vdev_label_t, vl_pad2)),
1042 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1043 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1044 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1045 	}
1046 
1047 	if (zio == NULL)
1048 		return (pio);
1049 
1050 	zio_nowait(pio);
1051 	return (NULL);
1052 }
1053 
1054 static void
1055 vdev_open_child(void *arg)
1056 {
1057 	vdev_t *vd = arg;
1058 
1059 	vd->vdev_open_thread = curthread;
1060 	vd->vdev_open_error = vdev_open(vd);
1061 	vd->vdev_open_thread = NULL;
1062 }
1063 
1064 boolean_t
1065 vdev_uses_zvols(vdev_t *vd)
1066 {
1067 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1068 	    strlen(ZVOL_DIR)) == 0)
1069 		return (B_TRUE);
1070 	for (int c = 0; c < vd->vdev_children; c++)
1071 		if (vdev_uses_zvols(vd->vdev_child[c]))
1072 			return (B_TRUE);
1073 	return (B_FALSE);
1074 }
1075 
1076 void
1077 vdev_open_children(vdev_t *vd)
1078 {
1079 	taskq_t *tq;
1080 	int children = vd->vdev_children;
1081 
1082 	/*
1083 	 * in order to handle pools on top of zvols, do the opens
1084 	 * in a single thread so that the same thread holds the
1085 	 * spa_namespace_lock
1086 	 */
1087 	if (vdev_uses_zvols(vd)) {
1088 		for (int c = 0; c < children; c++)
1089 			vd->vdev_child[c]->vdev_open_error =
1090 			    vdev_open(vd->vdev_child[c]);
1091 		return;
1092 	}
1093 	tq = taskq_create("vdev_open", children, minclsyspri,
1094 	    children, children, TASKQ_PREPOPULATE);
1095 
1096 	for (int c = 0; c < children; c++)
1097 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1098 		    TQ_SLEEP) != NULL);
1099 
1100 	taskq_destroy(tq);
1101 }
1102 
1103 /*
1104  * Prepare a virtual device for access.
1105  */
1106 int
1107 vdev_open(vdev_t *vd)
1108 {
1109 	spa_t *spa = vd->vdev_spa;
1110 	int error;
1111 	uint64_t osize = 0;
1112 	uint64_t max_osize = 0;
1113 	uint64_t asize, max_asize, psize;
1114 	uint64_t ashift = 0;
1115 
1116 	ASSERT(vd->vdev_open_thread == curthread ||
1117 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1118 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1119 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1120 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1121 
1122 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1123 	vd->vdev_cant_read = B_FALSE;
1124 	vd->vdev_cant_write = B_FALSE;
1125 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1126 
1127 	/*
1128 	 * If this vdev is not removed, check its fault status.  If it's
1129 	 * faulted, bail out of the open.
1130 	 */
1131 	if (!vd->vdev_removed && vd->vdev_faulted) {
1132 		ASSERT(vd->vdev_children == 0);
1133 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1134 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1135 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1136 		    vd->vdev_label_aux);
1137 		return (ENXIO);
1138 	} else if (vd->vdev_offline) {
1139 		ASSERT(vd->vdev_children == 0);
1140 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1141 		return (ENXIO);
1142 	}
1143 
1144 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1145 
1146 	/*
1147 	 * Reset the vdev_reopening flag so that we actually close
1148 	 * the vdev on error.
1149 	 */
1150 	vd->vdev_reopening = B_FALSE;
1151 	if (zio_injection_enabled && error == 0)
1152 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1153 
1154 	if (error) {
1155 		if (vd->vdev_removed &&
1156 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1157 			vd->vdev_removed = B_FALSE;
1158 
1159 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1160 		    vd->vdev_stat.vs_aux);
1161 		return (error);
1162 	}
1163 
1164 	vd->vdev_removed = B_FALSE;
1165 
1166 	/*
1167 	 * Recheck the faulted flag now that we have confirmed that
1168 	 * the vdev is accessible.  If we're faulted, bail.
1169 	 */
1170 	if (vd->vdev_faulted) {
1171 		ASSERT(vd->vdev_children == 0);
1172 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1173 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1174 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1175 		    vd->vdev_label_aux);
1176 		return (ENXIO);
1177 	}
1178 
1179 	if (vd->vdev_degraded) {
1180 		ASSERT(vd->vdev_children == 0);
1181 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1182 		    VDEV_AUX_ERR_EXCEEDED);
1183 	} else {
1184 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1185 	}
1186 
1187 	/*
1188 	 * For hole or missing vdevs we just return success.
1189 	 */
1190 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1191 		return (0);
1192 
1193 	for (int c = 0; c < vd->vdev_children; c++) {
1194 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1195 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1196 			    VDEV_AUX_NONE);
1197 			break;
1198 		}
1199 	}
1200 
1201 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1202 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1203 
1204 	if (vd->vdev_children == 0) {
1205 		if (osize < SPA_MINDEVSIZE) {
1206 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1207 			    VDEV_AUX_TOO_SMALL);
1208 			return (EOVERFLOW);
1209 		}
1210 		psize = osize;
1211 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1212 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1213 		    VDEV_LABEL_END_SIZE);
1214 	} else {
1215 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1216 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1217 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1218 			    VDEV_AUX_TOO_SMALL);
1219 			return (EOVERFLOW);
1220 		}
1221 		psize = 0;
1222 		asize = osize;
1223 		max_asize = max_osize;
1224 	}
1225 
1226 	vd->vdev_psize = psize;
1227 
1228 	/*
1229 	 * Make sure the allocatable size hasn't shrunk.
1230 	 */
1231 	if (asize < vd->vdev_min_asize) {
1232 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1233 		    VDEV_AUX_BAD_LABEL);
1234 		return (EINVAL);
1235 	}
1236 
1237 	if (vd->vdev_asize == 0) {
1238 		/*
1239 		 * This is the first-ever open, so use the computed values.
1240 		 * For testing purposes, a higher ashift can be requested.
1241 		 */
1242 		vd->vdev_asize = asize;
1243 		vd->vdev_max_asize = max_asize;
1244 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1245 	} else {
1246 		/*
1247 		 * Detect if the alignment requirement has increased.
1248 		 * We don't want to make the pool unavailable, just
1249 		 * issue a warning instead.
1250 		 */
1251 		if (ashift > vd->vdev_top->vdev_ashift &&
1252 		    vd->vdev_ops->vdev_op_leaf) {
1253 			cmn_err(CE_WARN,
1254 			    "Disk, '%s', has a block alignment that is "
1255 			    "larger than the pool's alignment\n",
1256 			    vd->vdev_path);
1257 		}
1258 		vd->vdev_max_asize = max_asize;
1259 	}
1260 
1261 	/*
1262 	 * If all children are healthy and the asize has increased,
1263 	 * then we've experienced dynamic LUN growth.  If automatic
1264 	 * expansion is enabled then use the additional space.
1265 	 */
1266 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1267 	    (vd->vdev_expanding || spa->spa_autoexpand))
1268 		vd->vdev_asize = asize;
1269 
1270 	vdev_set_min_asize(vd);
1271 
1272 	/*
1273 	 * Ensure we can issue some IO before declaring the
1274 	 * vdev open for business.
1275 	 */
1276 	if (vd->vdev_ops->vdev_op_leaf &&
1277 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1278 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1279 		    VDEV_AUX_ERR_EXCEEDED);
1280 		return (error);
1281 	}
1282 
1283 	/*
1284 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1285 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1286 	 * since this would just restart the scrub we are already doing.
1287 	 */
1288 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1289 	    vdev_resilver_needed(vd, NULL, NULL))
1290 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1291 
1292 	return (0);
1293 }
1294 
1295 /*
1296  * Called once the vdevs are all opened, this routine validates the label
1297  * contents.  This needs to be done before vdev_load() so that we don't
1298  * inadvertently do repair I/Os to the wrong device.
1299  *
1300  * If 'strict' is false ignore the spa guid check. This is necessary because
1301  * if the machine crashed during a re-guid the new guid might have been written
1302  * to all of the vdev labels, but not the cached config. The strict check
1303  * will be performed when the pool is opened again using the mos config.
1304  *
1305  * This function will only return failure if one of the vdevs indicates that it
1306  * has since been destroyed or exported.  This is only possible if
1307  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1308  * will be updated but the function will return 0.
