1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/fm/fs/zfs.h> 29 #include <sys/spa.h> 30 #include <sys/spa_impl.h> 31 #include <sys/dmu.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/vdev_impl.h> 34 #include <sys/uberblock_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/metaslab_impl.h> 37 #include <sys/space_map.h> 38 #include <sys/zio.h> 39 #include <sys/zap.h> 40 #include <sys/fs/zfs.h> 41 #include <sys/arc.h> 42 #include <sys/zil.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue per leaf vdev */ 61 int zfs_scrub_limit = 10; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 uint64_t c; 88 89 for (c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the replaceable or attachable device size. 99 * If the parent is a mirror or raidz, the replaceable size is the minimum 100 * psize of all its children. For the rest, just return our own psize. 101 * 102 * e.g. 103 * psize rsize 104 * root - - 105 * mirror/raidz - - 106 * disk1 20g 20g 107 * disk2 40g 20g 108 * disk3 80g 80g 109 */ 110 uint64_t 111 vdev_get_rsize(vdev_t *vd) 112 { 113 vdev_t *pvd, *cvd; 114 uint64_t c, rsize; 115 116 pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL or the root, just return our own psize. 120 */ 121 if (pvd == NULL || pvd->vdev_parent == NULL) 122 return (vd->vdev_psize); 123 124 rsize = 0; 125 126 for (c = 0; c < pvd->vdev_children; c++) { 127 cvd = pvd->vdev_child[c]; 128 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 129 } 130 131 return (rsize); 132 } 133 134 vdev_t * 135 vdev_lookup_top(spa_t *spa, uint64_t vdev) 136 { 137 vdev_t *rvd = spa->spa_root_vdev; 138 139 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 140 141 if (vdev < rvd->vdev_children) { 142 ASSERT(rvd->vdev_child[vdev] != NULL); 143 return (rvd->vdev_child[vdev]); 144 } 145 146 return (NULL); 147 } 148 149 vdev_t * 150 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 151 { 152 int c; 153 vdev_t *mvd; 154 155 if (vd->vdev_guid == guid) 156 return (vd); 157 158 for (c = 0; c < vd->vdev_children; c++) 159 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 160 NULL) 161 return (mvd); 162 163 return (NULL); 164 } 165 166 void 167 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 168 { 169 size_t oldsize, newsize; 170 uint64_t id = cvd->vdev_id; 171 vdev_t **newchild; 172 173 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 174 ASSERT(cvd->vdev_parent == NULL); 175 176 cvd->vdev_parent = pvd; 177 178 if (pvd == NULL) 179 return; 180 181 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 182 183 oldsize = pvd->vdev_children * sizeof (vdev_t *); 184 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 185 newsize = pvd->vdev_children * sizeof (vdev_t *); 186 187 newchild = kmem_zalloc(newsize, KM_SLEEP); 188 if (pvd->vdev_child != NULL) { 189 bcopy(pvd->vdev_child, newchild, oldsize); 190 kmem_free(pvd->vdev_child, oldsize); 191 } 192 193 pvd->vdev_child = newchild; 194 pvd->vdev_child[id] = cvd; 195 196 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 197 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 198 199 /* 200 * Walk up all ancestors to update guid sum. 201 */ 202 for (; pvd != NULL; pvd = pvd->vdev_parent) 203 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 204 205 if (cvd->vdev_ops->vdev_op_leaf) 206 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 207 } 208 209 void 210 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 211 { 212 int c; 213 uint_t id = cvd->vdev_id; 214 215 ASSERT(cvd->vdev_parent == pvd); 216 217 if (pvd == NULL) 218 return; 219 220 ASSERT(id < pvd->vdev_children); 221 ASSERT(pvd->vdev_child[id] == cvd); 222 223 pvd->vdev_child[id] = NULL; 224 cvd->vdev_parent = NULL; 225 226 for (c = 0; c < pvd->vdev_children; c++) 227 if (pvd->vdev_child[c]) 228 break; 229 230 if (c == pvd->vdev_children) { 231 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 232 pvd->vdev_child = NULL; 233 pvd->vdev_children = 0; 234 } 235 236 /* 237 * Walk up all ancestors to update guid sum. 238 */ 239 for (; pvd != NULL; pvd = pvd->vdev_parent) 240 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 241 242 if (cvd->vdev_ops->vdev_op_leaf) 243 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 244 } 245 246 /* 247 * Remove any holes in the child array. 248 */ 249 void 250 vdev_compact_children(vdev_t *pvd) 251 { 252 vdev_t **newchild, *cvd; 253 int oldc = pvd->vdev_children; 254 int newc, c; 255 256 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 257 258 for (c = newc = 0; c < oldc; c++) 259 if (pvd->vdev_child[c]) 260 newc++; 261 262 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 263 264 for (c = newc = 0; c < oldc; c++) { 265 if ((cvd = pvd->vdev_child[c]) != NULL) { 266 newchild[newc] = cvd; 267 cvd->vdev_id = newc++; 268 } 269 } 270 271 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 272 pvd->vdev_child = newchild; 273 pvd->vdev_children = newc; 274 } 275 276 /* 277 * Allocate and minimally initialize a vdev_t. 278 */ 279 static vdev_t * 280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 281 { 282 vdev_t *vd; 283 284 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 285 286 if (spa->spa_root_vdev == NULL) { 287 ASSERT(ops == &vdev_root_ops); 288 spa->spa_root_vdev = vd; 289 } 290 291 if (guid == 0) { 292 if (spa->spa_root_vdev == vd) { 293 /* 294 * The root vdev's guid will also be the pool guid, 295 * which must be unique among all pools. 296 */ 297 while (guid == 0 || spa_guid_exists(guid, 0)) 298 guid = spa_get_random(-1ULL); 299 } else { 300 /* 301 * Any other vdev's guid must be unique within the pool. 302 */ 303 while (guid == 0 || 304 spa_guid_exists(spa_guid(spa), guid)) 305 guid = spa_get_random(-1ULL); 306 } 307 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 308 } 309 310 vd->vdev_spa = spa; 311 vd->vdev_id = id; 312 vd->vdev_guid = guid; 313 vd->vdev_guid_sum = guid; 314 vd->vdev_ops = ops; 315 vd->vdev_state = VDEV_STATE_CLOSED; 316 317 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 318 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 319 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 320 for (int t = 0; t < DTL_TYPES; t++) { 321 space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0, 322 &vd->vdev_dtl_lock); 323 } 324 txg_list_create(&vd->vdev_ms_list, 325 offsetof(struct metaslab, ms_txg_node)); 326 txg_list_create(&vd->vdev_dtl_list, 327 offsetof(struct vdev, vdev_dtl_node)); 328 vd->vdev_stat.vs_timestamp = gethrtime(); 329 vdev_queue_init(vd); 330 vdev_cache_init(vd); 331 332 return (vd); 333 } 334 335 /* 336 * Allocate a new vdev. The 'alloctype' is used to control whether we are 337 * creating a new vdev or loading an existing one - the behavior is slightly 338 * different for each case. 339 */ 340 int 341 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 342 int alloctype) 343 { 344 vdev_ops_t *ops; 345 char *type; 346 uint64_t guid = 0, islog, nparity; 347 vdev_t *vd; 348 349 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 350 351 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 352 return (EINVAL); 353 354 if ((ops = vdev_getops(type)) == NULL) 355 return (EINVAL); 356 357 /* 358 * If this is a load, get the vdev guid from the nvlist. 359 * Otherwise, vdev_alloc_common() will generate one for us. 360 */ 361 if (alloctype == VDEV_ALLOC_LOAD) { 362 uint64_t label_id; 363 364 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 365 label_id != id) 366 return (EINVAL); 367 368 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 369 return (EINVAL); 370 } else if (alloctype == VDEV_ALLOC_SPARE) { 371 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 372 return (EINVAL); 373 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 374 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 375 return (EINVAL); 376 } 377 378 /* 379 * The first allocated vdev must be of type 'root'. 380 */ 381 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 382 return (EINVAL); 383 384 /* 385 * Determine whether we're a log vdev. 386 */ 387 islog = 0; 388 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 389 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 390 return (ENOTSUP); 391 392 /* 393 * Set the nparity property for RAID-Z vdevs. 394 */ 395 nparity = -1ULL; 396 if (ops == &vdev_raidz_ops) { 397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 398 &nparity) == 0) { 399 /* 400 * Currently, we can only support 2 parity devices. 401 */ 402 if (nparity == 0 || nparity > 2) 403 return (EINVAL); 404 /* 405 * Older versions can only support 1 parity device. 406 */ 407 if (nparity == 2 && 408 spa_version(spa) < SPA_VERSION_RAID6) 409 return (ENOTSUP); 410 } else { 411 /* 412 * We require the parity to be specified for SPAs that 413 * support multiple parity levels. 414 */ 415 if (spa_version(spa) >= SPA_VERSION_RAID6) 416 return (EINVAL); 417 /* 418 * Otherwise, we default to 1 parity device for RAID-Z. 419 */ 420 nparity = 1; 421 } 422 } else { 423 nparity = 0; 424 } 425 ASSERT(nparity != -1ULL); 426 427 vd = vdev_alloc_common(spa, id, guid, ops); 428 429 vd->vdev_islog = islog; 430 vd->vdev_nparity = nparity; 431 432 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 433 vd->vdev_path = spa_strdup(vd->vdev_path); 434 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 435 vd->vdev_devid = spa_strdup(vd->vdev_devid); 436 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 437 &vd->vdev_physpath) == 0) 438 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 439 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 440 vd->vdev_fru = spa_strdup(vd->vdev_fru); 441 442 /* 443 * Set the whole_disk property. If it's not specified, leave the value 444 * as -1. 