xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev.c (revision 88f8b78a88cbdc6d8c1af5c3e54bc49d25095c98)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/dmu.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/uberblock_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/metaslab_impl.h>
38 #include <sys/space_map.h>
39 #include <sys/zio.h>
40 #include <sys/zap.h>
41 #include <sys/fs/zfs.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_disk_ops,
53 	&vdev_file_ops,
54 	&vdev_missing_ops,
55 	NULL
56 };
57 
58 /*
59  * Given a vdev type, return the appropriate ops vector.
60  */
61 static vdev_ops_t *
62 vdev_getops(const char *type)
63 {
64 	vdev_ops_t *ops, **opspp;
65 
66 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
67 		if (strcmp(ops->vdev_op_type, type) == 0)
68 			break;
69 
70 	return (ops);
71 }
72 
73 /*
74  * Default asize function: return the MAX of psize with the asize of
75  * all children.  This is what's used by anything other than RAID-Z.
76  */
77 uint64_t
78 vdev_default_asize(vdev_t *vd, uint64_t psize)
79 {
80 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift);
81 	uint64_t csize;
82 	uint64_t c;
83 
84 	for (c = 0; c < vd->vdev_children; c++) {
85 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
86 		asize = MAX(asize, csize);
87 	}
88 
89 	return (asize);
90 }
91 
92 vdev_t *
93 vdev_lookup_top(spa_t *spa, uint64_t vdev)
94 {
95 	vdev_t *rvd = spa->spa_root_vdev;
96 
97 	if (vdev < rvd->vdev_children)
98 		return (rvd->vdev_child[vdev]);
99 
100 	return (NULL);
101 }
102 
103 vdev_t *
104 vdev_lookup_by_path(vdev_t *vd, const char *path)
105 {
106 	int c;
107 	vdev_t *mvd;
108 
109 	if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0)
110 		return (vd);
111 
112 	for (c = 0; c < vd->vdev_children; c++)
113 		if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) !=
114 		    NULL)
115 			return (mvd);
116 
117 	return (NULL);
118 }
119 
120 vdev_t *
121 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
122 {
123 	int c;
124 	vdev_t *mvd;
125 
126 	if (vd->vdev_children == 0 && vd->vdev_guid == guid)
127 		return (vd);
128 
129 	for (c = 0; c < vd->vdev_children; c++)
130 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
131 		    NULL)
132 			return (mvd);
133 
134 	return (NULL);
135 }
136 
137 void
138 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
139 {
140 	size_t oldsize, newsize;
141 	uint64_t id = cvd->vdev_id;
142 	vdev_t **newchild;
143 
144 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
145 	ASSERT(cvd->vdev_parent == NULL);
146 
147 	cvd->vdev_parent = pvd;
148 
149 	if (pvd == NULL)
150 		return;
151 
152 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
153 
154 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
155 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
156 	newsize = pvd->vdev_children * sizeof (vdev_t *);
157 
158 	newchild = kmem_zalloc(newsize, KM_SLEEP);
159 	if (pvd->vdev_child != NULL) {
160 		bcopy(pvd->vdev_child, newchild, oldsize);
161 		kmem_free(pvd->vdev_child, oldsize);
162 	}
163 
164 	pvd->vdev_child = newchild;
165 	pvd->vdev_child[id] = cvd;
166 
167 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
168 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
169 
170 	/*
171 	 * Walk up all ancestors to update guid sum.
172 	 */
173 	for (; pvd != NULL; pvd = pvd->vdev_parent)
174 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
175 }
176 
177 void
178 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
179 {
180 	int c;
181 	uint_t id = cvd->vdev_id;
182 
183 	ASSERT(cvd->vdev_parent == pvd);
184 
185 	if (pvd == NULL)
186 		return;
187 
188 	ASSERT(id < pvd->vdev_children);
189 	ASSERT(pvd->vdev_child[id] == cvd);
190 
191 	pvd->vdev_child[id] = NULL;
192 	cvd->vdev_parent = NULL;
193 
194 	for (c = 0; c < pvd->vdev_children; c++)
195 		if (pvd->vdev_child[c])
196 			break;
197 
198 	if (c == pvd->vdev_children) {
199 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
200 		pvd->vdev_child = NULL;
201 		pvd->vdev_children = 0;
202 	}
203 
204 	/*
205 	 * Walk up all ancestors to update guid sum.
206 	 */
207 	for (; pvd != NULL; pvd = pvd->vdev_parent)
208 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
209 }
210 
211 /*
212  * Remove any holes in the child array.
213  */
214 void
215 vdev_compact_children(vdev_t *pvd)
216 {
217 	vdev_t **newchild, *cvd;
218 	int oldc = pvd->vdev_children;
219 	int newc, c;
220 
221 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
222 
223 	for (c = newc = 0; c < oldc; c++)
224 		if (pvd->vdev_child[c])
225 			newc++;
226 
227 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
228 
229 	for (c = newc = 0; c < oldc; c++) {
230 		if ((cvd = pvd->vdev_child[c]) != NULL) {
231 			newchild[newc] = cvd;
232 			cvd->vdev_id = newc++;
233 		}
234 	}
235 
236 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
237 	pvd->vdev_child = newchild;
238 	pvd->vdev_children = newc;
239 }
240 
241 /*
242  * Allocate and minimally initialize a vdev_t.
243  */
244 static vdev_t *
245 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
246 {
247 	vdev_t *vd;
248 
249 	while (guid == 0)
250 		guid = spa_get_random(-1ULL);
251 
252 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
253 
254 	vd->vdev_spa = spa;
255 	vd->vdev_id = id;
256 	vd->vdev_guid = guid;
257 	vd->vdev_guid_sum = guid;
258 	vd->vdev_ops = ops;
259 	vd->vdev_state = VDEV_STATE_CLOSED;
260 
261 	mutex_init(&vd->vdev_io_lock, NULL, MUTEX_DEFAULT, NULL);
262 	cv_init(&vd->vdev_io_cv, NULL, CV_DEFAULT, NULL);
263 	list_create(&vd->vdev_io_pending, sizeof (zio_t),
264 	    offsetof(zio_t, io_pending));
265 	mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL);
266 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
267 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
268 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
269 	txg_list_create(&vd->vdev_ms_list,
270 	    offsetof(struct metaslab, ms_txg_node));
271 	txg_list_create(&vd->vdev_dtl_list,
272 	    offsetof(struct vdev, vdev_dtl_node));
273 	vd->vdev_stat.vs_timestamp = gethrtime();
274 
275 	return (vd);
276 }
277 
278 /*
279  * Free a vdev_t that has been removed from service.