1309  */
1310 int
1311 vdev_validate(vdev_t *vd, boolean_t strict)
1312 {
1313 	spa_t *spa = vd->vdev_spa;
1314 	nvlist_t *label;
1315 	uint64_t guid = 0, top_guid;
1316 	uint64_t state;
1317 
1318 	for (int c = 0; c < vd->vdev_children; c++)
1319 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1320 			return (EBADF);
1321 
1322 	/*
1323 	 * If the device has already failed, or was marked offline, don't do
1324 	 * any further validation.  Otherwise, label I/O will fail and we will
1325 	 * overwrite the previous state.
1326 	 */
1327 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1328 		uint64_t aux_guid = 0;
1329 		nvlist_t *nvl;
1330 
1331 		if ((label = vdev_label_read_config(vd)) == NULL) {
1332 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1333 			    VDEV_AUX_BAD_LABEL);
1334 			return (0);
1335 		}
1336 
1337 		/*
1338 		 * Determine if this vdev has been split off into another
1339 		 * pool.  If so, then refuse to open it.
1340 		 */
1341 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1342 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1343 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1344 			    VDEV_AUX_SPLIT_POOL);
1345 			nvlist_free(label);
1346 			return (0);
1347 		}
1348 
1349 		if (strict && (nvlist_lookup_uint64(label,
1350 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1351 		    guid != spa_guid(spa))) {
1352 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1353 			    VDEV_AUX_CORRUPT_DATA);
1354 			nvlist_free(label);
1355 			return (0);
1356 		}
1357 
1358 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1359 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1360 		    &aux_guid) != 0)
1361 			aux_guid = 0;
1362 
1363 		/*
1364 		 * If this vdev just became a top-level vdev because its
1365 		 * sibling was detached, it will have adopted the parent's
1366 		 * vdev guid -- but the label may or may not be on disk yet.
1367 		 * Fortunately, either version of the label will have the
1368 		 * same top guid, so if we're a top-level vdev, we can
1369 		 * safely compare to that instead.
1370 		 *
1371 		 * If we split this vdev off instead, then we also check the
1372 		 * original pool's guid.  We don't want to consider the vdev
1373 		 * corrupt if it is partway through a split operation.
1374 		 */
1375 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1376 		    &guid) != 0 ||
1377 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1378 		    &top_guid) != 0 ||
1379 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1380 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1381 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1382 			    VDEV_AUX_CORRUPT_DATA);
1383 			nvlist_free(label);
1384 			return (0);
1385 		}
1386 
1387 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1388 		    &state) != 0) {
1389 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1390 			    VDEV_AUX_CORRUPT_DATA);
1391 			nvlist_free(label);
1392 			return (0);
1393 		}
1394 
1395 		nvlist_free(label);
1396 
1397 		/*
1398 		 * If this is a verbatim import, no need to check the
1399 		 * state of the pool.
1400 		 */
1401 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1402 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1403 		    state != POOL_STATE_ACTIVE)
1404 			return (EBADF);
1405 
1406 		/*
1407 		 * If we were able to open and validate a vdev that was
1408 		 * previously marked permanently unavailable, clear that state
1409 		 * now.
1410 		 */
1411 		if (vd->vdev_not_present)
1412 			vd->vdev_not_present = 0;
1413 	}
1414 
1415 	return (0);
1416 }
1417 
1418 /*
1419  * Close a virtual device.
1420  */
1421 void
1422 vdev_close(vdev_t *vd)
1423 {
1424 	spa_t *spa = vd->vdev_spa;
1425 	vdev_t *pvd = vd->vdev_parent;
1426 
1427 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1428 
1429 	/*
1430 	 * If our parent is reopening, then we are as well, unless we are
1431 	 * going offline.
1432 	 */
1433 	if (pvd != NULL && pvd->vdev_reopening)
1434 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1435 
1436 	vd->vdev_ops->vdev_op_close(vd);
1437 
1438 	vdev_cache_purge(vd);
1439 
1440 	/*
1441 	 * We record the previous state before we close it, so that if we are
1442 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1443 	 * it's still faulted.
1444 	 */
1445 	vd->vdev_prevstate = vd->vdev_state;
1446 
1447 	if (vd->vdev_offline)
1448 		vd->vdev_state = VDEV_STATE_OFFLINE;
1449 	else
1450 		vd->vdev_state = VDEV_STATE_CLOSED;
1451 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1452 }
1453 
1454 void
1455 vdev_hold(vdev_t *vd)
1456 {
1457 	spa_t *spa = vd->vdev_spa;
1458 
1459 	ASSERT(spa_is_root(spa));
1460 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1461 		return;
1462 
1463 	for (int c = 0; c < vd->vdev_children; c++)
1464 		vdev_hold(vd->vdev_child[c]);
1465 
1466 	if (vd->vdev_ops->vdev_op_leaf)
1467 		vd->vdev_ops->vdev_op_hold(vd);
1468 }
1469 
1470 void
1471 vdev_rele(vdev_t *vd)
1472 {
1473 	spa_t *spa = vd->vdev_spa;
1474 
1475 	ASSERT(spa_is_root(spa));
1476 	for (int c = 0; c < vd->vdev_children; c++)
1477 		vdev_rele(vd->vdev_child[c]);
1478 
1479 	if (vd->vdev_ops->vdev_op_leaf)
1480 		vd->vdev_ops->vdev_op_rele(vd);
1481 }
1482 
1483 /*
1484  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1485  * reopen leaf vdevs which had previously been opened as they might deadlock
1486  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1487  * If the leaf has never been opened then open it, as usual.
1488  */
1489 void
1490 vdev_reopen(vdev_t *vd)
1491 {
1492 	spa_t *spa = vd->vdev_spa;
1493 
1494 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1495 
1496 	/* set the reopening flag unless we're taking the vdev offline */
1497 	vd->vdev_reopening = !vd->vdev_offline;
1498 	vdev_close(vd);
1499 	(void) vdev_open(vd);
1500 
1501 	/*
1502 	 * Call vdev_validate() here to make sure we have the same device.
1503 	 * Otherwise, a device with an invalid label could be successfully
1504 	 * opened in response to vdev_reopen().
1505 	 */
1506 	if (vd->vdev_aux) {
1507 		(void) vdev_validate_aux(vd);
1508 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1509 		    vd->vdev_aux == &spa->spa_l2cache &&
1510 		    !l2arc_vdev_present(vd))
1511 			l2arc_add_vdev(spa, vd);
1512 	} else {
1513 		(void) vdev_validate(vd, B_TRUE);
1514 	}
1515 
1516 	/*
1517 	 * Reassess parent vdev's health.
1518 	 */
1519 	vdev_propagate_state(vd);
1520 }
1521 
1522 int
1523 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1524 {
1525 	int error;
1526 
1527 	/*
1528 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1529 	 * For a create, however, we want to fail the request if
1530 	 * there are any components we can't open.
1531 	 */
1532 	error = vdev_open(vd);
1533 
1534 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1535 		vdev_close(vd);
1536 		return (error ? error : ENXIO);
1537 	}
1538 
1539 	/*
1540 	 * Recursively initialize all labels.
1541 	 */
1542 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1543 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1544 		vdev_close(vd);
1545 		return (error);
1546 	}
1547 
1548 	return (0);
1549 }
1550 
1551 void
1552 vdev_metaslab_set_size(vdev_t *vd)
1553 {
1554 	/*
1555 	 * Aim for roughly 200 metaslabs per vdev.
1556 	 */
1557 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1558 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1559 }
1560 
1561 void
1562 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1563 {
1564 	ASSERT(vd == vd->vdev_top);
1565 	ASSERT(!vd->vdev_ishole);
1566 	ASSERT(ISP2(flags));
1567 	ASSERT(spa_writeable(vd->vdev_spa));
1568 
1569 	if (flags & VDD_METASLAB)
1570 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1571 
1572 	if (flags & VDD_DTL)
1573 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1574 
1575 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1576 }
1577 
1578 /*
1579  * DTLs.
1580  *
1581  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1582  * the vdev has less than perfect replication.  There are four kinds of DTL:
1583  *
1584  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1585  *
1586  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1587  *
1588  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1589  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1590  *	txgs that was scrubbed.
1591  *
1592  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1593  *	persistent errors or just some device being offline.