445 */ 446 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 447 &vd->vdev_wholedisk) != 0) 448 vd->vdev_wholedisk = -1ULL; 449 450 /* 451 * Look for the 'not present' flag. This will only be set if the device 452 * was not present at the time of import. 453 */ 454 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 455 &vd->vdev_not_present); 456 457 /* 458 * Get the alignment requirement. 459 */ 460 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 461 462 /* 463 * If we're a top-level vdev, try to load the allocation parameters. 464 */ 465 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 467 &vd->vdev_ms_array); 468 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 469 &vd->vdev_ms_shift); 470 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 471 &vd->vdev_asize); 472 } 473 474 /* 475 * If we're a leaf vdev, try to load the DTL object and other state. 476 */ 477 if (vd->vdev_ops->vdev_op_leaf && 478 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) { 479 if (alloctype == VDEV_ALLOC_LOAD) { 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 481 &vd->vdev_dtl_smo.smo_object); 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 483 &vd->vdev_unspare); 484 } 485 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 486 &vd->vdev_offline); 487 488 /* 489 * When importing a pool, we want to ignore the persistent fault 490 * state, as the diagnosis made on another system may not be 491 * valid in the current context. 492 */ 493 if (spa->spa_load_state == SPA_LOAD_OPEN) { 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 495 &vd->vdev_faulted); 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 497 &vd->vdev_degraded); 498 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 499 &vd->vdev_removed); 500 } 501 } 502 503 /* 504 * Add ourselves to the parent's list of children. 505 */ 506 vdev_add_child(parent, vd); 507 508 *vdp = vd; 509 510 return (0); 511 } 512 513 void 514 vdev_free(vdev_t *vd) 515 { 516 int c; 517 spa_t *spa = vd->vdev_spa; 518 519 /* 520 * vdev_free() implies closing the vdev first. This is simpler than 521 * trying to ensure complicated semantics for all callers. 522 */ 523 vdev_close(vd); 524 525 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 526 527 /* 528 * Free all children. 529 */ 530 for (c = 0; c < vd->vdev_children; c++) 531 vdev_free(vd->vdev_child[c]); 532 533 ASSERT(vd->vdev_child == NULL); 534 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 535 536 /* 537 * Discard allocation state. 538 */ 539 if (vd == vd->vdev_top) 540 vdev_metaslab_fini(vd); 541 542 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 543 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 544 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 545 546 /* 547 * Remove this vdev from its parent's child list. 548 */ 549 vdev_remove_child(vd->vdev_parent, vd); 550 551 ASSERT(vd->vdev_parent == NULL); 552 553 /* 554 * Clean up vdev structure. 555 */ 556 vdev_queue_fini(vd); 557 vdev_cache_fini(vd); 558 559 if (vd->vdev_path) 560 spa_strfree(vd->vdev_path); 561 if (vd->vdev_devid) 562 spa_strfree(vd->vdev_devid); 563 if (vd->vdev_physpath) 564 spa_strfree(vd->vdev_physpath); 565 if (vd->vdev_fru) 566 spa_strfree(vd->vdev_fru); 567 568 if (vd->vdev_isspare) 569 spa_spare_remove(vd); 570 if (vd->vdev_isl2cache) 571 spa_l2cache_remove(vd); 572 573 txg_list_destroy(&vd->vdev_ms_list); 574 txg_list_destroy(&vd->vdev_dtl_list); 575 576 mutex_enter(&vd->vdev_dtl_lock); 577 for (int t = 0; t < DTL_TYPES; t++) { 578 space_map_unload(&vd->vdev_dtl[t]); 579 space_map_destroy(&vd->vdev_dtl[t]); 580 } 581 mutex_exit(&vd->vdev_dtl_lock); 582 583 mutex_destroy(&vd->vdev_dtl_lock); 584 mutex_destroy(&vd->vdev_stat_lock); 585 mutex_destroy(&vd->vdev_probe_lock); 586 587 if (vd == spa->spa_root_vdev) 588 spa->spa_root_vdev = NULL; 589 590 kmem_free(vd, sizeof (vdev_t)); 591 } 592 593 /* 594 * Transfer top-level vdev state from svd to tvd. 595 */ 596 static void 597 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 598 { 599 spa_t *spa = svd->vdev_spa; 600 metaslab_t *msp; 601 vdev_t *vd; 602 int t; 603 604 ASSERT(tvd == tvd->vdev_top); 605 606 tvd->vdev_ms_array = svd->vdev_ms_array; 607 tvd->vdev_ms_shift = svd->vdev_ms_shift; 608 tvd->vdev_ms_count = svd->vdev_ms_count; 609 610 svd->vdev_ms_array = 0; 611 svd->vdev_ms_shift = 0; 612 svd->vdev_ms_count = 0; 613 614 tvd->vdev_mg = svd->vdev_mg; 615 tvd->vdev_ms = svd->vdev_ms; 616 617 svd->vdev_mg = NULL; 618 svd->vdev_ms = NULL; 619 620 if (tvd->vdev_mg != NULL) 621 tvd->vdev_mg->mg_vd = tvd; 622 623 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 624 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 625 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 626 627 svd->vdev_stat.vs_alloc = 0; 628 svd->vdev_stat.vs_space = 0; 629 svd->vdev_stat.vs_dspace = 0; 630 631 for (t = 0; t < TXG_SIZE; t++) { 632 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 633 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 634 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 635 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 636 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 637 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 638 } 639 640 if (list_link_active(&svd->vdev_config_dirty_node)) { 641 vdev_config_clean(svd); 642 vdev_config_dirty(tvd); 643 } 644 645 if (list_link_active(&svd->vdev_state_dirty_node)) { 646 vdev_state_clean(svd); 647 vdev_state_dirty(tvd); 648 } 649 650 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 651 svd->vdev_deflate_ratio = 0; 652 653 tvd->vdev_islog = svd->vdev_islog; 654 svd->vdev_islog = 0; 655 } 656 657 static void 658 vdev_top_update(vdev_t *tvd, vdev_t *vd) 659 { 660 int c; 661 662 if (vd == NULL) 663 return; 664 665 vd->vdev_top = tvd; 666 667 for (c = 0; c < vd->vdev_children; c++) 668 vdev_top_update(tvd, vd->vdev_child[c]); 669 } 670 671 /* 672 * Add a mirror/replacing vdev above an existing vdev. 673 */ 674 vdev_t * 675 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 676 { 677 spa_t *spa = cvd->vdev_spa; 678 vdev_t *pvd = cvd->vdev_parent; 679 vdev_t *mvd; 680 681 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 682 683 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 684 685 mvd->vdev_asize = cvd->vdev_asize; 686 mvd->vdev_ashift = cvd->vdev_ashift; 687 mvd->vdev_state = cvd->vdev_state; 688 689 vdev_remove_child(pvd, cvd); 690 vdev_add_child(pvd, mvd); 691 cvd->vdev_id = mvd->vdev_children; 692 vdev_add_child(mvd, cvd); 693 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 694 695 if (mvd == mvd->vdev_top) 696 vdev_top_transfer(cvd, mvd); 697 698 return (mvd); 699 } 700 701 /* 702 * Remove a 1-way mirror/replacing vdev from the tree. 703 */ 704 void 705 vdev_remove_parent(vdev_t *cvd) 706 { 707 vdev_t *mvd = cvd->vdev_parent; 708 vdev_t *pvd = mvd->vdev_parent; 709 710 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 711 712 ASSERT(mvd->vdev_children == 1); 713 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 714 mvd->vdev_ops == &vdev_replacing_ops || 715 mvd->vdev_ops == &vdev_spare_ops); 716 cvd->vdev_ashift = mvd->vdev_ashift; 717 718 vdev_remove_child(mvd, cvd); 719 vdev_remove_child(pvd, mvd); 720 721 /* 722 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 723 * Otherwise, we could have detached an offline device, and when we 724 * go to import the pool we'll think we have two top-level vdevs, 725 * instead of a different version of the same top-level vdev. 726 */ 727 if (mvd->vdev_top == mvd) { 728 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 729 cvd->vdev_guid += guid_delta; 730 cvd->vdev_guid_sum += guid_delta; 731 } 732 cvd->vdev_id = mvd->vdev_id; 733 vdev_add_child(pvd, cvd); 734 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 735 736 if (cvd == cvd->vdev_top) 737 vdev_top_transfer(mvd, cvd); 738 739 ASSERT(mvd->vdev_children == 0); 740 vdev_free(mvd); 741 } 742 743 int 744 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 745 { 746 spa_t *spa = vd->vdev_spa; 747 objset_t *mos = spa->spa_meta_objset; 748 metaslab_class_t *mc; 749 uint64_t m; 750 uint64_t oldc = vd->vdev_ms_count; 751 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 752 metaslab_t **mspp; 753 int error; 754 755 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 756 return (0); 757 758 /* 759 * Compute the raidz-deflation ratio. Note, we hard-code 760 * in 128k (1 << 17) because it is the current "typical" blocksize. 