280  */
281 static void
282 vdev_free_common(vdev_t *vd)
283 {
284 	if (vd->vdev_path)
285 		spa_strfree(vd->vdev_path);
286 	if (vd->vdev_devid)
287 		spa_strfree(vd->vdev_devid);
288 
289 	txg_list_destroy(&vd->vdev_ms_list);
290 	txg_list_destroy(&vd->vdev_dtl_list);
291 	mutex_enter(&vd->vdev_dtl_lock);
292 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
293 	space_map_destroy(&vd->vdev_dtl_map);
294 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
295 	space_map_destroy(&vd->vdev_dtl_scrub);
296 	mutex_exit(&vd->vdev_dtl_lock);
297 	mutex_destroy(&vd->vdev_dtl_lock);
298 	mutex_destroy(&vd->vdev_dirty_lock);
299 	list_destroy(&vd->vdev_io_pending);
300 	mutex_destroy(&vd->vdev_io_lock);
301 	cv_destroy(&vd->vdev_io_cv);
302 
303 	kmem_free(vd, sizeof (vdev_t));
304 }
305 
306 /*
307  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
308  * creating a new vdev or loading an existing one - the behavior is slightly
309  * different for each case.
310  */
311 vdev_t *
312 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype)
313 {
314 	vdev_ops_t *ops;
315 	char *type;
316 	uint64_t guid = 0;
317 	vdev_t *vd;
318 
319 	ASSERT(spa_config_held(spa, RW_WRITER));
320 
321 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
322 		return (NULL);
323 
324 	if ((ops = vdev_getops(type)) == NULL)
325 		return (NULL);
326 
327 	/*
328 	 * If this is a load, get the vdev guid from the nvlist.
329 	 * Otherwise, vdev_alloc_common() will generate one for us.
330 	 */
331 	if (alloctype == VDEV_ALLOC_LOAD) {
332 		uint64_t label_id;
333 
334 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
335 		    label_id != id)
336 			return (NULL);
337 
338 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
339 			return (NULL);
340 	}
341 
342 	vd = vdev_alloc_common(spa, id, guid, ops);
343 
344 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
345 		vd->vdev_path = spa_strdup(vd->vdev_path);
346 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
347 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
348 
349 	/*
350 	 * If we're a top-level vdev, try to load the allocation parameters.
351 	 */
352 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
353 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
354 		    &vd->vdev_ms_array);
355 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
356 		    &vd->vdev_ms_shift);
357 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT,
358 		    &vd->vdev_ashift);
359 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
360 		    &vd->vdev_asize);
361 	}
362 
363 	/*
364 	 * If we're a leaf vdev, try to load the DTL object.
365 	 */
366 	if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) {
367 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
368 		    &vd->vdev_dtl.smo_object);
369 	}
370 
371 	/*
372 	 * Add ourselves to the parent's list of children.
373 	 */
374 	vdev_add_child(parent, vd);
375 
376 	return (vd);
377 }
378 
379 void
380 vdev_free(vdev_t *vd)
381 {
382 	int c;
383 
384 	/*
385 	 * vdev_free() implies closing the vdev first.  This is simpler than
386 	 * trying to ensure complicated semantics for all callers.
387 	 */
388 	vdev_close(vd);
389 
390 	/*
391 	 * It's possible to free a vdev that's been added to the dirty
392 	 * list when in the middle of spa_vdev_add().  Handle that case
393 	 * correctly here.
394 	 */
395 	if (vd->vdev_is_dirty)
396 		vdev_config_clean(vd);
397 
398 	/*
399 	 * Free all children.
400 	 */
401 	for (c = 0; c < vd->vdev_children; c++)
402 		vdev_free(vd->vdev_child[c]);
403 
404 	ASSERT(vd->vdev_child == NULL);
405 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
406 
407 	/*
408 	 * Discard allocation state.
409 	 */
410 	if (vd == vd->vdev_top)
411 		vdev_metaslab_fini(vd);
412 
413 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
414 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
415 
416 	/*
417 	 * Remove this vdev from its parent's child list.
418 	 */
419 	vdev_remove_child(vd->vdev_parent, vd);
420 
421 	ASSERT(vd->vdev_parent == NULL);
422 
423 	vdev_free_common(vd);
424 }
425 
426 /*
427  * Transfer top-level vdev state from svd to tvd.
428  */
429 static void
430 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
431 {
432 	spa_t *spa = svd->vdev_spa;
433 	metaslab_t *msp;
434 	vdev_t *vd;
435 	int t;
436 
437 	ASSERT(tvd == tvd->vdev_top);
438 
439 	tvd->vdev_ms_array = svd->vdev_ms_array;
440 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
441 	tvd->vdev_ms_count = svd->vdev_ms_count;
442 
443 	svd->vdev_ms_array = 0;
444 	svd->vdev_ms_shift = 0;
445 	svd->vdev_ms_count = 0;
446 
447 	tvd->vdev_mg = svd->vdev_mg;
448 	tvd->vdev_mg->mg_vd = tvd;
449 	tvd->vdev_ms = svd->vdev_ms;
450 	tvd->vdev_smo = svd->vdev_smo;
451 
452 	svd->vdev_mg = NULL;
453 	svd->vdev_ms = NULL;
454 	svd->vdev_smo = NULL;
455 
456 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
457 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
458 
459 	svd->vdev_stat.vs_alloc = 0;
460 	svd->vdev_stat.vs_space = 0;
461 
462 	for (t = 0; t < TXG_SIZE; t++) {
463 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
464 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
465 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
466 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
467 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
468 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
469 		tvd->vdev_dirty[t] = svd->vdev_dirty[t];
470 		svd->vdev_dirty[t] = 0;
471 	}
472 
473 	if (svd->vdev_is_dirty) {
474 		vdev_config_clean(svd);
475 		vdev_config_dirty(tvd);
476 	}
477 
478 	ASSERT(svd->vdev_io_retry == NULL);
479 	ASSERT(list_is_empty(&svd->vdev_io_pending));
480 }
481 
482 static void
483 vdev_top_update(vdev_t *tvd, vdev_t *vd)
484 {
485 	int c;
486 
487 	if (vd == NULL)
488 		return;
489 
490 	vd->vdev_top = tvd;
491 
492 	for (c = 0; c < vd->vdev_children; c++)
493 		vdev_top_update(tvd, vd->vdev_child[c]);
494 }
495 
496 /*
497  * Add a mirror/replacing vdev above an existing vdev.