1594  *	Unlike the other three, the DTL_OUTAGE map is not generally
1595  *	maintained; it's only computed when needed, typically to
1596  *	determine whether a device can be detached.
1597  *
1598  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1599  * either has the data or it doesn't.
1600  *
1601  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1602  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1603  * if any child is less than fully replicated, then so is its parent.
1604  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1605  * comprising only those txgs which appear in 'maxfaults' or more children;
1606  * those are the txgs we don't have enough replication to read.  For example,
1607  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1608  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1609  * two child DTL_MISSING maps.
1610  *
1611  * It should be clear from the above that to compute the DTLs and outage maps
1612  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1613  * Therefore, that is all we keep on disk.  When loading the pool, or after
1614  * a configuration change, we generate all other DTLs from first principles.
1615  */
1616 void
1617 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1618 {
1619 	space_map_t *sm = &vd->vdev_dtl[t];
1620 
1621 	ASSERT(t < DTL_TYPES);
1622 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1623 	ASSERT(spa_writeable(vd->vdev_spa));
1624 
1625 	mutex_enter(sm->sm_lock);
1626 	if (!space_map_contains(sm, txg, size))
1627 		space_map_add(sm, txg, size);
1628 	mutex_exit(sm->sm_lock);
1629 }
1630 
1631 boolean_t
1632 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1633 {
1634 	space_map_t *sm = &vd->vdev_dtl[t];
1635 	boolean_t dirty = B_FALSE;
1636 
1637 	ASSERT(t < DTL_TYPES);
1638 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1639 
1640 	mutex_enter(sm->sm_lock);
1641 	if (sm->sm_space != 0)
1642 		dirty = space_map_contains(sm, txg, size);
1643 	mutex_exit(sm->sm_lock);
1644 
1645 	return (dirty);
1646 }
1647 
1648 boolean_t
1649 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1650 {
1651 	space_map_t *sm = &vd->vdev_dtl[t];
1652 	boolean_t empty;
1653 
1654 	mutex_enter(sm->sm_lock);
1655 	empty = (sm->sm_space == 0);
1656 	mutex_exit(sm->sm_lock);
1657 
1658 	return (empty);
1659 }
1660 
1661 /*
1662  * Reassess DTLs after a config change or scrub completion.
1663  */
1664 void
1665 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1666 {
1667 	spa_t *spa = vd->vdev_spa;
1668 	avl_tree_t reftree;
1669 	int minref;
1670 
1671 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1672 
1673 	for (int c = 0; c < vd->vdev_children; c++)
1674 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1675 		    scrub_txg, scrub_done);
1676 
1677 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1678 		return;
1679 
1680 	if (vd->vdev_ops->vdev_op_leaf) {
1681 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1682 
1683 		mutex_enter(&vd->vdev_dtl_lock);
1684 		if (scrub_txg != 0 &&
1685 		    (spa->spa_scrub_started ||
1686 		    (scn && scn->scn_phys.scn_errors == 0))) {
1687 			/*
1688 			 * We completed a scrub up to scrub_txg.  If we
1689 			 * did it without rebooting, then the scrub dtl
1690 			 * will be valid, so excise the old region and
1691 			 * fold in the scrub dtl.  Otherwise, leave the
1692 			 * dtl as-is if there was an error.
1693 			 *
1694 			 * There's little trick here: to excise the beginning
1695 			 * of the DTL_MISSING map, we put it into a reference
1696 			 * tree and then add a segment with refcnt -1 that
1697 			 * covers the range [0, scrub_txg).  This means
1698 			 * that each txg in that range has refcnt -1 or 0.
1699 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1700 			 * entries in the range [0, scrub_txg) will have a
1701 			 * positive refcnt -- either 1 or 2.  We then convert
1702 			 * the reference tree into the new DTL_MISSING map.
1703 			 */
1704 			space_map_ref_create(&reftree);
1705 			space_map_ref_add_map(&reftree,
1706 			    &vd->vdev_dtl[DTL_MISSING], 1);
1707 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1708 			space_map_ref_add_map(&reftree,
1709 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1710 			space_map_ref_generate_map(&reftree,
1711 			    &vd->vdev_dtl[DTL_MISSING], 1);
1712 			space_map_ref_destroy(&reftree);
1713 		}
1714 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1715 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1716 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1717 		if (scrub_done)
1718 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1719 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1720 		if (!vdev_readable(vd))
1721 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1722 		else
1723 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1724 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1725 		mutex_exit(&vd->vdev_dtl_lock);
1726 
1727 		if (txg != 0)
1728 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1729 		return;
1730 	}
1731 
1732 	mutex_enter(&vd->vdev_dtl_lock);
1733 	for (int t = 0; t < DTL_TYPES; t++) {
1734 		/* account for child's outage in parent's missing map */
1735 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1736 		if (t == DTL_SCRUB)
1737 			continue;			/* leaf vdevs only */
1738 		if (t == DTL_PARTIAL)
1739 			minref = 1;			/* i.e. non-zero */
1740 		else if (vd->vdev_nparity != 0)
1741 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1742 		else
1743 			minref = vd->vdev_children;	/* any kind of mirror */
1744 		space_map_ref_create(&reftree);
1745 		for (int c = 0; c < vd->vdev_children; c++) {
1746 			vdev_t *cvd = vd->vdev_child[c];
1747 			mutex_enter(&cvd->vdev_dtl_lock);
1748 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1749 			mutex_exit(&cvd->vdev_dtl_lock);
1750 		}
1751 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1752 		space_map_ref_destroy(&reftree);
1753 	}
1754 	mutex_exit(&vd->vdev_dtl_lock);
1755 }
1756 
1757 static int
1758 vdev_dtl_load(vdev_t *vd)
1759 {
1760 	spa_t *spa = vd->vdev_spa;
1761 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1762 	objset_t *mos = spa->spa_meta_objset;
1763 	dmu_buf_t *db;
1764 	int error;
1765 
1766 	ASSERT(vd->vdev_children == 0);
1767 
1768 	if (smo->smo_object == 0)
1769 		return (0);
1770 
1771 	ASSERT(!vd->vdev_ishole);
1772 
1773 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1774 		return (error);
1775 
1776 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1777 	bcopy(db->db_data, smo, sizeof (*smo));
1778 	dmu_buf_rele(db, FTAG);
1779 
1780 	mutex_enter(&vd->vdev_dtl_lock);
1781 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1782 	    NULL, SM_ALLOC, smo, mos);
1783 	mutex_exit(&vd->vdev_dtl_lock);
1784 
1785 	return (error);
1786 }
1787 
1788 void
1789 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1790 {
1791 	spa_t *spa = vd->vdev_spa;
1792 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1793 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1794 	objset_t *mos = spa->spa_meta_objset;
1795 	space_map_t smsync;
1796 	kmutex_t smlock;
1797 	dmu_buf_t *db;
1798 	dmu_tx_t *tx;
1799 
1800 	ASSERT(!vd->vdev_ishole);
1801 
1802 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1803 
1804 	if (vd->vdev_detached) {
1805 		if (smo->smo_object != 0) {
1806 			int err = dmu_object_free(mos, smo->smo_object, tx);
1807 			ASSERT3U(err, ==, 0);
1808 			smo->smo_object = 0;
1809 		}
1810 		dmu_tx_commit(tx);
1811 		return;
1812 	}
1813 
1814 	if (smo->smo_object == 0) {
1815 		ASSERT(smo->smo_objsize == 0);
1816 		ASSERT(smo->smo_alloc == 0);
1817 		smo->smo_object = dmu_object_alloc(mos,
1818 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1819 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1820 		ASSERT(smo->smo_object != 0);
1821 		vdev_config_dirty(vd->vdev_top);
1822 	}
1823 
1824 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1825 
1826 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1827 	    &smlock);
1828 
1829 	mutex_enter(&smlock);
1830 
1831 	mutex_enter(&vd->vdev_dtl_lock);
1832 	space_map_walk(sm, space_map_add, &smsync);
1833 	mutex_exit(&vd->vdev_dtl_lock);
1834 
1835 	space_map_truncate(smo, mos, tx);
1836 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1837 
1838 	space_map_destroy(&smsync);
1839 
1840 	mutex_exit(&smlock);
1841 	mutex_destroy(&smlock);
1842 
1843 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1844 	dmu_buf_will_dirty(db, tx);
1845 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1846 	bcopy(smo, db->db_data, sizeof (*smo));
1847 	dmu_buf_rele(db, FTAG);
1848 
1849 	dmu_tx_commit(tx);
1850 }
1851 
1852 /*
1853  * Determine whether the specified vdev can be offlined/detached/removed
1854  * without losing data.