761 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 762 * or we will inconsistently account for existing bp's. 763 */ 764 vd->vdev_deflate_ratio = (1 << 17) / 765 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 766 767 ASSERT(oldc <= newc); 768 769 if (vd->vdev_islog) 770 mc = spa->spa_log_class; 771 else 772 mc = spa->spa_normal_class; 773 774 if (vd->vdev_mg == NULL) 775 vd->vdev_mg = metaslab_group_create(mc, vd); 776 777 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 778 779 if (oldc != 0) { 780 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 781 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 782 } 783 784 vd->vdev_ms = mspp; 785 vd->vdev_ms_count = newc; 786 787 for (m = oldc; m < newc; m++) { 788 space_map_obj_t smo = { 0, 0, 0 }; 789 if (txg == 0) { 790 uint64_t object = 0; 791 error = dmu_read(mos, vd->vdev_ms_array, 792 m * sizeof (uint64_t), sizeof (uint64_t), &object, 793 DMU_READ_PREFETCH); 794 if (error) 795 return (error); 796 if (object != 0) { 797 dmu_buf_t *db; 798 error = dmu_bonus_hold(mos, object, FTAG, &db); 799 if (error) 800 return (error); 801 ASSERT3U(db->db_size, >=, sizeof (smo)); 802 bcopy(db->db_data, &smo, sizeof (smo)); 803 ASSERT3U(smo.smo_object, ==, object); 804 dmu_buf_rele(db, FTAG); 805 } 806 } 807 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 808 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 809 } 810 811 return (0); 812 } 813 814 void 815 vdev_metaslab_fini(vdev_t *vd) 816 { 817 uint64_t m; 818 uint64_t count = vd->vdev_ms_count; 819 820 if (vd->vdev_ms != NULL) { 821 for (m = 0; m < count; m++) 822 if (vd->vdev_ms[m] != NULL) 823 metaslab_fini(vd->vdev_ms[m]); 824 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 825 vd->vdev_ms = NULL; 826 } 827 } 828 829 typedef struct vdev_probe_stats { 830 boolean_t vps_readable; 831 boolean_t vps_writeable; 832 int vps_flags; 833 } vdev_probe_stats_t; 834 835 static void 836 vdev_probe_done(zio_t *zio) 837 { 838 spa_t *spa = zio->io_spa; 839 vdev_t *vd = zio->io_vd; 840 vdev_probe_stats_t *vps = zio->io_private; 841 842 ASSERT(vd->vdev_probe_zio != NULL); 843 844 if (zio->io_type == ZIO_TYPE_READ) { 845 if (zio->io_error == 0) 846 vps->vps_readable = 1; 847 if (zio->io_error == 0 && spa_writeable(spa)) { 848 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 849 zio->io_offset, zio->io_size, zio->io_data, 850 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 851 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 852 } else { 853 zio_buf_free(zio->io_data, zio->io_size); 854 } 855 } else if (zio->io_type == ZIO_TYPE_WRITE) { 856 if (zio->io_error == 0) 857 vps->vps_writeable = 1; 858 zio_buf_free(zio->io_data, zio->io_size); 859 } else if (zio->io_type == ZIO_TYPE_NULL) { 860 zio_t *pio; 861 862 vd->vdev_cant_read |= !vps->vps_readable; 863 vd->vdev_cant_write |= !vps->vps_writeable; 864 865 if (vdev_readable(vd) && 866 (vdev_writeable(vd) || !spa_writeable(spa))) { 867 zio->io_error = 0; 868 } else { 869 ASSERT(zio->io_error != 0); 870 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 871 spa, vd, NULL, 0, 0); 872 zio->io_error = ENXIO; 873 } 874 875 mutex_enter(&vd->vdev_probe_lock); 876 ASSERT(vd->vdev_probe_zio == zio); 877 vd->vdev_probe_zio = NULL; 878 mutex_exit(&vd->vdev_probe_lock); 879 880 while ((pio = zio_walk_parents(zio)) != NULL) 881 if (!vdev_accessible(vd, pio)) 882 pio->io_error = ENXIO; 883 884 kmem_free(vps, sizeof (*vps)); 885 } 886 } 887 888 /* 889 * Determine whether this device is accessible by reading and writing 890 * to several known locations: the pad regions of each vdev label 891 * but the first (which we leave alone in case it contains a VTOC). 892 */ 893 zio_t * 894 vdev_probe(vdev_t *vd, zio_t *zio) 895 { 896 spa_t *spa = vd->vdev_spa; 897 vdev_probe_stats_t *vps = NULL; 898 zio_t *pio; 899 900 ASSERT(vd->vdev_ops->vdev_op_leaf); 901 902 /* 903 * Don't probe the probe. 904 */ 905 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 906 return (NULL); 907 908 /* 909 * To prevent 'probe storms' when a device fails, we create 910 * just one probe i/o at a time. All zios that want to probe 911 * this vdev will become parents of the probe io. 912 */ 913 mutex_enter(&vd->vdev_probe_lock); 914 915 if ((pio = vd->vdev_probe_zio) == NULL) { 916 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 917 918 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 919 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 920 ZIO_FLAG_TRYHARD; 921 922 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 923 /* 924 * vdev_cant_read and vdev_cant_write can only 925 * transition from TRUE to FALSE when we have the 926 * SCL_ZIO lock as writer; otherwise they can only 927 * transition from FALSE to TRUE. This ensures that 928 * any zio looking at these values can assume that 929 * failures persist for the life of the I/O. That's 930 * important because when a device has intermittent 931 * connectivity problems, we want to ensure that 932 * they're ascribed to the device (ENXIO) and not 933 * the zio (EIO). 934 * 935 * Since we hold SCL_ZIO as writer here, clear both 936 * values so the probe can reevaluate from first 937 * principles. 938 */ 939 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 940 vd->vdev_cant_read = B_FALSE; 941 vd->vdev_cant_write = B_FALSE; 942 } 943 944 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 945 vdev_probe_done, vps, 946 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 947 948 if (zio != NULL) { 949 vd->vdev_probe_wanted = B_TRUE; 950 spa_async_request(spa, SPA_ASYNC_PROBE); 951 } 952 } 953 954 if (zio != NULL) 955 zio_add_child(zio, pio); 956 957 mutex_exit(&vd->vdev_probe_lock); 958 959 if (vps == NULL) { 960 ASSERT(zio != NULL); 961 return (NULL); 962 } 963 964 for (int l = 1; l < VDEV_LABELS; l++) { 965 zio_nowait(zio_read_phys(pio, vd, 966 vdev_label_offset(vd->vdev_psize, l, 967 offsetof(vdev_label_t, vl_pad2)), 968 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 969 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 970 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 971 } 972 973 if (zio == NULL) 974 return (pio); 975 976 zio_nowait(pio); 977 return (NULL); 978 } 979 980 /* 981 * Prepare a virtual device for access. 982 */ 983 int 984 vdev_open(vdev_t *vd) 985 { 986 spa_t *spa = vd->vdev_spa; 987 int error; 988 int c; 989 uint64_t osize = 0; 990 uint64_t asize, psize; 991 uint64_t ashift = 0; 992 993 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 994 995 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 996 vd->vdev_state == VDEV_STATE_CANT_OPEN || 997 vd->vdev_state == VDEV_STATE_OFFLINE); 998 999 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1000 vd->vdev_cant_read = B_FALSE; 1001 vd->vdev_cant_write = B_FALSE; 1002 1003 if (!vd->vdev_removed && vd->vdev_faulted) { 1004 ASSERT(vd->vdev_children == 0); 1005 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1006 VDEV_AUX_ERR_EXCEEDED); 1007 return (ENXIO); 1008 } else if (vd->vdev_offline) { 1009 ASSERT(vd->vdev_children == 0); 1010 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1011 return (ENXIO); 1012 } 1013 1014 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 1015 1016 if (zio_injection_enabled && error == 0) 1017 error = zio_handle_device_injection(vd, NULL, ENXIO); 1018 1019 if (error) { 1020 if (vd->vdev_removed && 1021 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1022 vd->vdev_removed = B_FALSE; 1023 1024 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1025 vd->vdev_stat.vs_aux); 1026 return (error); 1027 } 1028 1029 vd->vdev_removed = B_FALSE; 1030 1031 if (vd->vdev_degraded) { 1032 ASSERT(vd->vdev_children == 0); 1033 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1034 VDEV_AUX_ERR_EXCEEDED); 1035 } else { 1036 vd->vdev_state = VDEV_STATE_HEALTHY; 1037 } 1038 1039 for (c = 0; c < vd->vdev_children; c++) 1040 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1041 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1042 VDEV_AUX_NONE); 1043 break; 1044 } 1045 1046 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1047 1048 if (vd->vdev_children == 0) { 1049 if (osize < SPA_MINDEVSIZE) { 1050 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1051 VDEV_AUX_TOO_SMALL); 1052 return (EOVERFLOW); 1053 } 1054 psize = osize; 1055 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1056 } else { 1057 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1058 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1059 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1060 VDEV_AUX_TOO_SMALL); 1061 return (EOVERFLOW); 1062 } 1063 psize = 0; 1064 asize = osize; 1065 } 1066 1067 vd->vdev_psize = psize; 1068 1069 if (vd->vdev_asize == 0) { 1070 /* 1071 * This is the first-ever open, so use the computed values. 1072 * For testing purposes, a higher ashift can be requested. 1073 */ 1074 vd->vdev_asize = asize; 1075 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1076 } else { 1077 /* 1078 * Make sure the alignment requirement hasn't increased. 1079 */ 1080 if (ashift > vd->vdev_top->vdev_ashift) { 1081 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1082 VDEV_AUX_BAD_LABEL); 1083 return (EINVAL); 1084 } 1085 1086 /* 1087 * Make sure the device hasn't shrunk. 1088 */ 1089 if (asize < vd->vdev_asize) { 1090 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1091 VDEV_AUX_BAD_LABEL); 1092 return (EINVAL); 1093 } 1094 1095 /* 1096 * If all children are healthy and the asize has increased, 1097 * then we've experienced dynamic LUN growth. 1098 */ 1099 if (vd->vdev_state == VDEV_STATE_HEALTHY && 1100 asize > vd->vdev_asize) { 1101 vd->vdev_asize = asize; 1102 } 1103 } 1104 1105 /* 1106 * Ensure we can issue some IO before declaring the 1107 * vdev open for business. 1108 */ 1109 if (vd->vdev_ops->vdev_op_leaf && 1110 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1111 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1112 VDEV_AUX_IO_FAILURE); 1113 return (error); 1114 } 1115 1116 /* 1117 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1118 * resilver. But don't do this if we are doing a reopen for a scrub, 1119 * since this would just restart the scrub we are already doing. 1120 */ 1121 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1122 vdev_resilver_needed(vd, NULL, NULL)) 1123 spa_async_request(spa, SPA_ASYNC_RESILVER); 1124 1125 return (0); 1126 } 1127 1128 /* 1129 * Called once the vdevs are all opened, this routine validates the label 1130 * contents. This needs to be done before vdev_load() so that we don't 1131 * inadvertently do repair I/Os to the wrong device. 