498  */
499 vdev_t *
500 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
501 {
502 	spa_t *spa = cvd->vdev_spa;
503 	vdev_t *pvd = cvd->vdev_parent;
504 	vdev_t *mvd;
505 
506 	ASSERT(spa_config_held(spa, RW_WRITER));
507 
508 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
509 	vdev_remove_child(pvd, cvd);
510 	vdev_add_child(pvd, mvd);
511 	cvd->vdev_id = mvd->vdev_children;
512 	vdev_add_child(mvd, cvd);
513 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
514 
515 	mvd->vdev_asize = cvd->vdev_asize;
516 	mvd->vdev_ashift = cvd->vdev_ashift;
517 	mvd->vdev_state = cvd->vdev_state;
518 
519 	if (mvd == mvd->vdev_top)
520 		vdev_top_transfer(cvd, mvd);
521 
522 	return (mvd);
523 }
524 
525 /*
526  * Remove a 1-way mirror/replacing vdev from the tree.
527  */
528 void
529 vdev_remove_parent(vdev_t *cvd)
530 {
531 	vdev_t *mvd = cvd->vdev_parent;
532 	vdev_t *pvd = mvd->vdev_parent;
533 
534 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
535 
536 	ASSERT(mvd->vdev_children == 1);
537 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
538 	    mvd->vdev_ops == &vdev_replacing_ops);
539 
540 	vdev_remove_child(mvd, cvd);
541 	vdev_remove_child(pvd, mvd);
542 	cvd->vdev_id = mvd->vdev_id;
543 	vdev_add_child(pvd, cvd);
544 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
545 
546 	if (cvd == cvd->vdev_top)
547 		vdev_top_transfer(mvd, cvd);
548 
549 	ASSERT(mvd->vdev_children == 0);
550 	vdev_free(mvd);
551 }
552 
553 void
554 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
555 {
556 	spa_t *spa = vd->vdev_spa;
557 	metaslab_class_t *mc = spa_metaslab_class_select(spa);
558 	uint64_t c;
559 	uint64_t oldc = vd->vdev_ms_count;
560 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
561 	space_map_obj_t *smo = vd->vdev_smo;
562 	metaslab_t **mspp = vd->vdev_ms;
563 
564 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
565 
566 	ASSERT(oldc <= newc);
567 
568 	vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP);
569 	vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
570 	vd->vdev_ms_count = newc;
571 
572 	if (vd->vdev_mg == NULL) {
573 		if (txg == 0) {
574 			dmu_buf_t *db;
575 			uint64_t *ms_array;
576 
577 			ms_array = kmem_zalloc(newc * sizeof (uint64_t),
578 			    KM_SLEEP);
579 
580 			dmu_read(spa->spa_meta_objset, vd->vdev_ms_array,
581 			    0, newc * sizeof (uint64_t), ms_array);
582 
583 			for (c = 0; c < newc; c++) {
584 				if (ms_array[c] == 0)
585 					continue;
586 				db = dmu_bonus_hold(spa->spa_meta_objset,
587 				    ms_array[c]);
588 				dmu_buf_read(db);
589 				ASSERT3U(db->db_size, ==, sizeof (*smo));
590 				bcopy(db->db_data, &vd->vdev_smo[c],
591 				    db->db_size);
592 				ASSERT3U(vd->vdev_smo[c].smo_object, ==,
593 				    ms_array[c]);
594 				dmu_buf_rele(db);
595 			}
596 			kmem_free(ms_array, newc * sizeof (uint64_t));
597 		}
598 		vd->vdev_mg = metaslab_group_create(mc, vd);
599 	}
600 
601 	for (c = 0; c < oldc; c++) {
602 		vd->vdev_smo[c] = smo[c];
603 		vd->vdev_ms[c] = mspp[c];
604 		mspp[c]->ms_smo = &vd->vdev_smo[c];
605 	}
606 
607 	for (c = oldc; c < newc; c++)
608 		metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c],
609 		    c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
610 
611 	if (oldc != 0) {
612 		kmem_free(smo, oldc * sizeof (*smo));
613 		kmem_free(mspp, oldc * sizeof (*mspp));
614 	}
615 
616 }
617 
618 void
619 vdev_metaslab_fini(vdev_t *vd)
620 {
621 	uint64_t m;
622 	uint64_t count = vd->vdev_ms_count;
623 
624 	if (vd->vdev_ms != NULL) {
625 		for (m = 0; m < count; m++)
626 			metaslab_fini(vd->vdev_ms[m]);
627 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
628 		vd->vdev_ms = NULL;
629 	}
630 
631 	if (vd->vdev_smo != NULL) {
632 		kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t));
633 		vd->vdev_smo = NULL;
634 	}
635 }
636 
637 /*
638  * Prepare a virtual device for access.
639  */
640 int
641 vdev_open(vdev_t *vd)
642 {
643 	int error;
644 	vdev_knob_t *vk;
645 	int c;
646 	uint64_t osize = 0;
647 	uint64_t asize, psize;
648 	uint64_t ashift = -1ULL;
649 
650 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
651 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
652 	    vd->vdev_state == VDEV_STATE_OFFLINE);
653 
654 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
655 		vd->vdev_fault_arg >>= 1;
656 	else
657 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
658 
659 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
660 
661 	for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) {
662 		uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset);
663 
664 		*valp = vk->vk_default;
665 		*valp = MAX(*valp, vk->vk_min);
666 		*valp = MIN(*valp, vk->vk_max);
667 	}
668 
669 	if (vd->vdev_ops->vdev_op_leaf) {
670 		vdev_cache_init(vd);
671 		vdev_queue_init(vd);
672 		vd->vdev_cache_active = B_TRUE;
673 	}
674 
675 	if (vd->vdev_offline) {
676 		ASSERT(vd->vdev_children == 0);
677 		dprintf("OFFLINE: %s = ENXIO\n", vdev_description(vd));
678 		vd->vdev_state = VDEV_STATE_OFFLINE;
679 		return (ENXIO);
680 	}
681 
682 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
683 
684 	dprintf("%s = %d, osize %llu, state = %d\n",
685 	    vdev_description(vd), error, osize, vd->vdev_state);
686 
687 	if (error) {
688 		dprintf("%s in %s failed to open, error %d, aux %d\n",
689 		    vdev_description(vd),
690 		    vdev_description(vd->vdev_parent),
691 		    error,
692 		    vd->vdev_stat.vs_aux);
693 
694 		vd->vdev_state = VDEV_STATE_CANT_OPEN;
695 		return (error);
696 	}
697 
698 	vd->vdev_state = VDEV_STATE_HEALTHY;
699 
700 	for (c = 0; c < vd->vdev_children; c++)
701 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY)
702 			vd->vdev_state = VDEV_STATE_DEGRADED;
703 
704 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
705 
706 	if (vd->vdev_children == 0) {
707 		if (osize < SPA_MINDEVSIZE) {
708 			vd->vdev_state = VDEV_STATE_CANT_OPEN;
709 			vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL;
710 			return (EOVERFLOW);
711 		}
712 		psize = osize;
713 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
714 	} else {
715 		if (osize < SPA_MINDEVSIZE -
716 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
717 			vd->vdev_state = VDEV_STATE_CANT_OPEN;
718 			vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL;
719 			return (EOVERFLOW);
720 		}
721 		psize = 0;
722 		asize = osize;
723 	}
724 
725 	vd->vdev_psize = psize;
726 
727 	if (vd->vdev_asize == 0) {
728 		/*
729 		 * This is the first-ever open, so use the computed values.