1855  */
1856 boolean_t
1857 vdev_dtl_required(vdev_t *vd)
1858 {
1859 	spa_t *spa = vd->vdev_spa;
1860 	vdev_t *tvd = vd->vdev_top;
1861 	uint8_t cant_read = vd->vdev_cant_read;
1862 	boolean_t required;
1863 
1864 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1865 
1866 	if (vd == spa->spa_root_vdev || vd == tvd)
1867 		return (B_TRUE);
1868 
1869 	/*
1870 	 * Temporarily mark the device as unreadable, and then determine
1871 	 * whether this results in any DTL outages in the top-level vdev.
1872 	 * If not, we can safely offline/detach/remove the device.
1873 	 */
1874 	vd->vdev_cant_read = B_TRUE;
1875 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1876 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1877 	vd->vdev_cant_read = cant_read;
1878 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1879 
1880 	if (!required && zio_injection_enabled)
1881 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
1882 
1883 	return (required);
1884 }
1885 
1886 /*
1887  * Determine if resilver is needed, and if so the txg range.
1888  */
1889 boolean_t
1890 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1891 {
1892 	boolean_t needed = B_FALSE;
1893 	uint64_t thismin = UINT64_MAX;
1894 	uint64_t thismax = 0;
1895 
1896 	if (vd->vdev_children == 0) {
1897 		mutex_enter(&vd->vdev_dtl_lock);
1898 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1899 		    vdev_writeable(vd)) {
1900 			space_seg_t *ss;
1901 
1902 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1903 			thismin = ss->ss_start - 1;
1904 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1905 			thismax = ss->ss_end;
1906 			needed = B_TRUE;
1907 		}
1908 		mutex_exit(&vd->vdev_dtl_lock);
1909 	} else {
1910 		for (int c = 0; c < vd->vdev_children; c++) {
1911 			vdev_t *cvd = vd->vdev_child[c];
1912 			uint64_t cmin, cmax;
1913 
1914 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1915 				thismin = MIN(thismin, cmin);
1916 				thismax = MAX(thismax, cmax);
1917 				needed = B_TRUE;
1918 			}
1919 		}
1920 	}
1921 
1922 	if (needed && minp) {
1923 		*minp = thismin;
1924 		*maxp = thismax;
1925 	}
1926 	return (needed);
1927 }
1928 
1929 void
1930 vdev_load(vdev_t *vd)
1931 {
1932 	/*
1933 	 * Recursively load all children.
1934 	 */
1935 	for (int c = 0; c < vd->vdev_children; c++)
1936 		vdev_load(vd->vdev_child[c]);
1937 
1938 	/*
1939 	 * If this is a top-level vdev, initialize its metaslabs.
1940 	 */
1941 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1942 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1943 	    vdev_metaslab_init(vd, 0) != 0))
1944 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1945 		    VDEV_AUX_CORRUPT_DATA);
1946 
1947 	/*
1948 	 * If this is a leaf vdev, load its DTL.
1949 	 */
1950 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1951 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1952 		    VDEV_AUX_CORRUPT_DATA);
1953 }
1954 
1955 /*
1956  * The special vdev case is used for hot spares and l2cache devices.  Its
1957  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1958  * we make sure that we can open the underlying device, then try to read the
1959  * label, and make sure that the label is sane and that it hasn't been
1960  * repurposed to another pool.
1961  */
1962 int
1963 vdev_validate_aux(vdev_t *vd)
1964 {
1965 	nvlist_t *label;
1966 	uint64_t guid, version;
1967 	uint64_t state;
1968 
1969 	if (!vdev_readable(vd))
1970 		return (0);
1971 
1972 	if ((label = vdev_label_read_config(vd)) == NULL) {
1973 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1974 		    VDEV_AUX_CORRUPT_DATA);
1975 		return (-1);
1976 	}
1977 
1978 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1979 	    version > SPA_VERSION ||
1980 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1981 	    guid != vd->vdev_guid ||
1982 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1983 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1984 		    VDEV_AUX_CORRUPT_DATA);
1985 		nvlist_free(label);
1986 		return (-1);
1987 	}
1988 
1989 	/*
1990 	 * We don't actually check the pool state here.  If it's in fact in
1991 	 * use by another pool, we update this fact on the fly when requested.
1992 	 */
1993 	nvlist_free(label);
1994 	return (0);
1995 }
1996 
1997 void
1998 vdev_remove(vdev_t *vd, uint64_t txg)
1999 {
2000 	spa_t *spa = vd->vdev_spa;
2001 	objset_t *mos = spa->spa_meta_objset;
2002 	dmu_tx_t *tx;
2003 
2004 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2005 
2006 	if (vd->vdev_dtl_smo.smo_object) {
2007 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
2008 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
2009 		vd->vdev_dtl_smo.smo_object = 0;
2010 	}
2011 
2012 	if (vd->vdev_ms != NULL) {
2013 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2014 			metaslab_t *msp = vd->vdev_ms[m];
2015 
2016 			if (msp == NULL || msp->ms_smo.smo_object == 0)
2017 				continue;
2018 
2019 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
2020 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
2021 			msp->ms_smo.smo_object = 0;
2022 		}
2023 	}
2024 
2025 	if (vd->vdev_ms_array) {
2026 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2027 		vd->vdev_ms_array = 0;
2028 		vd->vdev_ms_shift = 0;
2029 	}
2030 	dmu_tx_commit(tx);
2031 }
2032 
2033 void
2034 vdev_sync_done(vdev_t *vd, uint64_t txg)
2035 {
2036 	metaslab_t *msp;
2037 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2038 
2039 	ASSERT(!vd->vdev_ishole);
2040 
2041 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2042 		metaslab_sync_done(msp, txg);
2043 
2044 	if (reassess)
2045 		metaslab_sync_reassess(vd->vdev_mg);
2046 }
2047 
2048 void
2049 vdev_sync(vdev_t *vd, uint64_t txg)
2050 {
2051 	spa_t *spa = vd->vdev_spa;
2052 	vdev_t *lvd;
2053 	metaslab_t *msp;
2054 	dmu_tx_t *tx;
2055 
2056 	ASSERT(!vd->vdev_ishole);
2057 
2058 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2059 		ASSERT(vd == vd->vdev_top);
2060 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2061 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2062 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2063 		ASSERT(vd->vdev_ms_array != 0);
2064 		vdev_config_dirty(vd);
2065 		dmu_tx_commit(tx);
2066 	}
2067 
2068 	/*
2069 	 * Remove the metadata associated with this vdev once it's empty.
2070 	 */
2071 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2072 		vdev_remove(vd, txg);
2073 
2074 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2075 		metaslab_sync(msp, txg);
2076 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2077 	}
2078 
2079 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2080 		vdev_dtl_sync(lvd, txg);
2081 
2082 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2083 }
2084 
2085 uint64_t
2086 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2087 {
2088 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2089 }
2090 
2091 /*
2092  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2093  * not be opened, and no I/O is attempted.
2094  */
2095 int
2096 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2097 {
2098 	vdev_t *vd, *tvd;
2099 
2100 	spa_vdev_state_enter(spa, SCL_NONE);
2101 
2102 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2103 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2104 
2105 	if (!vd->vdev_ops->vdev_op_leaf)
2106 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2107 
2108 	tvd = vd->vdev_top;
2109 
2110 	/*
2111 	 * We don't directly use the aux state here, but if we do a
2112 	 * vdev_reopen(), we need this value to be present to remember why we
2113 	 * were faulted.
2114 	 */
2115 	vd->vdev_label_aux = aux;
2116 
2117 	/*
2118 	 * Faulted state takes precedence over degraded.
2119 	 */
2120 	vd->vdev_delayed_close = B_FALSE;
2121 	vd->vdev_faulted = 1ULL;
2122 	vd->vdev_degraded = 0ULL;
2123 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2124 
2125 	/*
2126 	 * If this device has the only valid copy of the data, then
2127 	 * back off and simply mark the vdev as degraded instead.