1132 * 1133 * This function will only return failure if one of the vdevs indicates that it 1134 * has since been destroyed or exported. This is only possible if 1135 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1136 * will be updated but the function will return 0. 1137 */ 1138 int 1139 vdev_validate(vdev_t *vd) 1140 { 1141 spa_t *spa = vd->vdev_spa; 1142 int c; 1143 nvlist_t *label; 1144 uint64_t guid, top_guid; 1145 uint64_t state; 1146 1147 for (c = 0; c < vd->vdev_children; c++) 1148 if (vdev_validate(vd->vdev_child[c]) != 0) 1149 return (EBADF); 1150 1151 /* 1152 * If the device has already failed, or was marked offline, don't do 1153 * any further validation. Otherwise, label I/O will fail and we will 1154 * overwrite the previous state. 1155 */ 1156 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1157 1158 if ((label = vdev_label_read_config(vd)) == NULL) { 1159 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1160 VDEV_AUX_BAD_LABEL); 1161 return (0); 1162 } 1163 1164 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1165 &guid) != 0 || guid != spa_guid(spa)) { 1166 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1167 VDEV_AUX_CORRUPT_DATA); 1168 nvlist_free(label); 1169 return (0); 1170 } 1171 1172 /* 1173 * If this vdev just became a top-level vdev because its 1174 * sibling was detached, it will have adopted the parent's 1175 * vdev guid -- but the label may or may not be on disk yet. 1176 * Fortunately, either version of the label will have the 1177 * same top guid, so if we're a top-level vdev, we can 1178 * safely compare to that instead. 1179 */ 1180 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1181 &guid) != 0 || 1182 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1183 &top_guid) != 0 || 1184 (vd->vdev_guid != guid && 1185 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1186 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1187 VDEV_AUX_CORRUPT_DATA); 1188 nvlist_free(label); 1189 return (0); 1190 } 1191 1192 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1193 &state) != 0) { 1194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1195 VDEV_AUX_CORRUPT_DATA); 1196 nvlist_free(label); 1197 return (0); 1198 } 1199 1200 nvlist_free(label); 1201 1202 if (spa->spa_load_state == SPA_LOAD_OPEN && 1203 state != POOL_STATE_ACTIVE) 1204 return (EBADF); 1205 1206 /* 1207 * If we were able to open and validate a vdev that was 1208 * previously marked permanently unavailable, clear that state 1209 * now. 1210 */ 1211 if (vd->vdev_not_present) 1212 vd->vdev_not_present = 0; 1213 } 1214 1215 return (0); 1216 } 1217 1218 /* 1219 * Close a virtual device. 1220 */ 1221 void 1222 vdev_close(vdev_t *vd) 1223 { 1224 spa_t *spa = vd->vdev_spa; 1225 1226 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1227 1228 vd->vdev_ops->vdev_op_close(vd); 1229 1230 vdev_cache_purge(vd); 1231 1232 /* 1233 * We record the previous state before we close it, so that if we are 1234 * doing a reopen(), we don't generate FMA ereports if we notice that 1235 * it's still faulted. 1236 */ 1237 vd->vdev_prevstate = vd->vdev_state; 1238 1239 if (vd->vdev_offline) 1240 vd->vdev_state = VDEV_STATE_OFFLINE; 1241 else 1242 vd->vdev_state = VDEV_STATE_CLOSED; 1243 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1244 } 1245 1246 void 1247 vdev_reopen(vdev_t *vd) 1248 { 1249 spa_t *spa = vd->vdev_spa; 1250 1251 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1252 1253 vdev_close(vd); 1254 (void) vdev_open(vd); 1255 1256 /* 1257 * Call vdev_validate() here to make sure we have the same device. 1258 * Otherwise, a device with an invalid label could be successfully 1259 * opened in response to vdev_reopen(). 1260 */ 1261 if (vd->vdev_aux) { 1262 (void) vdev_validate_aux(vd); 1263 if (vdev_readable(vd) && vdev_writeable(vd) && 1264 vd->vdev_aux == &spa->spa_l2cache && 1265 !l2arc_vdev_present(vd)) { 1266 uint64_t size = vdev_get_rsize(vd); 1267 l2arc_add_vdev(spa, vd, 1268 VDEV_LABEL_START_SIZE, 1269 size - VDEV_LABEL_START_SIZE); 1270 } 1271 } else { 1272 (void) vdev_validate(vd); 1273 } 1274 1275 /* 1276 * Reassess parent vdev's health. 1277 */ 1278 vdev_propagate_state(vd); 1279 } 1280 1281 int 1282 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1283 { 1284 int error; 1285 1286 /* 1287 * Normally, partial opens (e.g. of a mirror) are allowed. 1288 * For a create, however, we want to fail the request if 1289 * there are any components we can't open. 1290 */ 1291 error = vdev_open(vd); 1292 1293 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1294 vdev_close(vd); 1295 return (error ? error : ENXIO); 1296 } 1297 1298 /* 1299 * Recursively initialize all labels. 1300 */ 1301 if ((error = vdev_label_init(vd, txg, isreplacing ? 1302 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1303 vdev_close(vd); 1304 return (error); 1305 } 1306 1307 return (0); 1308 } 1309 1310 /* 1311 * The is the latter half of vdev_create(). It is distinct because it 1312 * involves initiating transactions in order to do metaslab creation. 1313 * For creation, we want to try to create all vdevs at once and then undo it 1314 * if anything fails; this is much harder if we have pending transactions. 1315 */ 1316 void 1317 vdev_init(vdev_t *vd, uint64_t txg) 1318 { 1319 /* 1320 * Aim for roughly 200 metaslabs per vdev. 1321 */ 1322 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1323 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1324 1325 /* 1326 * Initialize the vdev's metaslabs. This can't fail because 1327 * there's nothing to read when creating all new metaslabs. 1328 */ 1329 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1330 } 1331 1332 void 1333 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1334 { 1335 ASSERT(vd == vd->vdev_top); 1336 ASSERT(ISP2(flags)); 1337 1338 if (flags & VDD_METASLAB) 1339 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1340 1341 if (flags & VDD_DTL) 1342 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1343 1344 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1345 } 1346 1347 /* 1348 * DTLs. 1349 * 1350 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1351 * the vdev has less than perfect replication. There are three kinds of DTL: 1352 * 1353 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1354 * 1355 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1356 * 1357 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1358 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1359 * txgs that was scrubbed. 1360 * 1361 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1362 * persistent errors or just some device being offline. 1363 * Unlike the other three, the DTL_OUTAGE map is not generally 1364 * maintained; it's only computed when needed, typically to 1365 * determine whether a device can be detached. 1366 * 1367 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1368 * either has the data or it doesn't. 1369 * 1370 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1371 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1372 * if any child is less than fully replicated, then so is its parent. 1373 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1374 * comprising only those txgs which appear in 'maxfaults' or more children; 1375 * those are the txgs we don't have enough replication to read. For example, 1376 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1377 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1378 * two child DTL_MISSING maps. 1379 * 1380 * It should be clear from the above that to compute the DTLs and outage maps 1381 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1382 * Therefore, that is all we keep on disk. When loading the pool, or after 1383 * a configuration change, we generate all other DTLs from first principles. 1384 */ 1385 void 1386 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1387 { 1388 space_map_t *sm = &vd->vdev_dtl[t]; 1389 1390 ASSERT(t < DTL_TYPES); 1391 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1392 1393 mutex_enter(sm->sm_lock); 1394 if (!space_map_contains(sm, txg, size)) 1395 space_map_add(sm, txg, size); 1396 mutex_exit(sm->sm_lock); 1397 } 1398 1399 boolean_t 1400 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1401 { 1402 space_map_t *sm = &vd->vdev_dtl[t]; 1403 boolean_t dirty = B_FALSE; 1404 1405 ASSERT(t < DTL_TYPES); 1406 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1407 1408 mutex_enter(sm->sm_lock); 1409 if (sm->sm_space != 0) 1410 dirty = space_map_contains(sm, txg, size); 1411 mutex_exit(sm->sm_lock); 1412 1413 return (dirty); 1414 } 1415 1416 boolean_t 1417 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1418 { 1419 space_map_t *sm = &vd->vdev_dtl[t]; 1420 boolean_t empty; 1421 1422 mutex_enter(sm->sm_lock); 1423 empty = (sm->sm_space == 0); 1424 mutex_exit(sm->sm_lock); 1425 1426 return (empty); 1427 } 1428 1429 /* 1430 * Reassess DTLs after a config change or scrub completion. 1431 */ 1432 void 1433 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1434 { 1435 spa_t *spa = vd->vdev_spa; 1436 avl_tree_t reftree; 1437 int minref; 1438 1439 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1440 1441 for (int c = 0; c < vd->vdev_children; c++) 1442 vdev_dtl_reassess(vd->vdev_child[c], txg, 1443 scrub_txg, scrub_done); 1444 1445 if (vd == spa->spa_root_vdev) 1446 return; 1447 1448 if (vd->vdev_ops->vdev_op_leaf) { 1449 mutex_enter(&vd->vdev_dtl_lock); 1450 if (scrub_txg != 0 && 1451 (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) { 1452 /* XXX should check scrub_done? */ 1453 /* 1454 * We completed a scrub up to scrub_txg. If we 1455 * did it without rebooting, then the scrub dtl 1456 * will be valid, so excise the old region and 1457 * fold in the scrub dtl. Otherwise, leave the 1458 * dtl as-is if there was an error. 