730 		 */
731 		vd->vdev_asize = asize;
732 		vd->vdev_ashift = ashift;
733 	} else {
734 		/*
735 		 * Make sure the alignment requirement hasn't increased.
736 		 */
737 		if (ashift > vd->vdev_ashift) {
738 			dprintf("%s: ashift grew\n", vdev_description(vd));
739 			vd->vdev_state = VDEV_STATE_CANT_OPEN;
740 			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
741 			return (EINVAL);
742 		}
743 
744 		/*
745 		 * Make sure the device hasn't shrunk.
746 		 */
747 		if (asize < vd->vdev_asize) {
748 			dprintf("%s: device shrank\n", vdev_description(vd));
749 			vd->vdev_state = VDEV_STATE_CANT_OPEN;
750 			vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL;
751 			return (EINVAL);
752 		}
753 
754 		/*
755 		 * If all children are healthy and the asize has increased,
756 		 * then we've experienced dynamic LUN growth.
757 		 */
758 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
759 		    asize > vd->vdev_asize) {
760 			dprintf("%s: device grew\n", vdev_description(vd));
761 			vd->vdev_asize = asize;
762 		}
763 	}
764 
765 	return (0);
766 }
767 
768 /*
769  * Close a virtual device.
770  */
771 void
772 vdev_close(vdev_t *vd)
773 {
774 	ASSERT3P(list_head(&vd->vdev_io_pending), ==, NULL);
775 
776 	vd->vdev_ops->vdev_op_close(vd);
777 
778 	if (vd->vdev_cache_active) {
779 		vdev_cache_fini(vd);
780 		vdev_queue_fini(vd);
781 		vd->vdev_cache_active = B_FALSE;
782 	}
783 
784 	if (vd->vdev_offline)
785 		vd->vdev_state = VDEV_STATE_OFFLINE;
786 	else
787 		vd->vdev_state = VDEV_STATE_CLOSED;
788 }
789 
790 void
791 vdev_reopen(vdev_t *vd, zio_t **rq)
792 {
793 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
794 	int c;
795 
796 	if (vd == rvd) {
797 		ASSERT(rq == NULL);
798 		for (c = 0; c < rvd->vdev_children; c++)
799 			vdev_reopen(rvd->vdev_child[c], NULL);
800 		return;
801 	}
802 
803 	/* only valid for top-level vdevs */
804 	ASSERT3P(vd, ==, vd->vdev_top);
805 
806 	/*
807 	 * vdev_state can change when spa_config_lock is held as writer,
808 	 * or when it's held as reader and we're doing a vdev_reopen().
809 	 * To handle the latter case, we grab rvd's io_lock to serialize
810 	 * reopens.  This ensures that there's never more than one vdev
811 	 * state changer active at a time.
812 	 */
813 	mutex_enter(&rvd->vdev_io_lock);
814 
815 	mutex_enter(&vd->vdev_io_lock);
816 	while (list_head(&vd->vdev_io_pending) != NULL)
817 		cv_wait(&vd->vdev_io_cv, &vd->vdev_io_lock);
818 	vdev_close(vd);
819 	(void) vdev_open(vd);
820 	if (rq != NULL) {
821 		*rq = vd->vdev_io_retry;
822 		vd->vdev_io_retry = NULL;
823 	}
824 	mutex_exit(&vd->vdev_io_lock);
825 
826 	/*
827 	 * Reassess root vdev's health.
828 	 */
829 	rvd->vdev_state = VDEV_STATE_HEALTHY;
830 	for (c = 0; c < rvd->vdev_children; c++) {
831 		uint64_t state = rvd->vdev_child[c]->vdev_state;
832 		rvd->vdev_state = MIN(rvd->vdev_state, state);
833 	}
834 
835 	mutex_exit(&rvd->vdev_io_lock);
836 }
837 
838 int
839 vdev_create(vdev_t *vd, uint64_t txg)
840 {
841 	int error;
842 
843 	/*
844 	 * Normally, partial opens (e.g. of a mirror) are allowed.
845 	 * For a create, however, we want to fail the request if
846 	 * there are any components we can't open.
847 	 */
848 	error = vdev_open(vd);
849 
850 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
851 		vdev_close(vd);
852 		return (error ? error : ENXIO);
853 	}
854 
855 	/*
856 	 * Recursively initialize all labels.
857 	 */
858 	if ((error = vdev_label_init(vd, txg)) != 0) {
859 		vdev_close(vd);
860 		return (error);
861 	}
862 
863 	return (0);
864 }
865 
866 /*
867  * The is the latter half of vdev_create().  It is distinct because it
868  * involves initiating transactions in order to do metaslab creation.
869  * For creation, we want to try to create all vdevs at once and then undo it
870  * if anything fails; this is much harder if we have pending transactions.
871  */
872 void
873 vdev_init(vdev_t *vd, uint64_t txg)
874 {
875 	/*
876 	 * Aim for roughly 200 metaslabs per vdev.
877 	 */
878 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
879 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
880 
881 	/*
882 	 * Initialize the vdev's metaslabs.
883 	 */
884 	vdev_metaslab_init(vd, txg);
885 }
886 
887 void
888 vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg)
889 {
890 	vdev_t *tvd = vd->vdev_top;
891 
892 	mutex_enter(&tvd->vdev_dirty_lock);
893 	if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) {
894 		tvd->vdev_dirty[txg & TXG_MASK] |= flags;
895 		(void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list,
896 		    tvd, txg);
897 	}
898 	mutex_exit(&tvd->vdev_dirty_lock);
899 }
900 
901 void
902 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
903 {
904 	mutex_enter(sm->sm_lock);
905 	if (!space_map_contains(sm, txg, size))
906 		space_map_add(sm, txg, size);
907 	mutex_exit(sm->sm_lock);
908 }
909 
910 int
911 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
912 {
913 	int dirty;
914 
915 	/*
916 	 * Quick test without the lock -- covers the common case that
917 	 * there are no dirty time segments.
918 	 */
919 	if (sm->sm_space == 0)
920 		return (0);
921 
922 	mutex_enter(sm->sm_lock);
923 	dirty = space_map_contains(sm, txg, size);
924 	mutex_exit(sm->sm_lock);
925 
926 	return (dirty);
927 }
928 
929 /*
930  * Reassess DTLs after a config change or scrub completion.