2128 	 */
2129 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2130 		vd->vdev_degraded = 1ULL;
2131 		vd->vdev_faulted = 0ULL;
2132 
2133 		/*
2134 		 * If we reopen the device and it's not dead, only then do we
2135 		 * mark it degraded.
2136 		 */
2137 		vdev_reopen(tvd);
2138 
2139 		if (vdev_readable(vd))
2140 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2141 	}
2142 
2143 	return (spa_vdev_state_exit(spa, vd, 0));
2144 }
2145 
2146 /*
2147  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2148  * user that something is wrong.  The vdev continues to operate as normal as far
2149  * as I/O is concerned.
2150  */
2151 int
2152 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2153 {
2154 	vdev_t *vd;
2155 
2156 	spa_vdev_state_enter(spa, SCL_NONE);
2157 
2158 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2159 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2160 
2161 	if (!vd->vdev_ops->vdev_op_leaf)
2162 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2163 
2164 	/*
2165 	 * If the vdev is already faulted, then don't do anything.
2166 	 */
2167 	if (vd->vdev_faulted || vd->vdev_degraded)
2168 		return (spa_vdev_state_exit(spa, NULL, 0));
2169 
2170 	vd->vdev_degraded = 1ULL;
2171 	if (!vdev_is_dead(vd))
2172 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2173 		    aux);
2174 
2175 	return (spa_vdev_state_exit(spa, vd, 0));
2176 }
2177 
2178 /*
2179  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2180  * any attached spare device should be detached when the device finishes
2181  * resilvering.  Second, the online should be treated like a 'test' online case,
2182  * so no FMA events are generated if the device fails to open.
2183  */
2184 int
2185 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2186 {
2187 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2188 
2189 	spa_vdev_state_enter(spa, SCL_NONE);
2190 
2191 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2192 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2193 
2194 	if (!vd->vdev_ops->vdev_op_leaf)
2195 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2196 
2197 	tvd = vd->vdev_top;
2198 	vd->vdev_offline = B_FALSE;
2199 	vd->vdev_tmpoffline = B_FALSE;
2200 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2201 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2202 
2203 	/* XXX - L2ARC 1.0 does not support expansion */
2204 	if (!vd->vdev_aux) {
2205 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2206 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2207 	}
2208 
2209 	vdev_reopen(tvd);
2210 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2211 
2212 	if (!vd->vdev_aux) {
2213 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2214 			pvd->vdev_expanding = B_FALSE;
2215 	}
2216 
2217 	if (newstate)
2218 		*newstate = vd->vdev_state;
2219 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2220 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2221 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2222 	    vd->vdev_parent->vdev_child[0] == vd)
2223 		vd->vdev_unspare = B_TRUE;
2224 
2225 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2226 
2227 		/* XXX - L2ARC 1.0 does not support expansion */
2228 		if (vd->vdev_aux)
2229 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2230 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2231 	}
2232 	return (spa_vdev_state_exit(spa, vd, 0));
2233 }
2234 
2235 static int
2236 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2237 {
2238 	vdev_t *vd, *tvd;
2239 	int error = 0;
2240 	uint64_t generation;
2241 	metaslab_group_t *mg;
2242 
2243 top:
2244 	spa_vdev_state_enter(spa, SCL_ALLOC);
2245 
2246 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2247 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2248 
2249 	if (!vd->vdev_ops->vdev_op_leaf)
2250 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2251 
2252 	tvd = vd->vdev_top;
2253 	mg = tvd->vdev_mg;
2254 	generation = spa->spa_config_generation + 1;
2255 
2256 	/*
2257 	 * If the device isn't already offline, try to offline it.
2258 	 */
2259 	if (!vd->vdev_offline) {
2260 		/*
2261 		 * If this device has the only valid copy of some data,
2262 		 * don't allow it to be offlined. Log devices are always
2263 		 * expendable.
2264 		 */
2265 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2266 		    vdev_dtl_required(vd))
2267 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2268 
2269 		/*
2270 		 * If the top-level is a slog and it has had allocations
2271 		 * then proceed.  We check that the vdev's metaslab group
2272 		 * is not NULL since it's possible that we may have just
2273 		 * added this vdev but not yet initialized its metaslabs.
2274 		 */
2275 		if (tvd->vdev_islog && mg != NULL) {
2276 			/*
2277 			 * Prevent any future allocations.
2278 			 */
2279 			metaslab_group_passivate(mg);
2280 			(void) spa_vdev_state_exit(spa, vd, 0);
2281 
2282 			error = spa_offline_log(spa);
2283 
2284 			spa_vdev_state_enter(spa, SCL_ALLOC);
2285 
2286 			/*
2287 			 * Check to see if the config has changed.
2288 			 */
2289 			if (error || generation != spa->spa_config_generation) {
2290 				metaslab_group_activate(mg);
2291 				if (error)
2292 					return (spa_vdev_state_exit(spa,
2293 					    vd, error));
2294 				(void) spa_vdev_state_exit(spa, vd, 0);
2295 				goto top;
2296 			}
2297 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2298 		}
2299 
2300 		/*
2301 		 * Offline this device and reopen its top-level vdev.
2302 		 * If the top-level vdev is a log device then just offline
2303 		 * it. Otherwise, if this action results in the top-level
2304 		 * vdev becoming unusable, undo it and fail the request.
2305 		 */
2306 		vd->vdev_offline = B_TRUE;
2307 		vdev_reopen(tvd);
2308 
2309 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2310 		    vdev_is_dead(tvd)) {
2311 			vd->vdev_offline = B_FALSE;
2312 			vdev_reopen(tvd);
2313 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2314 		}
2315 
2316 		/*
2317 		 * Add the device back into the metaslab rotor so that
2318 		 * once we online the device it's open for business.
2319 		 */
2320 		if (tvd->vdev_islog && mg != NULL)
2321 			metaslab_group_activate(mg);
2322 	}
2323 
2324 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2325 
2326 	return (spa_vdev_state_exit(spa, vd, 0));
2327 }
2328 
2329 int
2330 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2331 {
2332 	int error;
2333 
2334 	mutex_enter(&spa->spa_vdev_top_lock);
2335 	error = vdev_offline_locked(spa, guid, flags);
2336 	mutex_exit(&spa->spa_vdev_top_lock);
2337 
2338 	return (error);
2339 }
2340 
2341 /*
2342  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2343  * vdev_offline(), we assume the spa config is locked.  We also clear all
2344  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2345  */
2346 void
2347 vdev_clear(spa_t *spa, vdev_t *vd)
2348 {
2349 	vdev_t *rvd = spa->spa_root_vdev;
2350 
2351 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2352 
2353 	if (vd == NULL)
2354 		vd = rvd;
2355 
2356 	vd->vdev_stat.vs_read_errors = 0;
2357 	vd->vdev_stat.vs_write_errors = 0;
2358 	vd->vdev_stat.vs_checksum_errors = 0;
2359 
2360 	for (int c = 0; c < vd->vdev_children; c++)
2361 		vdev_clear(spa, vd->vdev_child[c]);
2362 
2363 	/*
2364 	 * If we're in the FAULTED state or have experienced failed I/O, then
2365 	 * clear the persistent state and attempt to reopen the device.  We
2366 	 * also mark the vdev config dirty, so that the new faulted state is
2367 	 * written out to disk.
2368 	 */
2369 	if (vd->vdev_faulted || vd->vdev_degraded ||
2370 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2371 
2372 		/*
2373 		 * When reopening in reponse to a clear event, it may be due to
2374 		 * a fmadm repair request.  In this case, if the device is
2375 		 * still broken, we want to still post the ereport again.
2376 		 */
2377 		vd->vdev_forcefault = B_TRUE;
2378 
2379 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2380 		vd->vdev_cant_read = B_FALSE;
2381 		vd->vdev_cant_write = B_FALSE;
2382 
2383 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2384 
2385 		vd->vdev_forcefault = B_FALSE;
2386 
2387 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2388 			vdev_state_dirty(vd->vdev_top);
2389 
2390 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2391 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2392 
2393 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2394 	}
2395 
2396 	/*
2397 	 * When clearing a FMA-diagnosed fault, we always want to
2398 	 * unspare the device, as we assume that the original spare was
2399 	 * done in response to the FMA fault.