1459 * 1460 * There's little trick here: to excise the beginning 1461 * of the DTL_MISSING map, we put it into a reference 1462 * tree and then add a segment with refcnt -1 that 1463 * covers the range [0, scrub_txg). This means 1464 * that each txg in that range has refcnt -1 or 0. 1465 * We then add DTL_SCRUB with a refcnt of 2, so that 1466 * entries in the range [0, scrub_txg) will have a 1467 * positive refcnt -- either 1 or 2. We then convert 1468 * the reference tree into the new DTL_MISSING map. 1469 */ 1470 space_map_ref_create(&reftree); 1471 space_map_ref_add_map(&reftree, 1472 &vd->vdev_dtl[DTL_MISSING], 1); 1473 space_map_ref_add_seg(&reftree, 0, scrub_txg, -1); 1474 space_map_ref_add_map(&reftree, 1475 &vd->vdev_dtl[DTL_SCRUB], 2); 1476 space_map_ref_generate_map(&reftree, 1477 &vd->vdev_dtl[DTL_MISSING], 1); 1478 space_map_ref_destroy(&reftree); 1479 } 1480 space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1481 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1482 space_map_add, &vd->vdev_dtl[DTL_PARTIAL]); 1483 if (scrub_done) 1484 space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1485 space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1486 if (!vdev_readable(vd)) 1487 space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1488 else 1489 space_map_walk(&vd->vdev_dtl[DTL_MISSING], 1490 space_map_add, &vd->vdev_dtl[DTL_OUTAGE]); 1491 mutex_exit(&vd->vdev_dtl_lock); 1492 1493 if (txg != 0) 1494 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1495 return; 1496 } 1497 1498 mutex_enter(&vd->vdev_dtl_lock); 1499 for (int t = 0; t < DTL_TYPES; t++) { 1500 if (t == DTL_SCRUB) 1501 continue; /* leaf vdevs only */ 1502 if (t == DTL_PARTIAL) 1503 minref = 1; /* i.e. non-zero */ 1504 else if (vd->vdev_nparity != 0) 1505 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1506 else 1507 minref = vd->vdev_children; /* any kind of mirror */ 1508 space_map_ref_create(&reftree); 1509 for (int c = 0; c < vd->vdev_children; c++) { 1510 vdev_t *cvd = vd->vdev_child[c]; 1511 mutex_enter(&cvd->vdev_dtl_lock); 1512 space_map_ref_add_map(&reftree, &cvd->vdev_dtl[t], 1); 1513 mutex_exit(&cvd->vdev_dtl_lock); 1514 } 1515 space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref); 1516 space_map_ref_destroy(&reftree); 1517 } 1518 mutex_exit(&vd->vdev_dtl_lock); 1519 } 1520 1521 static int 1522 vdev_dtl_load(vdev_t *vd) 1523 { 1524 spa_t *spa = vd->vdev_spa; 1525 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1526 objset_t *mos = spa->spa_meta_objset; 1527 dmu_buf_t *db; 1528 int error; 1529 1530 ASSERT(vd->vdev_children == 0); 1531 1532 if (smo->smo_object == 0) 1533 return (0); 1534 1535 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1536 return (error); 1537 1538 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1539 bcopy(db->db_data, smo, sizeof (*smo)); 1540 dmu_buf_rele(db, FTAG); 1541 1542 mutex_enter(&vd->vdev_dtl_lock); 1543 error = space_map_load(&vd->vdev_dtl[DTL_MISSING], 1544 NULL, SM_ALLOC, smo, mos); 1545 mutex_exit(&vd->vdev_dtl_lock); 1546 1547 return (error); 1548 } 1549 1550 void 1551 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1552 { 1553 spa_t *spa = vd->vdev_spa; 1554 space_map_obj_t *smo = &vd->vdev_dtl_smo; 1555 space_map_t *sm = &vd->vdev_dtl[DTL_MISSING]; 1556 objset_t *mos = spa->spa_meta_objset; 1557 space_map_t smsync; 1558 kmutex_t smlock; 1559 dmu_buf_t *db; 1560 dmu_tx_t *tx; 1561 1562 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1563 1564 if (vd->vdev_detached) { 1565 if (smo->smo_object != 0) { 1566 int err = dmu_object_free(mos, smo->smo_object, tx); 1567 ASSERT3U(err, ==, 0); 1568 smo->smo_object = 0; 1569 } 1570 dmu_tx_commit(tx); 1571 return; 1572 } 1573 1574 if (smo->smo_object == 0) { 1575 ASSERT(smo->smo_objsize == 0); 1576 ASSERT(smo->smo_alloc == 0); 1577 smo->smo_object = dmu_object_alloc(mos, 1578 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1579 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1580 ASSERT(smo->smo_object != 0); 1581 vdev_config_dirty(vd->vdev_top); 1582 } 1583 1584 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1585 1586 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1587 &smlock); 1588 1589 mutex_enter(&smlock); 1590 1591 mutex_enter(&vd->vdev_dtl_lock); 1592 space_map_walk(sm, space_map_add, &smsync); 1593 mutex_exit(&vd->vdev_dtl_lock); 1594 1595 space_map_truncate(smo, mos, tx); 1596 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1597 1598 space_map_destroy(&smsync); 1599 1600 mutex_exit(&smlock); 1601 mutex_destroy(&smlock); 1602 1603 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1604 dmu_buf_will_dirty(db, tx); 1605 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1606 bcopy(smo, db->db_data, sizeof (*smo)); 1607 dmu_buf_rele(db, FTAG); 1608 1609 dmu_tx_commit(tx); 1610 } 1611 1612 /* 1613 * Determine whether the specified vdev can be offlined/detached/removed 1614 * without losing data. 1615 */ 1616 boolean_t 1617 vdev_dtl_required(vdev_t *vd) 1618 { 1619 spa_t *spa = vd->vdev_spa; 1620 vdev_t *tvd = vd->vdev_top; 1621 uint8_t cant_read = vd->vdev_cant_read; 1622 boolean_t required; 1623 1624 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1625 1626 if (vd == spa->spa_root_vdev || vd == tvd) 1627 return (B_TRUE); 1628 1629 /* 1630 * Temporarily mark the device as unreadable, and then determine 1631 * whether this results in any DTL outages in the top-level vdev. 1632 * If not, we can safely offline/detach/remove the device. 1633 */ 1634 vd->vdev_cant_read = B_TRUE; 1635 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1636 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1637 vd->vdev_cant_read = cant_read; 1638 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1639 1640 return (required); 1641 } 1642 1643 /* 1644 * Determine if resilver is needed, and if so the txg range. 1645 */ 1646 boolean_t 1647 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 1648 { 1649 boolean_t needed = B_FALSE; 1650 uint64_t thismin = UINT64_MAX; 1651 uint64_t thismax = 0; 1652 1653 if (vd->vdev_children == 0) { 1654 mutex_enter(&vd->vdev_dtl_lock); 1655 if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 && 1656 vdev_writeable(vd)) { 1657 space_seg_t *ss; 1658 1659 ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root); 1660 thismin = ss->ss_start - 1; 1661 ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root); 1662 thismax = ss->ss_end; 1663 needed = B_TRUE; 1664 } 1665 mutex_exit(&vd->vdev_dtl_lock); 1666 } else { 1667 for (int c = 0; c < vd->vdev_children; c++) { 1668 vdev_t *cvd = vd->vdev_child[c]; 1669 uint64_t cmin, cmax; 1670 1671 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 1672 thismin = MIN(thismin, cmin); 1673 thismax = MAX(thismax, cmax); 1674 needed = B_TRUE; 1675 } 1676 } 1677 } 1678 1679 if (needed && minp) { 1680 *minp = thismin; 1681 *maxp = thismax; 1682 } 1683 return (needed); 1684 } 1685 1686 void 1687 vdev_load(vdev_t *vd) 1688 { 1689 /* 1690 * Recursively load all children. 1691 */ 1692 for (int c = 0; c < vd->vdev_children; c++) 1693 vdev_load(vd->vdev_child[c]); 1694 1695 /* 1696 * If this is a top-level vdev, initialize its metaslabs. 1697 */ 1698 if (vd == vd->vdev_top && 1699 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1700 vdev_metaslab_init(vd, 0) != 0)) 1701 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1702 VDEV_AUX_CORRUPT_DATA); 1703 1704 /* 1705 * If this is a leaf vdev, load its DTL. 1706 */ 1707 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1708 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1709 VDEV_AUX_CORRUPT_DATA); 1710 } 1711 1712 /* 1713 * The special vdev case is used for hot spares and l2cache devices. Its 1714 * sole purpose it to set the vdev state for the associated vdev. To do this, 1715 * we make sure that we can open the underlying device, then try to read the 1716 * label, and make sure that the label is sane and that it hasn't been 1717 * repurposed to another pool. 1718 */ 1719 int 1720 vdev_validate_aux(vdev_t *vd) 1721 { 1722 nvlist_t *label; 1723 uint64_t guid, version; 1724 uint64_t state; 1725 1726 if (!vdev_readable(vd)) 1727 return (0); 1728 1729 if ((label = vdev_label_read_config(vd)) == NULL) { 1730 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1731 VDEV_AUX_CORRUPT_DATA); 1732 return (-1); 1733 } 1734 1735 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1736 version > SPA_VERSION || 1737 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1738 guid != vd->vdev_guid || 1739 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1740 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1741 VDEV_AUX_CORRUPT_DATA); 1742 nvlist_free(label); 1743 return (-1); 1744 } 1745 1746 /* 1747 * We don't actually check the pool state here. If it's in fact in 1748 * use by another pool, we update this fact on the fly when requested. 