931  */
932 void
933 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
934 {
935 	int c;
936 
937 	ASSERT(spa_config_held(vd->vdev_spa, RW_WRITER));
938 
939 	if (vd->vdev_children == 0) {
940 		mutex_enter(&vd->vdev_dtl_lock);
941 		/*
942 		 * We're successfully scrubbed everything up to scrub_txg.
943 		 * Therefore, excise all old DTLs up to that point, then
944 		 * fold in the DTLs for everything we couldn't scrub.
945 		 */
946 		if (scrub_txg != 0) {
947 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
948 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
949 		}
950 		if (scrub_done)
951 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
952 		mutex_exit(&vd->vdev_dtl_lock);
953 		if (txg != 0) {
954 			vdev_t *tvd = vd->vdev_top;
955 			vdev_dirty(tvd, VDD_DTL, txg);
956 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
957 		}
958 		return;
959 	}
960 
961 	mutex_enter(&vd->vdev_dtl_lock);
962 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
963 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
964 	mutex_exit(&vd->vdev_dtl_lock);
965 
966 	for (c = 0; c < vd->vdev_children; c++) {
967 		vdev_t *cvd = vd->vdev_child[c];
968 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
969 		mutex_enter(&vd->vdev_dtl_lock);
970 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
971 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
972 		mutex_exit(&vd->vdev_dtl_lock);
973 	}
974 }
975 
976 static int
977 vdev_dtl_load(vdev_t *vd)
978 {
979 	spa_t *spa = vd->vdev_spa;
980 	space_map_obj_t *smo = &vd->vdev_dtl;
981 	dmu_buf_t *db;
982 	int error;
983 
984 	ASSERT(vd->vdev_children == 0);
985 
986 	if (smo->smo_object == 0)
987 		return (0);
988 
989 	db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object);
990 	dmu_buf_read(db);
991 	ASSERT3U(db->db_size, ==, sizeof (*smo));
992 	bcopy(db->db_data, smo, db->db_size);
993 	dmu_buf_rele(db);
994 
995 	mutex_enter(&vd->vdev_dtl_lock);
996 	error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC,
997 	    spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc);
998 	mutex_exit(&vd->vdev_dtl_lock);
999 
1000 	return (error);
1001 }
1002 
1003 void
1004 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1005 {
1006 	spa_t *spa = vd->vdev_spa;
1007 	space_map_obj_t *smo = &vd->vdev_dtl;
1008 	space_map_t *sm = &vd->vdev_dtl_map;
1009 	space_map_t smsync;
1010 	kmutex_t smlock;
1011 	avl_tree_t *t = &sm->sm_root;
1012 	space_seg_t *ss;
1013 	dmu_buf_t *db;
1014 	dmu_tx_t *tx;
1015 
1016 	dprintf("%s in txg %llu pass %d\n",
1017 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1018 
1019 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1020 
1021 	if (vd->vdev_detached) {
1022 		if (smo->smo_object != 0) {
1023 			int err = dmu_object_free(spa->spa_meta_objset,
1024 			    smo->smo_object, tx);
1025 			ASSERT3U(err, ==, 0);
1026 			smo->smo_object = 0;
1027 		}
1028 		dmu_tx_commit(tx);
1029 		return;
1030 	}
1031 
1032 	if (smo->smo_object == 0) {
1033 		ASSERT(smo->smo_objsize == 0);
1034 		ASSERT(smo->smo_alloc == 0);
1035 		smo->smo_object = dmu_object_alloc(spa->spa_meta_objset,
1036 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1037 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1038 		ASSERT(smo->smo_object != 0);
1039 		vdev_config_dirty(vd->vdev_top);
1040 	}
1041 
1042 	dmu_free_range(spa->spa_meta_objset, smo->smo_object,
1043 	    0, smo->smo_objsize, tx);
1044 
1045 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1046 
1047 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1048 	    &smlock);
1049 
1050 	mutex_enter(&smlock);
1051 
1052 	mutex_enter(&vd->vdev_dtl_lock);
1053 	for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss))
1054 		space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start);
1055 	mutex_exit(&vd->vdev_dtl_lock);
1056 
1057 	smo->smo_objsize = 0;
1058 	smo->smo_alloc = smsync.sm_space;
1059 
1060 	space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx);
1061 	space_map_destroy(&smsync);
1062 
1063 	mutex_exit(&smlock);
1064 	mutex_destroy(&smlock);
1065 
1066 	db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object);
1067 	dmu_buf_will_dirty(db, tx);
1068 	ASSERT3U(db->db_size, ==, sizeof (*smo));
1069 	bcopy(smo, db->db_data, db->db_size);
1070 	dmu_buf_rele(db);
1071 
1072 	dmu_tx_commit(tx);
1073 }
1074 
1075 int
1076 vdev_load(vdev_t *vd, int import)
1077 {
1078 	spa_t *spa = vd->vdev_spa;
1079 	int c, error;
1080 	nvlist_t *label;
1081 	uint64_t guid, state;
1082 
1083 	dprintf("loading %s\n", vdev_description(vd));
1084 
1085 	/*
1086 	 * Recursively load all children.
1087 	 */
1088 	for (c = 0; c < vd->vdev_children; c++)
1089 		if ((error = vdev_load(vd->vdev_child[c], import)) != 0)
1090 			return (error);
1091 
1092 	/*
1093 	 * If this is a leaf vdev, make sure its agrees with its disk labels.
1094 	 */
1095 	if (vd->vdev_ops->vdev_op_leaf) {
1096 
1097 		if (vdev_is_dead(vd))
1098 			return (0);
1099 
1100 		/*
1101 		 * XXX state transitions don't propagate to parent here.
1102 		 * Also, merely setting the state isn't sufficient because
1103 		 * it's not persistent; a vdev_reopen() would make us
1104 		 * forget all about it.
1105 		 */
1106 		if ((label = vdev_label_read_config(vd)) == NULL) {
1107 			dprintf("can't load label config\n");
1108 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1109 			    VDEV_AUX_CORRUPT_DATA);
1110 			return (0);
1111 		}
1112 
1113 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1114 		    &guid) != 0 || guid != spa_guid(spa)) {
1115 			dprintf("bad or missing pool GUID (%llu)\n", guid);
1116 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1117 			    VDEV_AUX_CORRUPT_DATA);
1118 			nvlist_free(label);
1119 			return (0);
1120 		}
1121 
1122 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) ||
1123 		    guid != vd->vdev_guid) {
1124 			dprintf("bad or missing vdev guid (%llu != %llu)\n",
1125 			    guid, vd->vdev_guid);
1126 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1127 			    VDEV_AUX_CORRUPT_DATA);
1128 			nvlist_free(label);
1129 			return (0);
1130 		}
1131 
1132 		/*
1133 		 * If we find a vdev with a matching pool guid and vdev guid,
1134 		 * but the pool state is not active, it indicates that the user
1135 		 * exported or destroyed the pool without affecting the config
1136 		 * cache (if / was mounted readonly, for example).  In this
1137 		 * case, immediately return EBADF so the caller can remove it
1138 		 * from the config.