2400 	 */
2401 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2402 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2403 	    vd->vdev_parent->vdev_child[0] == vd)
2404 		vd->vdev_unspare = B_TRUE;
2405 }
2406 
2407 boolean_t
2408 vdev_is_dead(vdev_t *vd)
2409 {
2410 	/*
2411 	 * Holes and missing devices are always considered "dead".
2412 	 * This simplifies the code since we don't have to check for
2413 	 * these types of devices in the various code paths.
2414 	 * Instead we rely on the fact that we skip over dead devices
2415 	 * before issuing I/O to them.
2416 	 */
2417 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2418 	    vd->vdev_ops == &vdev_missing_ops);
2419 }
2420 
2421 boolean_t
2422 vdev_readable(vdev_t *vd)
2423 {
2424 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2425 }
2426 
2427 boolean_t
2428 vdev_writeable(vdev_t *vd)
2429 {
2430 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2431 }
2432 
2433 boolean_t
2434 vdev_allocatable(vdev_t *vd)
2435 {
2436 	uint64_t state = vd->vdev_state;
2437 
2438 	/*
2439 	 * We currently allow allocations from vdevs which may be in the
2440 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2441 	 * fails to reopen then we'll catch it later when we're holding
2442 	 * the proper locks.  Note that we have to get the vdev state
2443 	 * in a local variable because although it changes atomically,
2444 	 * we're asking two separate questions about it.
2445 	 */
2446 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2447 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2448 }
2449 
2450 boolean_t
2451 vdev_accessible(vdev_t *vd, zio_t *zio)
2452 {
2453 	ASSERT(zio->io_vd == vd);
2454 
2455 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2456 		return (B_FALSE);
2457 
2458 	if (zio->io_type == ZIO_TYPE_READ)
2459 		return (!vd->vdev_cant_read);
2460 
2461 	if (zio->io_type == ZIO_TYPE_WRITE)
2462 		return (!vd->vdev_cant_write);
2463 
2464 	return (B_TRUE);
2465 }
2466 
2467 /*
2468  * Get statistics for the given vdev.
2469  */
2470 void
2471 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2472 {
2473 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2474 
2475 	mutex_enter(&vd->vdev_stat_lock);
2476 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2477 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2478 	vs->vs_state = vd->vdev_state;
2479 	vs->vs_rsize = vdev_get_min_asize(vd);
2480 	if (vd->vdev_ops->vdev_op_leaf)
2481 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2482 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2483 	mutex_exit(&vd->vdev_stat_lock);
2484 
2485 	/*
2486 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2487 	 * over all top-level vdevs (i.e. the direct children of the root).
2488 	 */
2489 	if (vd == rvd) {
2490 		for (int c = 0; c < rvd->vdev_children; c++) {
2491 			vdev_t *cvd = rvd->vdev_child[c];
2492 			vdev_stat_t *cvs = &cvd->vdev_stat;
2493 
2494 			mutex_enter(&vd->vdev_stat_lock);
2495 			for (int t = 0; t < ZIO_TYPES; t++) {
2496 				vs->vs_ops[t] += cvs->vs_ops[t];
2497 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2498 			}
2499 			cvs->vs_scan_removing = cvd->vdev_removing;
2500 			mutex_exit(&vd->vdev_stat_lock);
2501 		}
2502 	}
2503 }
2504 
2505 void
2506 vdev_clear_stats(vdev_t *vd)
2507 {
2508 	mutex_enter(&vd->vdev_stat_lock);
2509 	vd->vdev_stat.vs_space = 0;
2510 	vd->vdev_stat.vs_dspace = 0;
2511 	vd->vdev_stat.vs_alloc = 0;
2512 	mutex_exit(&vd->vdev_stat_lock);
2513 }
2514 
2515 void
2516 vdev_scan_stat_init(vdev_t *vd)
2517 {
2518 	vdev_stat_t *vs = &vd->vdev_stat;
2519 
2520 	for (int c = 0; c < vd->vdev_children; c++)
2521 		vdev_scan_stat_init(vd->vdev_child[c]);
2522 
2523 	mutex_enter(&vd->vdev_stat_lock);
2524 	vs->vs_scan_processed = 0;
2525 	mutex_exit(&vd->vdev_stat_lock);
2526 }
2527 
2528 void
2529 vdev_stat_update(zio_t *zio, uint64_t psize)
2530 {
2531 	spa_t *spa = zio->io_spa;
2532 	vdev_t *rvd = spa->spa_root_vdev;
2533 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2534 	vdev_t *pvd;
2535 	uint64_t txg = zio->io_txg;
2536 	vdev_stat_t *vs = &vd->vdev_stat;
2537 	zio_type_t type = zio->io_type;
2538 	int flags = zio->io_flags;
2539 
2540 	/*
2541 	 * If this i/o is a gang leader, it didn't do any actual work.
2542 	 */
2543 	if (zio->io_gang_tree)
2544 		return;
2545 
2546 	if (zio->io_error == 0) {
2547 		/*
2548 		 * If this is a root i/o, don't count it -- we've already
2549 		 * counted the top-level vdevs, and vdev_get_stats() will
2550 		 * aggregate them when asked.  This reduces contention on
2551 		 * the root vdev_stat_lock and implicitly handles blocks
2552 		 * that compress away to holes, for which there is no i/o.
2553 		 * (Holes never create vdev children, so all the counters
2554 		 * remain zero, which is what we want.)
2555 		 *
2556 		 * Note: this only applies to successful i/o (io_error == 0)
2557 		 * because unlike i/o counts, errors are not additive.
2558 		 * When reading a ditto block, for example, failure of
2559 		 * one top-level vdev does not imply a root-level error.
2560 		 */
2561 		if (vd == rvd)
2562 			return;
2563 
2564 		ASSERT(vd == zio->io_vd);
2565 
2566 		if (flags & ZIO_FLAG_IO_BYPASS)
2567 			return;
2568 
2569 		mutex_enter(&vd->vdev_stat_lock);
2570 
2571 		if (flags & ZIO_FLAG_IO_REPAIR) {
2572 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2573 				dsl_scan_phys_t *scn_phys =
2574 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2575 				uint64_t *processed = &scn_phys->scn_processed;
2576 
2577 				/* XXX cleanup? */
2578 				if (vd->vdev_ops->vdev_op_leaf)
2579 					atomic_add_64(processed, psize);
2580 				vs->vs_scan_processed += psize;
2581 			}
2582 
2583 			if (flags & ZIO_FLAG_SELF_HEAL)
2584 				vs->vs_self_healed += psize;
2585 		}
2586 
2587 		vs->vs_ops[type]++;
2588 		vs->vs_bytes[type] += psize;
2589 
2590 		mutex_exit(&vd->vdev_stat_lock);
2591 		return;
2592 	}
2593 
2594 	if (flags & ZIO_FLAG_SPECULATIVE)
2595 		return;
2596 
2597 	/*
2598 	 * If this is an I/O error that is going to be retried, then ignore the
2599 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2600 	 * hard errors, when in reality they can happen for any number of
2601 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2602 	 */
2603 	if (zio->io_error == EIO &&
2604 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2605 		return;
2606 
2607 	/*
2608 	 * Intent logs writes won't propagate their error to the root
2609 	 * I/O so don't mark these types of failures as pool-level
2610 	 * errors.
2611 	 */
2612 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2613 		return;
2614 
2615 	mutex_enter(&vd->vdev_stat_lock);
2616 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2617 		if (zio->io_error == ECKSUM)
2618 			vs->vs_checksum_errors++;
2619 		else
2620 			vs->vs_read_errors++;
2621 	}
2622 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2623 		vs->vs_write_errors++;
2624 	mutex_exit(&vd->vdev_stat_lock);
2625 
2626 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2627 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2628 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2629 	    spa->spa_claiming)) {
2630 		/*
2631 		 * This is either a normal write (not a repair), or it's
2632 		 * a repair induced by the scrub thread, or it's a repair
2633 		 * made by zil_claim() during spa_load() in the first txg.
2634 		 * In the normal case, we commit the DTL change in the same
2635 		 * txg as the block was born.  In the scrub-induced repair
2636 		 * case, we know that scrubs run in first-pass syncing context,
2637 		 * so we commit the DTL change in spa_syncing_txg(spa).