1749 */ 1750 nvlist_free(label); 1751 return (0); 1752 } 1753 1754 void 1755 vdev_sync_done(vdev_t *vd, uint64_t txg) 1756 { 1757 metaslab_t *msp; 1758 1759 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1760 metaslab_sync_done(msp, txg); 1761 } 1762 1763 void 1764 vdev_sync(vdev_t *vd, uint64_t txg) 1765 { 1766 spa_t *spa = vd->vdev_spa; 1767 vdev_t *lvd; 1768 metaslab_t *msp; 1769 dmu_tx_t *tx; 1770 1771 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1772 ASSERT(vd == vd->vdev_top); 1773 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1774 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1775 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1776 ASSERT(vd->vdev_ms_array != 0); 1777 vdev_config_dirty(vd); 1778 dmu_tx_commit(tx); 1779 } 1780 1781 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1782 metaslab_sync(msp, txg); 1783 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1784 } 1785 1786 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1787 vdev_dtl_sync(lvd, txg); 1788 1789 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1790 } 1791 1792 uint64_t 1793 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1794 { 1795 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1796 } 1797 1798 /* 1799 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1800 * not be opened, and no I/O is attempted. 1801 */ 1802 int 1803 vdev_fault(spa_t *spa, uint64_t guid) 1804 { 1805 vdev_t *vd; 1806 1807 spa_vdev_state_enter(spa); 1808 1809 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1810 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1811 1812 if (!vd->vdev_ops->vdev_op_leaf) 1813 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1814 1815 /* 1816 * Faulted state takes precedence over degraded. 1817 */ 1818 vd->vdev_faulted = 1ULL; 1819 vd->vdev_degraded = 0ULL; 1820 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, VDEV_AUX_ERR_EXCEEDED); 1821 1822 /* 1823 * If marking the vdev as faulted cause the top-level vdev to become 1824 * unavailable, then back off and simply mark the vdev as degraded 1825 * instead. 1826 */ 1827 if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) { 1828 vd->vdev_degraded = 1ULL; 1829 vd->vdev_faulted = 0ULL; 1830 1831 /* 1832 * If we reopen the device and it's not dead, only then do we 1833 * mark it degraded. 1834 */ 1835 vdev_reopen(vd); 1836 1837 if (vdev_readable(vd)) { 1838 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1839 VDEV_AUX_ERR_EXCEEDED); 1840 } 1841 } 1842 1843 return (spa_vdev_state_exit(spa, vd, 0)); 1844 } 1845 1846 /* 1847 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1848 * user that something is wrong. The vdev continues to operate as normal as far 1849 * as I/O is concerned. 1850 */ 1851 int 1852 vdev_degrade(spa_t *spa, uint64_t guid) 1853 { 1854 vdev_t *vd; 1855 1856 spa_vdev_state_enter(spa); 1857 1858 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1859 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1860 1861 if (!vd->vdev_ops->vdev_op_leaf) 1862 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1863 1864 /* 1865 * If the vdev is already faulted, then don't do anything. 1866 */ 1867 if (vd->vdev_faulted || vd->vdev_degraded) 1868 return (spa_vdev_state_exit(spa, NULL, 0)); 1869 1870 vd->vdev_degraded = 1ULL; 1871 if (!vdev_is_dead(vd)) 1872 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1873 VDEV_AUX_ERR_EXCEEDED); 1874 1875 return (spa_vdev_state_exit(spa, vd, 0)); 1876 } 1877 1878 /* 1879 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1880 * any attached spare device should be detached when the device finishes 1881 * resilvering. Second, the online should be treated like a 'test' online case, 1882 * so no FMA events are generated if the device fails to open. 1883 */ 1884 int 1885 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 1886 { 1887 vdev_t *vd; 1888 1889 spa_vdev_state_enter(spa); 1890 1891 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1892 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1893 1894 if (!vd->vdev_ops->vdev_op_leaf) 1895 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1896 1897 vd->vdev_offline = B_FALSE; 1898 vd->vdev_tmpoffline = B_FALSE; 1899 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 1900 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 1901 vdev_reopen(vd->vdev_top); 1902 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1903 1904 if (newstate) 1905 *newstate = vd->vdev_state; 1906 if ((flags & ZFS_ONLINE_UNSPARE) && 1907 !vdev_is_dead(vd) && vd->vdev_parent && 1908 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1909 vd->vdev_parent->vdev_child[0] == vd) 1910 vd->vdev_unspare = B_TRUE; 1911 1912 return (spa_vdev_state_exit(spa, vd, 0)); 1913 } 1914 1915 int 1916 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1917 { 1918 vdev_t *vd, *tvd; 1919 int error; 1920 1921 spa_vdev_state_enter(spa); 1922 1923 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 1924 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 1925 1926 if (!vd->vdev_ops->vdev_op_leaf) 1927 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 1928 1929 tvd = vd->vdev_top; 1930 1931 /* 1932 * If the device isn't already offline, try to offline it. 1933 */ 1934 if (!vd->vdev_offline) { 1935 /* 1936 * If this device has the only valid copy of some data, 1937 * don't allow it to be offlined. Log devices are always 1938 * expendable. 1939 */ 1940 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1941 vdev_dtl_required(vd)) 1942 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1943 1944 /* 1945 * Offline this device and reopen its top-level vdev. 1946 * If the top-level vdev is a log device then just offline 1947 * it. Otherwise, if this action results in the top-level 1948 * vdev becoming unusable, undo it and fail the request. 1949 */ 1950 vd->vdev_offline = B_TRUE; 1951 vdev_reopen(tvd); 1952 1953 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 1954 vdev_is_dead(tvd)) { 1955 vd->vdev_offline = B_FALSE; 1956 vdev_reopen(tvd); 1957 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 1958 } 1959 } 1960 1961 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 1962 1963 if (!tvd->vdev_islog || !vdev_is_dead(tvd)) 1964 return (spa_vdev_state_exit(spa, vd, 0)); 1965 1966 (void) spa_vdev_state_exit(spa, vd, 0); 1967 1968 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1969 NULL, DS_FIND_CHILDREN); 1970 if (error) { 1971 (void) vdev_online(spa, guid, 0, NULL); 1972 return (error); 1973 } 1974 /* 1975 * If we successfully offlined the log device then we need to 1976 * sync out the current txg so that the "stubby" block can be 1977 * removed by zil_sync(). 1978 */ 1979 txg_wait_synced(spa->spa_dsl_pool, 0); 1980 return (0); 1981 } 1982 1983 /* 1984 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1985 * vdev_offline(), we assume the spa config is locked. We also clear all 1986 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1987 */ 1988 void 1989 vdev_clear(spa_t *spa, vdev_t *vd) 1990 { 1991 vdev_t *rvd = spa->spa_root_vdev; 1992 1993 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1994 1995 if (vd == NULL) 1996 vd = rvd; 1997 1998 vd->vdev_stat.vs_read_errors = 0; 1999 vd->vdev_stat.vs_write_errors = 0; 2000 vd->vdev_stat.vs_checksum_errors = 0; 2001 2002 for (int c = 0; c < vd->vdev_children; c++) 2003 vdev_clear(spa, vd->vdev_child[c]); 2004 2005 /* 2006 * If we're in the FAULTED state or have experienced failed I/O, then 2007 * clear the persistent state and attempt to reopen the device. We 2008 * also mark the vdev config dirty, so that the new faulted state is 2009 * written out to disk. 2010 */ 2011 if (vd->vdev_faulted || vd->vdev_degraded || 2012 !vdev_readable(vd) || !vdev_writeable(vd)) { 2013 2014 vd->vdev_faulted = vd->vdev_degraded = 0; 2015 vd->vdev_cant_read = B_FALSE; 2016 vd->vdev_cant_write = B_FALSE; 2017 2018 vdev_reopen(vd); 2019 2020 if (vd != rvd) 2021 vdev_state_dirty(vd->vdev_top); 2022 2023 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2024 spa_async_request(spa, SPA_ASYNC_RESILVER); 2025 2026 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2027 } 2028 } 2029 2030 boolean_t 2031 vdev_is_dead(vdev_t *vd) 2032 { 2033 return (vd->vdev_state < VDEV_STATE_DEGRADED); 2034 } 2035 2036 boolean_t 2037 vdev_readable(vdev_t *vd) 2038 { 2039 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2040 } 2041 2042 boolean_t 2043 vdev_writeable(vdev_t *vd) 2044 { 2045 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2046 } 2047 2048 boolean_t 2049 vdev_allocatable(vdev_t *vd) 2050 { 2051 uint64_t state = vd->vdev_state; 2052 2053 /* 2054 * We currently allow allocations from vdevs which may be in the 2055 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2056 * fails to reopen then we'll catch it later when we're holding 2057 * the proper locks. Note that we have to get the vdev state 2058 * in a local variable because although it changes atomically, 2059 * we're asking two separate questions about it. 2060 */ 2061 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2062 !vd->vdev_cant_write); 2063 } 2064 2065 boolean_t 2066 vdev_accessible(vdev_t *vd, zio_t *zio) 2067 { 2068 ASSERT(zio->io_vd == vd); 2069 2070 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2071 return (B_FALSE); 2072 2073 if (zio->io_type == ZIO_TYPE_READ) 2074 return (!vd->vdev_cant_read); 2075 2076 if (zio->io_type == ZIO_TYPE_WRITE) 2077 return (!vd->vdev_cant_write); 2078 2079 return (B_TRUE); 2080 } 2081 2082 /* 2083 * Get statistics for the given vdev. 2084 */ 2085 void 2086 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2087 { 2088 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2089 2090 mutex_enter(&vd->vdev_stat_lock); 2091 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2092 vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors; 2093 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2094 vs->vs_state = vd->vdev_state; 2095 vs->vs_rsize = vdev_get_rsize(vd); 2096 mutex_exit(&vd->vdev_stat_lock); 2097 2098 /* 2099 * If we're getting stats on the root vdev, aggregate the I/O counts 2100 * over all top-level vdevs (i.e. the direct children of the root). 