1139 		 */
1140 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1141 		    &state)) {
1142 			dprintf("missing pool state\n");
1143 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1144 			    VDEV_AUX_CORRUPT_DATA);
1145 			nvlist_free(label);
1146 			return (0);
1147 		}
1148 
1149 		if (state != POOL_STATE_ACTIVE &&
1150 		    (!import || state != POOL_STATE_EXPORTED)) {
1151 			dprintf("pool state not active (%llu)\n", state);
1152 			nvlist_free(label);
1153 			return (EBADF);
1154 		}
1155 
1156 		nvlist_free(label);
1157 	}
1158 
1159 	/*
1160 	 * If this is a top-level vdev, make sure its allocation parameters
1161 	 * exist and initialize its metaslabs.
1162 	 */
1163 	if (vd == vd->vdev_top) {
1164 
1165 		if (vd->vdev_ms_array == 0 ||
1166 		    vd->vdev_ms_shift == 0 ||
1167 		    vd->vdev_ashift == 0 ||
1168 		    vd->vdev_asize == 0) {
1169 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1170 			    VDEV_AUX_CORRUPT_DATA);
1171 			return (0);
1172 		}
1173 
1174 		vdev_metaslab_init(vd, 0);
1175 	}
1176 
1177 	/*
1178 	 * If this is a leaf vdev, load its DTL.
1179 	 */
1180 	if (vd->vdev_ops->vdev_op_leaf) {
1181 		error = vdev_dtl_load(vd);
1182 		if (error) {
1183 			dprintf("can't load DTL for %s, error %d\n",
1184 			    vdev_description(vd), error);
1185 			vdev_set_state(vd, VDEV_STATE_CANT_OPEN,
1186 			    VDEV_AUX_CORRUPT_DATA);
1187 			return (0);
1188 		}
1189 	}
1190 
1191 	return (0);
1192 }
1193 
1194 void
1195 vdev_sync_done(vdev_t *vd, uint64_t txg)
1196 {
1197 	metaslab_t *msp;
1198 
1199 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1200 
1201 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1202 		metaslab_sync_done(msp, txg);
1203 }
1204 
1205 void
1206 vdev_add_sync(vdev_t *vd, uint64_t txg)
1207 {
1208 	spa_t *spa = vd->vdev_spa;
1209 	dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1210 
1211 	ASSERT(vd == vd->vdev_top);
1212 
1213 	if (vd->vdev_ms_array == 0)
1214 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1215 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1216 
1217 	ASSERT(vd->vdev_ms_array != 0);
1218 
1219 	vdev_config_dirty(vd);
1220 
1221 	dmu_tx_commit(tx);
1222 }
1223 
1224 void
1225 vdev_sync(vdev_t *vd, uint64_t txg)
1226 {
1227 	spa_t *spa = vd->vdev_spa;
1228 	vdev_t *lvd;
1229 	metaslab_t *msp;
1230 	uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK];
1231 	uint8_t dirty = *dirtyp;
1232 
1233 	mutex_enter(&vd->vdev_dirty_lock);
1234 	*dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL);
1235 	mutex_exit(&vd->vdev_dirty_lock);
1236 
1237 	dprintf("%s txg %llu pass %d\n",
1238 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1239 
1240 	if (dirty & VDD_ADD)
1241 		vdev_add_sync(vd, txg);
1242 
1243 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL)
1244 		metaslab_sync(msp, txg);
1245 
1246 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1247 		vdev_dtl_sync(lvd, txg);
1248 
1249 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1250 }
1251 
1252 uint64_t
1253 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1254 {
1255 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1256 }
1257 
1258 void
1259 vdev_io_start(zio_t *zio)
1260 {
1261 	zio->io_vd->vdev_ops->vdev_op_io_start(zio);
1262 }
1263 
1264 void
1265 vdev_io_done(zio_t *zio)
1266 {
1267 	zio->io_vd->vdev_ops->vdev_op_io_done(zio);
1268 }
1269 
1270 const char *
1271 vdev_description(vdev_t *vd)
1272 {
1273 	if (vd == NULL || vd->vdev_ops == NULL)
1274 		return ("<unknown>");
1275 
1276 	if (vd->vdev_path != NULL)
1277 		return (vd->vdev_path);
1278 
1279 	if (vd->vdev_parent == NULL)
1280 		return (spa_name(vd->vdev_spa));
1281 
1282 	return (vd->vdev_ops->vdev_op_type);
1283 }
1284 
1285 int
1286 vdev_online(spa_t *spa, const char *path)
1287 {
1288 	vdev_t *vd;
1289 
1290 	spa_config_enter(spa, RW_WRITER);
1291 
1292 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) {
1293 		spa_config_exit(spa);
1294 		return (ENODEV);
1295 	}
1296 
1297 	dprintf("ONLINE: %s\n", vdev_description(vd));
1298 
1299 	vd->vdev_offline = B_FALSE;
1300 
1301 	/*
1302 	 * Clear the error counts.  The idea is that you expect to see all
1303 	 * zeroes when everything is working, so if you've just onlined a
1304 	 * device, you don't want to keep hearing about errors from before.
1305 	 */
1306 	vd->vdev_stat.vs_read_errors = 0;
1307 	vd->vdev_stat.vs_write_errors = 0;
1308 	vd->vdev_stat.vs_checksum_errors = 0;
1309 
1310 	vdev_reopen(vd->vdev_top, NULL);
1311 
1312 	spa_config_exit(spa);
1313 
1314 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1315 
1316 	return (0);
1317 }
1318 
1319 int
1320 vdev_offline(spa_t *spa, const char *path)
1321 {
1322 	vdev_t *vd;
1323 
1324 	spa_config_enter(spa, RW_WRITER);
1325 
1326 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) {
1327 		spa_config_exit(spa);
1328 		return (ENODEV);
1329 	}
1330 
1331 	dprintf("OFFLINE: %s\n", vdev_description(vd));
1332 
1333 	/*
1334 	 * If this device's top-level vdev has a non-empty DTL,
1335 	 * don't allow the device to be offlined.
1336 	 *
1337 	 * XXX -- we should make this more precise by allowing the offline
1338 	 * as long as the remaining devices don't have any DTL holes.