2638 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2639 		 *
2640 		 * We currently do not make DTL entries for failed spontaneous
2641 		 * self-healing writes triggered by normal (non-scrubbing)
2642 		 * reads, because we have no transactional context in which to
2643 		 * do so -- and it's not clear that it'd be desirable anyway.
2644 		 */
2645 		if (vd->vdev_ops->vdev_op_leaf) {
2646 			uint64_t commit_txg = txg;
2647 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2648 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2649 				ASSERT(spa_sync_pass(spa) == 1);
2650 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2651 				commit_txg = spa_syncing_txg(spa);
2652 			} else if (spa->spa_claiming) {
2653 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2654 				commit_txg = spa_first_txg(spa);
2655 			}
2656 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2657 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2658 				return;
2659 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2660 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2661 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2662 		}
2663 		if (vd != rvd)
2664 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2665 	}
2666 }
2667 
2668 /*
2669  * Update the in-core space usage stats for this vdev, its metaslab class,
2670  * and the root vdev.
2671  */
2672 void
2673 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2674     int64_t space_delta)
2675 {
2676 	int64_t dspace_delta = space_delta;
2677 	spa_t *spa = vd->vdev_spa;
2678 	vdev_t *rvd = spa->spa_root_vdev;
2679 	metaslab_group_t *mg = vd->vdev_mg;
2680 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2681 
2682 	ASSERT(vd == vd->vdev_top);
2683 
2684 	/*
2685 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2686 	 * factor.  We must calculate this here and not at the root vdev
2687 	 * because the root vdev's psize-to-asize is simply the max of its
2688 	 * childrens', thus not accurate enough for us.
2689 	 */
2690 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2691 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2692 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2693 	    vd->vdev_deflate_ratio;
2694 
2695 	mutex_enter(&vd->vdev_stat_lock);
2696 	vd->vdev_stat.vs_alloc += alloc_delta;
2697 	vd->vdev_stat.vs_space += space_delta;
2698 	vd->vdev_stat.vs_dspace += dspace_delta;
2699 	mutex_exit(&vd->vdev_stat_lock);
2700 
2701 	if (mc == spa_normal_class(spa)) {
2702 		mutex_enter(&rvd->vdev_stat_lock);
2703 		rvd->vdev_stat.vs_alloc += alloc_delta;
2704 		rvd->vdev_stat.vs_space += space_delta;
2705 		rvd->vdev_stat.vs_dspace += dspace_delta;
2706 		mutex_exit(&rvd->vdev_stat_lock);
2707 	}
2708 
2709 	if (mc != NULL) {
2710 		ASSERT(rvd == vd->vdev_parent);
2711 		ASSERT(vd->vdev_ms_count != 0);
2712 
2713 		metaslab_class_space_update(mc,
2714 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2715 	}
2716 }
2717 
2718 /*
2719  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2720  * so that it will be written out next time the vdev configuration is synced.
2721  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2722  */
2723 void
2724 vdev_config_dirty(vdev_t *vd)
2725 {
2726 	spa_t *spa = vd->vdev_spa;
2727 	vdev_t *rvd = spa->spa_root_vdev;
2728 	int c;
2729 
2730 	ASSERT(spa_writeable(spa));
2731 
2732 	/*
2733 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2734 	 * update the vdev config manually and set the sync flag.
2735 	 */
2736 	if (vd->vdev_aux != NULL) {
2737 		spa_aux_vdev_t *sav = vd->vdev_aux;
2738 		nvlist_t **aux;
2739 		uint_t naux;
2740 
2741 		for (c = 0; c < sav->sav_count; c++) {
2742 			if (sav->sav_vdevs[c] == vd)
2743 				break;
2744 		}
2745 
2746 		if (c == sav->sav_count) {
2747 			/*
2748 			 * We're being removed.  There's nothing more to do.
2749 			 */
2750 			ASSERT(sav->sav_sync == B_TRUE);
2751 			return;
2752 		}
2753 
2754 		sav->sav_sync = B_TRUE;
2755 
2756 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2757 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2758 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2759 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2760 		}
2761 
2762 		ASSERT(c < naux);
2763 
2764 		/*
2765 		 * Setting the nvlist in the middle if the array is a little
2766 		 * sketchy, but it will work.
2767 		 */
2768 		nvlist_free(aux[c]);
2769 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2770 
2771 		return;
2772 	}
2773 
2774 	/*
2775 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2776 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2777 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2778 	 * so this is sufficient to ensure mutual exclusion.
2779 	 */
2780 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2781 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2782 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2783 
2784 	if (vd == rvd) {
2785 		for (c = 0; c < rvd->vdev_children; c++)
2786 			vdev_config_dirty(rvd->vdev_child[c]);
2787 	} else {
2788 		ASSERT(vd == vd->vdev_top);
2789 
2790 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2791 		    !vd->vdev_ishole)
2792 			list_insert_head(&spa->spa_config_dirty_list, vd);
2793 	}
2794 }
2795 
2796 void
2797 vdev_config_clean(vdev_t *vd)
2798 {
2799 	spa_t *spa = vd->vdev_spa;
2800 
2801 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2802 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2803 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2804 
2805 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2806 	list_remove(&spa->spa_config_dirty_list, vd);
2807 }
2808 
2809 /*
2810  * Mark a top-level vdev's state as dirty, so that the next pass of
2811  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2812  * the state changes from larger config changes because they require
2813  * much less locking, and are often needed for administrative actions.
2814  */
2815 void
2816 vdev_state_dirty(vdev_t *vd)
2817 {
2818 	spa_t *spa = vd->vdev_spa;
2819 
2820 	ASSERT(spa_writeable(spa));
2821 	ASSERT(vd == vd->vdev_top);
2822 
2823 	/*
2824 	 * The state list is protected by the SCL_STATE lock.  The caller
2825 	 * must either hold SCL_STATE as writer, or must be the sync thread
2826 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2827 	 * so this is sufficient to ensure mutual exclusion.
2828 	 */
2829 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2830 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2831 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2832 
2833 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2834 		list_insert_head(&spa->spa_state_dirty_list, vd);
2835 }
2836 
2837 void
2838 vdev_state_clean(vdev_t *vd)
2839 {
2840 	spa_t *spa = vd->vdev_spa;
2841 
2842 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2843 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2844 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2845 
2846 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2847 	list_remove(&spa->spa_state_dirty_list, vd);
2848 }
2849 
2850 /*
2851  * Propagate vdev state up from children to parent.
2852  */
2853 void
2854 vdev_propagate_state(vdev_t *vd)
2855 {
2856 	spa_t *spa = vd->vdev_spa;
2857 	vdev_t *rvd = spa->spa_root_vdev;
2858 	int degraded = 0, faulted = 0;
2859 	int corrupted = 0;
2860 	vdev_t *child;
2861 
2862 	if (vd->vdev_children > 0) {
2863 		for (int c = 0; c < vd->vdev_children; c++) {
2864 			child = vd->vdev_child[c];
2865 
2866 			/*
2867 			 * Don't factor holes into the decision.
2868 			 */
2869 			if (child->vdev_ishole)
2870 				continue;
2871 
2872 			if (!vdev_readable(child) ||
2873 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2874 				/*
2875 				 * Root special: if there is a top-level log
2876 				 * device, treat the root vdev as if it were
2877 				 * degraded.
2878 				 */
2879 				if (child->vdev_islog && vd == rvd)
2880 					degraded++;
2881 				else
2882 					faulted++;
2883 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2884 				degraded++;
2885 			}
2886 
2887 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2888 				corrupted++;
2889 		}
2890 
2891 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2892 
2893 		/*
2894 		 * Root special: if there is a top-level vdev that cannot be
2895 		 * opened due to corrupted metadata, then propagate the root
2896 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2897 		 * replicas'.
2898 		 */
2899 		if (corrupted && vd == rvd &&
2900 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2901 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2902 			    VDEV_AUX_CORRUPT_DATA);
2903 	}
2904 
2905 	if (vd->vdev_parent)
2906 		vdev_propagate_state(vd->vdev_parent);
2907 }
2908 
2909 /*
2910  * Set a vdev's state.  If this is during an open, we don't update the parent
2911  * state, because we're in the process of opening children depth-first.
2912  * Otherwise, we propagate the change to the parent.