2101 */ 2102 if (vd == rvd) { 2103 for (int c = 0; c < rvd->vdev_children; c++) { 2104 vdev_t *cvd = rvd->vdev_child[c]; 2105 vdev_stat_t *cvs = &cvd->vdev_stat; 2106 2107 mutex_enter(&vd->vdev_stat_lock); 2108 for (int t = 0; t < ZIO_TYPES; t++) { 2109 vs->vs_ops[t] += cvs->vs_ops[t]; 2110 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2111 } 2112 vs->vs_scrub_examined += cvs->vs_scrub_examined; 2113 mutex_exit(&vd->vdev_stat_lock); 2114 } 2115 } 2116 } 2117 2118 void 2119 vdev_clear_stats(vdev_t *vd) 2120 { 2121 mutex_enter(&vd->vdev_stat_lock); 2122 vd->vdev_stat.vs_space = 0; 2123 vd->vdev_stat.vs_dspace = 0; 2124 vd->vdev_stat.vs_alloc = 0; 2125 mutex_exit(&vd->vdev_stat_lock); 2126 } 2127 2128 void 2129 vdev_stat_update(zio_t *zio, uint64_t psize) 2130 { 2131 spa_t *spa = zio->io_spa; 2132 vdev_t *rvd = spa->spa_root_vdev; 2133 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2134 vdev_t *pvd; 2135 uint64_t txg = zio->io_txg; 2136 vdev_stat_t *vs = &vd->vdev_stat; 2137 zio_type_t type = zio->io_type; 2138 int flags = zio->io_flags; 2139 2140 /* 2141 * If this i/o is a gang leader, it didn't do any actual work. 2142 */ 2143 if (zio->io_gang_tree) 2144 return; 2145 2146 if (zio->io_error == 0) { 2147 /* 2148 * If this is a root i/o, don't count it -- we've already 2149 * counted the top-level vdevs, and vdev_get_stats() will 2150 * aggregate them when asked. This reduces contention on 2151 * the root vdev_stat_lock and implicitly handles blocks 2152 * that compress away to holes, for which there is no i/o. 2153 * (Holes never create vdev children, so all the counters 2154 * remain zero, which is what we want.) 2155 * 2156 * Note: this only applies to successful i/o (io_error == 0) 2157 * because unlike i/o counts, errors are not additive. 2158 * When reading a ditto block, for example, failure of 2159 * one top-level vdev does not imply a root-level error. 2160 */ 2161 if (vd == rvd) 2162 return; 2163 2164 ASSERT(vd == zio->io_vd); 2165 2166 if (flags & ZIO_FLAG_IO_BYPASS) 2167 return; 2168 2169 mutex_enter(&vd->vdev_stat_lock); 2170 2171 if (flags & ZIO_FLAG_IO_REPAIR) { 2172 if (flags & ZIO_FLAG_SCRUB_THREAD) 2173 vs->vs_scrub_repaired += psize; 2174 if (flags & ZIO_FLAG_SELF_HEAL) 2175 vs->vs_self_healed += psize; 2176 } 2177 2178 vs->vs_ops[type]++; 2179 vs->vs_bytes[type] += psize; 2180 2181 mutex_exit(&vd->vdev_stat_lock); 2182 return; 2183 } 2184 2185 if (flags & ZIO_FLAG_SPECULATIVE) 2186 return; 2187 2188 /* 2189 * If this is an I/O error that is going to be retried, then ignore the 2190 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2191 * hard errors, when in reality they can happen for any number of 2192 * innocuous reasons (bus resets, MPxIO link failure, etc). 2193 */ 2194 if (zio->io_error == EIO && 2195 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2196 return; 2197 2198 mutex_enter(&vd->vdev_stat_lock); 2199 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2200 if (zio->io_error == ECKSUM) 2201 vs->vs_checksum_errors++; 2202 else 2203 vs->vs_read_errors++; 2204 } 2205 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2206 vs->vs_write_errors++; 2207 mutex_exit(&vd->vdev_stat_lock); 2208 2209 if (type == ZIO_TYPE_WRITE && txg != 0 && 2210 (!(flags & ZIO_FLAG_IO_REPAIR) || 2211 (flags & ZIO_FLAG_SCRUB_THREAD))) { 2212 /* 2213 * This is either a normal write (not a repair), or it's a 2214 * repair induced by the scrub thread. In the normal case, 2215 * we commit the DTL change in the same txg as the block 2216 * was born. In the scrub-induced repair case, we know that 2217 * scrubs run in first-pass syncing context, so we commit 2218 * the DTL change in spa->spa_syncing_txg. 2219 * 2220 * We currently do not make DTL entries for failed spontaneous 2221 * self-healing writes triggered by normal (non-scrubbing) 2222 * reads, because we have no transactional context in which to 2223 * do so -- and it's not clear that it'd be desirable anyway. 2224 */ 2225 if (vd->vdev_ops->vdev_op_leaf) { 2226 uint64_t commit_txg = txg; 2227 if (flags & ZIO_FLAG_SCRUB_THREAD) { 2228 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2229 ASSERT(spa_sync_pass(spa) == 1); 2230 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2231 commit_txg = spa->spa_syncing_txg; 2232 } 2233 ASSERT(commit_txg >= spa->spa_syncing_txg); 2234 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2235 return; 2236 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2237 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2238 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2239 } 2240 if (vd != rvd) 2241 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2242 } 2243 } 2244 2245 void 2246 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 2247 { 2248 int c; 2249 vdev_stat_t *vs = &vd->vdev_stat; 2250 2251 for (c = 0; c < vd->vdev_children; c++) 2252 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 2253 2254 mutex_enter(&vd->vdev_stat_lock); 2255 2256 if (type == POOL_SCRUB_NONE) { 2257 /* 2258 * Update completion and end time. Leave everything else alone 2259 * so we can report what happened during the previous scrub. 2260 */ 2261 vs->vs_scrub_complete = complete; 2262 vs->vs_scrub_end = gethrestime_sec(); 2263 } else { 2264 vs->vs_scrub_type = type; 2265 vs->vs_scrub_complete = 0; 2266 vs->vs_scrub_examined = 0; 2267 vs->vs_scrub_repaired = 0; 2268 vs->vs_scrub_start = gethrestime_sec(); 2269 vs->vs_scrub_end = 0; 2270 } 2271 2272 mutex_exit(&vd->vdev_stat_lock); 2273 } 2274 2275 /* 2276 * Update the in-core space usage stats for this vdev and the root vdev. 2277 */ 2278 void 2279 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 2280 boolean_t update_root) 2281 { 2282 int64_t dspace_delta = space_delta; 2283 spa_t *spa = vd->vdev_spa; 2284 vdev_t *rvd = spa->spa_root_vdev; 2285 2286 ASSERT(vd == vd->vdev_top); 2287 2288 /* 2289 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2290 * factor. We must calculate this here and not at the root vdev 2291 * because the root vdev's psize-to-asize is simply the max of its 2292 * childrens', thus not accurate enough for us. 2293 */ 2294 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2295 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2296 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2297 vd->vdev_deflate_ratio; 2298 2299 mutex_enter(&vd->vdev_stat_lock); 2300 vd->vdev_stat.vs_space += space_delta; 2301 vd->vdev_stat.vs_alloc += alloc_delta; 2302 vd->vdev_stat.vs_dspace += dspace_delta; 2303 mutex_exit(&vd->vdev_stat_lock); 2304 2305 if (update_root) { 2306 ASSERT(rvd == vd->vdev_parent); 2307 ASSERT(vd->vdev_ms_count != 0); 2308 2309 /* 2310 * Don't count non-normal (e.g. intent log) space as part of 2311 * the pool's capacity. 2312 */ 2313 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2314 return; 2315 2316 mutex_enter(&rvd->vdev_stat_lock); 2317 rvd->vdev_stat.vs_space += space_delta; 2318 rvd->vdev_stat.vs_alloc += alloc_delta; 2319 rvd->vdev_stat.vs_dspace += dspace_delta; 2320 mutex_exit(&rvd->vdev_stat_lock); 2321 } 2322 } 2323 2324 /* 2325 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2326 * so that it will be written out next time the vdev configuration is synced. 2327 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2328 */ 2329 void 2330 vdev_config_dirty(vdev_t *vd) 2331 { 2332 spa_t *spa = vd->vdev_spa; 2333 vdev_t *rvd = spa->spa_root_vdev; 2334 int c; 2335 2336 /* 2337 * If this is an aux vdev (as with l2cache and spare devices), then we 2338 * update the vdev config manually and set the sync flag. 2339 */ 2340 if (vd->vdev_aux != NULL) { 2341 spa_aux_vdev_t *sav = vd->vdev_aux; 2342 nvlist_t **aux; 2343 uint_t naux; 2344 2345 for (c = 0; c < sav->sav_count; c++) { 2346 if (sav->sav_vdevs[c] == vd) 2347 break; 2348 } 2349 2350 if (c == sav->sav_count) { 2351 /* 2352 * We're being removed. There's nothing more to do. 2353 */ 2354 ASSERT(sav->sav_sync == B_TRUE); 2355 return; 2356 } 2357 2358 sav->sav_sync = B_TRUE; 2359 2360 if (nvlist_lookup_nvlist_array(sav->sav_config, 2361 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2362 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2363 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2364 } 2365 2366 ASSERT(c < naux); 2367 2368 /* 2369 * Setting the nvlist in the middle if the array is a little 2370 * sketchy, but it will work. 2371 */ 2372 nvlist_free(aux[c]); 2373 aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE); 2374 2375 return; 2376 } 2377 2378 /* 2379 * The dirty list is protected by the SCL_CONFIG lock. The caller 2380 * must either hold SCL_CONFIG as writer, or must be the sync thread 2381 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2382 * so this is sufficient to ensure mutual exclusion. 