1339 	 */
1340 	if (vd->vdev_top->vdev_dtl_map.sm_space != 0) {
1341 		spa_config_exit(spa);
1342 		return (EBUSY);
1343 	}
1344 
1345 	/*
1346 	 * Set this device to offline state and reopen its top-level vdev.
1347 	 * If this action results in the top-level vdev becoming unusable,
1348 	 * undo it and fail the request.
1349 	 */
1350 	vd->vdev_offline = B_TRUE;
1351 	vdev_reopen(vd->vdev_top, NULL);
1352 	if (vdev_is_dead(vd->vdev_top)) {
1353 		vd->vdev_offline = B_FALSE;
1354 		vdev_reopen(vd->vdev_top, NULL);
1355 		spa_config_exit(spa);
1356 		return (EBUSY);
1357 	}
1358 
1359 	spa_config_exit(spa);
1360 
1361 	return (0);
1362 }
1363 
1364 int
1365 vdev_error_setup(spa_t *spa, const char *path, int mode, int mask, uint64_t arg)
1366 {
1367 	vdev_t *vd;
1368 
1369 	spa_config_enter(spa, RW_WRITER);
1370 
1371 	if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) {
1372 		spa_config_exit(spa);
1373 		return (ENODEV);
1374 	}
1375 
1376 	vd->vdev_fault_mode = mode;
1377 	vd->vdev_fault_mask = mask;
1378 	vd->vdev_fault_arg = arg;
1379 
1380 	spa_config_exit(spa);
1381 
1382 	return (0);
1383 }
1384 
1385 int
1386 vdev_is_dead(vdev_t *vd)
1387 {
1388 	return (vd->vdev_state <= VDEV_STATE_CANT_OPEN);
1389 }
1390 
1391 int
1392 vdev_error_inject(vdev_t *vd, zio_t *zio)
1393 {
1394 	int error = 0;
1395 
1396 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1397 		return (0);
1398 
1399 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1400 		return (0);
1401 
1402 	switch (vd->vdev_fault_mode) {
1403 	case VDEV_FAULT_RANDOM:
1404 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1405 			error = EIO;
1406 		break;
1407 
1408 	case VDEV_FAULT_COUNT:
1409 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1410 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1411 		error = EIO;
1412 		break;
1413 	}
1414 
1415 	if (error != 0) {
1416 		dprintf("returning %d for type %d on %s state %d offset %llx\n",
1417 		    error, zio->io_type, vdev_description(vd),
1418 		    vd->vdev_state, zio->io_offset);
1419 	}
1420 
1421 	return (error);
1422 }
1423 
1424 /*
1425  * Get statistics for the given vdev.
1426  */
1427 void
1428 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1429 {
1430 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1431 	int c, t;
1432 
1433 	mutex_enter(&vd->vdev_stat_lock);
1434 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1435 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1436 	vs->vs_state = vd->vdev_state;
1437 	mutex_exit(&vd->vdev_stat_lock);
1438 
1439 	/*
1440 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1441 	 * over all top-level vdevs (i.e. the direct children of the root).
1442 	 */
1443 	if (vd == rvd) {
1444 		for (c = 0; c < rvd->vdev_children; c++) {
1445 			vdev_t *cvd = rvd->vdev_child[c];
1446 			vdev_stat_t *cvs = &cvd->vdev_stat;
1447 
1448 			mutex_enter(&vd->vdev_stat_lock);
1449 			for (t = 0; t < ZIO_TYPES; t++) {
1450 				vs->vs_ops[t] += cvs->vs_ops[t];
1451 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1452 			}
1453 			vs->vs_read_errors += cvs->vs_read_errors;
1454 			vs->vs_write_errors += cvs->vs_write_errors;
1455 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1456 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1457 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1458 			mutex_exit(&vd->vdev_stat_lock);
1459 		}
1460 	}
1461 }
1462 
1463 void
1464 vdev_stat_update(zio_t *zio)
1465 {
1466 	vdev_t *vd = zio->io_vd;
1467 	vdev_t *pvd;
1468 	uint64_t txg = zio->io_txg;
1469 	vdev_stat_t *vs = &vd->vdev_stat;
1470 	zio_type_t type = zio->io_type;
1471 	int flags = zio->io_flags;
1472 
1473 	if (zio->io_error == 0) {
1474 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1475 			mutex_enter(&vd->vdev_stat_lock);
1476 			vs->vs_ops[type]++;
1477 			vs->vs_bytes[type] += zio->io_size;
1478 			mutex_exit(&vd->vdev_stat_lock);
1479 		}
1480 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1481 		    zio->io_delegate_list == NULL) {
1482 			mutex_enter(&vd->vdev_stat_lock);
1483 			if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER))
1484 				vs->vs_scrub_repaired += zio->io_size;
1485 			else
1486 				vs->vs_self_healed += zio->io_size;
1487 			mutex_exit(&vd->vdev_stat_lock);
1488 		}
1489 		return;
1490 	}
1491 
1492 	if (flags & ZIO_FLAG_SPECULATIVE)
1493 		return;
1494 
1495 	if (!vdev_is_dead(vd)) {
1496 		mutex_enter(&vd->vdev_stat_lock);
1497 		if (type == ZIO_TYPE_READ) {
1498 			if (zio->io_error == ECKSUM)
1499 				vs->vs_checksum_errors++;
1500 			else
1501 				vs->vs_read_errors++;
1502 		}
1503 		if (type == ZIO_TYPE_WRITE)
1504 			vs->vs_write_errors++;
1505 		mutex_exit(&vd->vdev_stat_lock);
1506 	}
1507 
1508 	if (type == ZIO_TYPE_WRITE) {
1509 		if (txg == 0 || vd->vdev_children != 0)
1510 			return;
1511 		if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) {
1512 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1513 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1514 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1515 		}
1516 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1517 			vdev_t *tvd = vd->vdev_top;
1518 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1519 				return;
1520 			vdev_dirty(tvd, VDD_DTL, txg);
1521 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, txg);
1522 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1523 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1524 		}
1525 	}
1526 }
1527 
1528 void
1529 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1530 {
1531 	int c;
1532 	vdev_stat_t *vs = &vd->vdev_stat;
1533 
1534 	for (c = 0; c < vd->vdev_children; c++)
1535 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1536 
1537 	mutex_enter(&vd->vdev_stat_lock);
1538 
1539 	if (type == POOL_SCRUB_NONE) {
1540 		/*
1541 		 * Update completion and end time.  Leave everything else alone
1542 		 * so we can report what happened during the previous scrub.