2913  *
2914  * If this routine places a device in a faulted state, an appropriate ereport is
2915  * generated.
2916  */
2917 void
2918 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2919 {
2920 	uint64_t save_state;
2921 	spa_t *spa = vd->vdev_spa;
2922 
2923 	if (state == vd->vdev_state) {
2924 		vd->vdev_stat.vs_aux = aux;
2925 		return;
2926 	}
2927 
2928 	save_state = vd->vdev_state;
2929 
2930 	vd->vdev_state = state;
2931 	vd->vdev_stat.vs_aux = aux;
2932 
2933 	/*
2934 	 * If we are setting the vdev state to anything but an open state, then
2935 	 * always close the underlying device unless the device has requested
2936 	 * a delayed close (i.e. we're about to remove or fault the device).
2937 	 * Otherwise, we keep accessible but invalid devices open forever.
2938 	 * We don't call vdev_close() itself, because that implies some extra
2939 	 * checks (offline, etc) that we don't want here.  This is limited to
2940 	 * leaf devices, because otherwise closing the device will affect other
2941 	 * children.
2942 	 */
2943 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2944 	    vd->vdev_ops->vdev_op_leaf)
2945 		vd->vdev_ops->vdev_op_close(vd);
2946 
2947 	/*
2948 	 * If we have brought this vdev back into service, we need
2949 	 * to notify fmd so that it can gracefully repair any outstanding
2950 	 * cases due to a missing device.  We do this in all cases, even those
2951 	 * that probably don't correlate to a repaired fault.  This is sure to
2952 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2953 	 * this is a transient state it's OK, as the retire agent will
2954 	 * double-check the state of the vdev before repairing it.
2955 	 */
2956 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2957 	    vd->vdev_prevstate != state)
2958 		zfs_post_state_change(spa, vd);
2959 
2960 	if (vd->vdev_removed &&
2961 	    state == VDEV_STATE_CANT_OPEN &&
2962 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2963 		/*
2964 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2965 		 * device was previously marked removed and someone attempted to
2966 		 * reopen it.  If this failed due to a nonexistent device, then
2967 		 * keep the device in the REMOVED state.  We also let this be if
2968 		 * it is one of our special test online cases, which is only
2969 		 * attempting to online the device and shouldn't generate an FMA
2970 		 * fault.
2971 		 */
2972 		vd->vdev_state = VDEV_STATE_REMOVED;
2973 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2974 	} else if (state == VDEV_STATE_REMOVED) {
2975 		vd->vdev_removed = B_TRUE;
2976 	} else if (state == VDEV_STATE_CANT_OPEN) {
2977 		/*
2978 		 * If we fail to open a vdev during an import or recovery, we
2979 		 * mark it as "not available", which signifies that it was
2980 		 * never there to begin with.  Failure to open such a device
2981 		 * is not considered an error.
2982 		 */
2983 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
2984 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
2985 		    vd->vdev_ops->vdev_op_leaf)
2986 			vd->vdev_not_present = 1;
2987 
2988 		/*
2989 		 * Post the appropriate ereport.  If the 'prevstate' field is
2990 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2991 		 * that this is part of a vdev_reopen().  In this case, we don't
2992 		 * want to post the ereport if the device was already in the
2993 		 * CANT_OPEN state beforehand.
2994 		 *
2995 		 * If the 'checkremove' flag is set, then this is an attempt to
2996 		 * online the device in response to an insertion event.  If we
2997 		 * hit this case, then we have detected an insertion event for a
2998 		 * faulted or offline device that wasn't in the removed state.
2999 		 * In this scenario, we don't post an ereport because we are
3000 		 * about to replace the device, or attempt an online with
3001 		 * vdev_forcefault, which will generate the fault for us.
3002 		 */
3003 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3004 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3005 		    vd != spa->spa_root_vdev) {
3006 			const char *class;
3007 
3008 			switch (aux) {
3009 			case VDEV_AUX_OPEN_FAILED:
3010 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3011 				break;
3012 			case VDEV_AUX_CORRUPT_DATA:
3013 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3014 				break;
3015 			case VDEV_AUX_NO_REPLICAS:
3016 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3017 				break;
3018 			case VDEV_AUX_BAD_GUID_SUM:
3019 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3020 				break;
3021 			case VDEV_AUX_TOO_SMALL:
3022 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3023 				break;
3024 			case VDEV_AUX_BAD_LABEL:
3025 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3026 				break;
3027 			default:
3028 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3029 			}
3030 
3031 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3032 		}
3033 
3034 		/* Erase any notion of persistent removed state */
3035 		vd->vdev_removed = B_FALSE;
3036 	} else {
3037 		vd->vdev_removed = B_FALSE;
3038 	}
3039 
3040 	if (!isopen && vd->vdev_parent)
3041 		vdev_propagate_state(vd->vdev_parent);
3042 }
3043 
3044 /*
3045  * Check the vdev configuration to ensure that it's capable of supporting
3046  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3047  * In addition, only a single top-level vdev is allowed and none of the leaves
3048  * can be wholedisks.
3049  */
3050 boolean_t
3051 vdev_is_bootable(vdev_t *vd)
3052 {
3053 	if (!vd->vdev_ops->vdev_op_leaf) {
3054 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3055 
3056 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3057 		    vd->vdev_children > 1) {
3058 			return (B_FALSE);
3059 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3060 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3061 			return (B_FALSE);
3062 		}
3063 	} else if (vd->vdev_wholedisk == 1) {
3064 		return (B_FALSE);
3065 	}
3066 
3067 	for (int c = 0; c < vd->vdev_children; c++) {
3068 		if (!vdev_is_bootable(vd->vdev_child[c]))
3069 			return (B_FALSE);
3070 	}
3071 	return (B_TRUE);
3072 }
3073 
3074 /*
3075  * Load the state from the original vdev tree (ovd) which
3076  * we've retrieved from the MOS config object. If the original
3077  * vdev was offline or faulted then we transfer that state to the
3078  * device in the current vdev tree (nvd).
3079  */
3080 void
3081 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3082 {
3083 	spa_t *spa = nvd->vdev_spa;
3084 
3085 	ASSERT(nvd->vdev_top->vdev_islog);
3086 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3087 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3088 
3089 	for (int c = 0; c < nvd->vdev_children; c++)
3090 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3091 
3092 	if (nvd->vdev_ops->vdev_op_leaf) {
3093 		/*
3094 		 * Restore the persistent vdev state
3095 		 */
3096 		nvd->vdev_offline = ovd->vdev_offline;
3097 		nvd->vdev_faulted = ovd->vdev_faulted;
3098 		nvd->vdev_degraded = ovd->vdev_degraded;
3099 		nvd->vdev_removed = ovd->vdev_removed;
3100 	}
3101 }
3102 
3103 /*
3104  * Determine if a log device has valid content.  If the vdev was
3105  * removed or faulted in the MOS config then we know that
3106  * the content on the log device has already been written to the pool.
3107  */
3108 boolean_t
3109 vdev_log_state_valid(vdev_t *vd)
3110 {
3111 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3112 	    !vd->vdev_removed)
3113 		return (B_TRUE);
3114 
3115 	for (int c = 0; c < vd->vdev_children; c++)
3116 		if (vdev_log_state_valid(vd->vdev_child[c]))
3117 			return (B_TRUE);
3118 
3119 	return (B_FALSE);
3120 }
3121 
3122 /*
3123  * Expand a vdev if possible.
3124  */
3125 void
3126 vdev_expand(vdev_t *vd, uint64_t txg)
3127 {
3128 	ASSERT(vd->vdev_top == vd);
3129 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3130 
3131 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3132 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3133 		vdev_config_dirty(vd);
3134 	}
3135 }
3136 
3137 /*
3138  * Split a vdev.
3139  */
3140 void
3141 vdev_split(vdev_t *vd)
3142 {
3143 	vdev_t *cvd, *pvd = vd->vdev_parent;
3144 
3145 	vdev_remove_child(pvd, vd);
3146 	vdev_compact_children(pvd);
3147 
3148 	cvd = pvd->vdev_child[0];
3149 	if (pvd->vdev_children == 1) {
3150 		vdev_remove_parent(cvd);
3151 		cvd->vdev_splitting = B_TRUE;
3152 	}
3153 	vdev_propagate_state(cvd);
3154 }
3155