2383 */ 2384 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2385 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2386 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2387 2388 if (vd == rvd) { 2389 for (c = 0; c < rvd->vdev_children; c++) 2390 vdev_config_dirty(rvd->vdev_child[c]); 2391 } else { 2392 ASSERT(vd == vd->vdev_top); 2393 2394 if (!list_link_active(&vd->vdev_config_dirty_node)) 2395 list_insert_head(&spa->spa_config_dirty_list, vd); 2396 } 2397 } 2398 2399 void 2400 vdev_config_clean(vdev_t *vd) 2401 { 2402 spa_t *spa = vd->vdev_spa; 2403 2404 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2405 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2406 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2407 2408 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2409 list_remove(&spa->spa_config_dirty_list, vd); 2410 } 2411 2412 /* 2413 * Mark a top-level vdev's state as dirty, so that the next pass of 2414 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2415 * the state changes from larger config changes because they require 2416 * much less locking, and are often needed for administrative actions. 2417 */ 2418 void 2419 vdev_state_dirty(vdev_t *vd) 2420 { 2421 spa_t *spa = vd->vdev_spa; 2422 2423 ASSERT(vd == vd->vdev_top); 2424 2425 /* 2426 * The state list is protected by the SCL_STATE lock. The caller 2427 * must either hold SCL_STATE as writer, or must be the sync thread 2428 * (which holds SCL_STATE as reader). There's only one sync thread, 2429 * so this is sufficient to ensure mutual exclusion. 2430 */ 2431 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2432 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2433 spa_config_held(spa, SCL_STATE, RW_READER))); 2434 2435 if (!list_link_active(&vd->vdev_state_dirty_node)) 2436 list_insert_head(&spa->spa_state_dirty_list, vd); 2437 } 2438 2439 void 2440 vdev_state_clean(vdev_t *vd) 2441 { 2442 spa_t *spa = vd->vdev_spa; 2443 2444 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2445 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2446 spa_config_held(spa, SCL_STATE, RW_READER))); 2447 2448 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2449 list_remove(&spa->spa_state_dirty_list, vd); 2450 } 2451 2452 /* 2453 * Propagate vdev state up from children to parent. 2454 */ 2455 void 2456 vdev_propagate_state(vdev_t *vd) 2457 { 2458 spa_t *spa = vd->vdev_spa; 2459 vdev_t *rvd = spa->spa_root_vdev; 2460 int degraded = 0, faulted = 0; 2461 int corrupted = 0; 2462 int c; 2463 vdev_t *child; 2464 2465 if (vd->vdev_children > 0) { 2466 for (c = 0; c < vd->vdev_children; c++) { 2467 child = vd->vdev_child[c]; 2468 2469 if (!vdev_readable(child) || 2470 (!vdev_writeable(child) && spa_writeable(spa))) { 2471 /* 2472 * Root special: if there is a top-level log 2473 * device, treat the root vdev as if it were 2474 * degraded. 2475 */ 2476 if (child->vdev_islog && vd == rvd) 2477 degraded++; 2478 else 2479 faulted++; 2480 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 2481 degraded++; 2482 } 2483 2484 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2485 corrupted++; 2486 } 2487 2488 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2489 2490 /* 2491 * Root special: if there is a top-level vdev that cannot be 2492 * opened due to corrupted metadata, then propagate the root 2493 * vdev's aux state as 'corrupt' rather than 'insufficient 2494 * replicas'. 2495 */ 2496 if (corrupted && vd == rvd && 2497 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2498 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2499 VDEV_AUX_CORRUPT_DATA); 2500 } 2501 2502 if (vd->vdev_parent) 2503 vdev_propagate_state(vd->vdev_parent); 2504 } 2505 2506 /* 2507 * Set a vdev's state. If this is during an open, we don't update the parent 2508 * state, because we're in the process of opening children depth-first. 2509 * Otherwise, we propagate the change to the parent. 2510 * 2511 * If this routine places a device in a faulted state, an appropriate ereport is 2512 * generated. 2513 */ 2514 void 2515 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2516 { 2517 uint64_t save_state; 2518 spa_t *spa = vd->vdev_spa; 2519 2520 if (state == vd->vdev_state) { 2521 vd->vdev_stat.vs_aux = aux; 2522 return; 2523 } 2524 2525 save_state = vd->vdev_state; 2526 2527 vd->vdev_state = state; 2528 vd->vdev_stat.vs_aux = aux; 2529 2530 /* 2531 * If we are setting the vdev state to anything but an open state, then 2532 * always close the underlying device. Otherwise, we keep accessible 2533 * but invalid devices open forever. We don't call vdev_close() itself, 2534 * because that implies some extra checks (offline, etc) that we don't 2535 * want here. This is limited to leaf devices, because otherwise 2536 * closing the device will affect other children. 2537 */ 2538 if (vdev_is_dead(vd) && vd->vdev_ops->vdev_op_leaf) 2539 vd->vdev_ops->vdev_op_close(vd); 2540 2541 if (vd->vdev_removed && 2542 state == VDEV_STATE_CANT_OPEN && 2543 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2544 /* 2545 * If the previous state is set to VDEV_STATE_REMOVED, then this 2546 * device was previously marked removed and someone attempted to 2547 * reopen it. If this failed due to a nonexistent device, then 2548 * keep the device in the REMOVED state. We also let this be if 2549 * it is one of our special test online cases, which is only 2550 * attempting to online the device and shouldn't generate an FMA 2551 * fault. 2552 */ 2553 vd->vdev_state = VDEV_STATE_REMOVED; 2554 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2555 } else if (state == VDEV_STATE_REMOVED) { 2556 /* 2557 * Indicate to the ZFS DE that this device has been removed, and 2558 * any recent errors should be ignored. 2559 */ 2560 zfs_post_remove(spa, vd); 2561 vd->vdev_removed = B_TRUE; 2562 } else if (state == VDEV_STATE_CANT_OPEN) { 2563 /* 2564 * If we fail to open a vdev during an import, we mark it as 2565 * "not available", which signifies that it was never there to 2566 * begin with. Failure to open such a device is not considered 2567 * an error. 2568 */ 2569 if (spa->spa_load_state == SPA_LOAD_IMPORT && 2570 vd->vdev_ops->vdev_op_leaf) 2571 vd->vdev_not_present = 1; 2572 2573 /* 2574 * Post the appropriate ereport. If the 'prevstate' field is 2575 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2576 * that this is part of a vdev_reopen(). In this case, we don't 2577 * want to post the ereport if the device was already in the 2578 * CANT_OPEN state beforehand. 2579 * 2580 * If the 'checkremove' flag is set, then this is an attempt to 2581 * online the device in response to an insertion event. If we 2582 * hit this case, then we have detected an insertion event for a 2583 * faulted or offline device that wasn't in the removed state. 2584 * In this scenario, we don't post an ereport because we are 2585 * about to replace the device, or attempt an online with 2586 * vdev_forcefault, which will generate the fault for us. 2587 */ 2588 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2589 !vd->vdev_not_present && !vd->vdev_checkremove && 2590 vd != spa->spa_root_vdev) { 2591 const char *class; 2592 2593 switch (aux) { 2594 case VDEV_AUX_OPEN_FAILED: 2595 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2596 break; 2597 case VDEV_AUX_CORRUPT_DATA: 2598 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2599 break; 2600 case VDEV_AUX_NO_REPLICAS: 2601 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2602 break; 2603 case VDEV_AUX_BAD_GUID_SUM: 2604 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2605 break; 2606 case VDEV_AUX_TOO_SMALL: 2607 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2608 break; 2609 case VDEV_AUX_BAD_LABEL: 2610 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2611 break; 2612 case VDEV_AUX_IO_FAILURE: 2613 class = FM_EREPORT_ZFS_IO_FAILURE; 2614 break; 2615 default: 2616 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2617 } 2618 2619 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 2620 } 2621 2622 /* Erase any notion of persistent removed state */ 2623 vd->vdev_removed = B_FALSE; 2624 } else { 2625 vd->vdev_removed = B_FALSE; 2626 } 2627 2628 if (!isopen && vd->vdev_parent) 2629 vdev_propagate_state(vd->vdev_parent); 2630 } 2631 2632 /* 2633 * Check the vdev configuration to ensure that it's capable of supporting 2634 * a root pool. Currently, we do not support RAID-Z or partial configuration. 2635 * In addition, only a single top-level vdev is allowed and none of the leaves 2636 * can be wholedisks. 2637 */ 2638 boolean_t 2639 vdev_is_bootable(vdev_t *vd) 2640 { 2641 int c; 2642 2643 if (!vd->vdev_ops->vdev_op_leaf) { 2644 char *vdev_type = vd->vdev_ops->vdev_op_type; 2645 2646 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 2647 vd->vdev_children > 1) { 2648 return (B_FALSE); 2649 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 2650 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 2651 return (B_FALSE); 2652 } 2653 } else if (vd->vdev_wholedisk == 1) { 2654 return (B_FALSE); 2655 } 2656 2657 for (c = 0; c < vd->vdev_children; c++) { 2658 if (!vdev_is_bootable(vd->vdev_child[c])) 2659 return (B_FALSE); 2660 } 2661 return (B_TRUE); 2662 } 2663 2664 void 2665 vdev_load_log_state(vdev_t *vd, nvlist_t *nv) 2666 { 2667 uint_t c, children; 2668 nvlist_t **child; 2669 uint64_t val; 2670 spa_t *spa = vd->vdev_spa; 2671 2672 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 2673 &child, &children) == 0) { 2674 for (c = 0; c < children; c++) 2675 vdev_load_log_state(vd->vdev_child[c], child[c]); 2676 } 2677 2678 if (vd->vdev_ops->vdev_op_leaf && nvlist_lookup_uint64(nv, 2679 ZPOOL_CONFIG_OFFLINE, &val) == 0 && val) { 2680 2681 /* 2682 * It would be nice to call vdev_offline() 2683 * directly but the pool isn't fully loaded and 2684 * the txg threads have not been started yet. 2685 */ 2686 spa_config_enter(spa, SCL_STATE_ALL, FTAG, RW_WRITER); 2687 vd->vdev_offline = val; 2688 vdev_reopen(vd->vdev_top); 2689 spa_config_exit(spa, SCL_STATE_ALL, FTAG); 2690 } 2691 } 2692