1543 		 */
1544 		vs->vs_scrub_complete = complete;
1545 		vs->vs_scrub_end = gethrestime_sec();
1546 	} else {
1547 		vs->vs_scrub_type = type;
1548 		vs->vs_scrub_complete = 0;
1549 		vs->vs_scrub_examined = 0;
1550 		vs->vs_scrub_repaired = 0;
1551 		vs->vs_scrub_errors = 0;
1552 		vs->vs_scrub_start = gethrestime_sec();
1553 		vs->vs_scrub_end = 0;
1554 	}
1555 
1556 	mutex_exit(&vd->vdev_stat_lock);
1557 }
1558 
1559 /*
1560  * Report checksum errors that a vdev that didn't realize it made.
1561  * This can happen, for example, when RAID-Z combinatorial reconstruction
1562  * infers that one of its components returned bad data.
1563  */
1564 void
1565 vdev_checksum_error(zio_t *zio, vdev_t *vd)
1566 {
1567 	dprintf_bp(zio->io_bp, "imputed checksum error on %s: ",
1568 	    vdev_description(vd));
1569 
1570 	if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
1571 		mutex_enter(&vd->vdev_stat_lock);
1572 		vd->vdev_stat.vs_checksum_errors++;
1573 		mutex_exit(&vd->vdev_stat_lock);
1574 	}
1575 }
1576 
1577 /*
1578  * Update the in-core space usage stats for this vdev and the root vdev.
1579  */
1580 void
1581 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta)
1582 {
1583 	ASSERT(vd == vd->vdev_top);
1584 
1585 	do {
1586 		mutex_enter(&vd->vdev_stat_lock);
1587 		vd->vdev_stat.vs_space += space_delta;
1588 		vd->vdev_stat.vs_alloc += alloc_delta;
1589 		mutex_exit(&vd->vdev_stat_lock);
1590 	} while ((vd = vd->vdev_parent) != NULL);
1591 }
1592 
1593 /*
1594  * Various knobs to tune a vdev.
1595  */
1596 static vdev_knob_t vdev_knob[] = {
1597 	{
1598 		"cache_size",
1599 		"size of the read-ahead cache",
1600 		0,
1601 		1ULL << 30,
1602 		10ULL << 20,
1603 		offsetof(struct vdev, vdev_cache.vc_size)
1604 	},
1605 	{
1606 		"cache_bshift",
1607 		"log2 of cache blocksize",
1608 		SPA_MINBLOCKSHIFT,
1609 		SPA_MAXBLOCKSHIFT,
1610 		16,
1611 		offsetof(struct vdev, vdev_cache.vc_bshift)
1612 	},
1613 	{
1614 		"cache_max",
1615 		"largest block size to cache",
1616 		0,
1617 		SPA_MAXBLOCKSIZE,
1618 		1ULL << 14,
1619 		offsetof(struct vdev, vdev_cache.vc_max)
1620 	},
1621 	{
1622 		"min_pending",
1623 		"minimum pending I/Os to the disk",
1624 		1,
1625 		10000,
1626 		2,
1627 		offsetof(struct vdev, vdev_queue.vq_min_pending)
1628 	},
1629 	{
1630 		"max_pending",
1631 		"maximum pending I/Os to the disk",
1632 		1,
1633 		10000,
1634 		35,
1635 		offsetof(struct vdev, vdev_queue.vq_max_pending)
1636 	},
1637 	{
1638 		"agg_limit",
1639 		"maximum size of aggregated I/Os",
1640 		0,
1641 		SPA_MAXBLOCKSIZE,
1642 		SPA_MAXBLOCKSIZE,
1643 		offsetof(struct vdev, vdev_queue.vq_agg_limit)
1644 	},
1645 	{
1646 		"time_shift",
1647 		"deadline = pri + (lbolt >> time_shift)",
1648 		0,
1649 		63,
1650 		4,
1651 		offsetof(struct vdev, vdev_queue.vq_time_shift)
1652 	},
1653 	{
1654 		"ramp_rate",
1655 		"exponential I/O issue ramp-up rate",
1656 		1,
1657 		10000,
1658 		2,
1659 		offsetof(struct vdev, vdev_queue.vq_ramp_rate)
1660 	},
1661 };
1662 
1663 vdev_knob_t *
1664 vdev_knob_next(vdev_knob_t *vk)
1665 {
1666 	if (vk == NULL)
1667 		return (vdev_knob);
1668 
1669 	if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t))
1670 		return (NULL);
1671 
1672 	return (vk);
1673 }
1674 
1675 /*
1676  * Mark a top-level vdev's config as dirty, placing it on the dirty list
1677  * so that it will be written out next time the vdev configuration is synced.
1678  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
1679  */
1680 void
1681 vdev_config_dirty(vdev_t *vd)
1682 {
1683 	spa_t *spa = vd->vdev_spa;
1684 	vdev_t *rvd = spa->spa_root_vdev;
1685 	int c;
1686 
1687 	if (vd == rvd) {
1688 		for (c = 0; c < rvd->vdev_children; c++)
1689 			vdev_config_dirty(rvd->vdev_child[c]);
1690 	} else {
1691 		ASSERT(vd == vd->vdev_top);
1692 
1693 		if (!vd->vdev_is_dirty) {
1694 			list_insert_head(&spa->spa_dirty_list, vd);
1695 			vd->vdev_is_dirty = B_TRUE;
1696 		}
1697 	}
1698 }
1699 
1700 void
1701 vdev_config_clean(vdev_t *vd)
1702 {
1703 	ASSERT(vd->vdev_is_dirty);
1704 
1705 	list_remove(&vd->vdev_spa->spa_dirty_list, vd);
1706 	vd->vdev_is_dirty = B_FALSE;
1707 }
1708 
1709 /*
1710  * Set a vdev's state, updating any parent's state as well.
1711  */
1712 void
1713 vdev_set_state(vdev_t *vd, vdev_state_t state, vdev_aux_t aux)
1714 {
1715 	if (state == vd->vdev_state)
1716 		return;
1717 
1718 	vd->vdev_state = state;
1719 	vd->vdev_stat.vs_aux = aux;
1720 
1721 	if (vd->vdev_parent != NULL) {
1722 		int c;
1723 		int degraded = 0, faulted = 0;
1724 		vdev_t *parent, *child;
1725 
1726 		parent = vd->vdev_parent;
1727 		for (c = 0; c < parent->vdev_children; c++) {
1728 			child = parent->vdev_child[c];
1729 			if (child->vdev_state <= VDEV_STATE_CANT_OPEN)
1730 				faulted++;
1731 			else if (child->vdev_state == VDEV_STATE_DEGRADED)
1732 				degraded++;
1733 		}
1734 
1735 		vd->vdev_parent->vdev_ops->vdev_op_state_change(
1736 		    vd->vdev_parent, faulted, degraded);
1737 	    }
1738 }
1739