1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_disk_ops, 53 &vdev_file_ops, 54 &vdev_missing_ops, 55 NULL 56 }; 57 58 /* 59 * Given a vdev type, return the appropriate ops vector. 60 */ 61 static vdev_ops_t * 62 vdev_getops(const char *type) 63 { 64 vdev_ops_t *ops, **opspp; 65 66 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 67 if (strcmp(ops->vdev_op_type, type) == 0) 68 break; 69 70 return (ops); 71 } 72 73 /* 74 * Default asize function: return the MAX of psize with the asize of 75 * all children. This is what's used by anything other than RAID-Z. 76 */ 77 uint64_t 78 vdev_default_asize(vdev_t *vd, uint64_t psize) 79 { 80 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift); 81 uint64_t csize; 82 uint64_t c; 83 84 for (c = 0; c < vd->vdev_children; c++) { 85 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 86 asize = MAX(asize, csize); 87 } 88 89 return (asize); 90 } 91 92 /* 93 * Get the replaceable or attachable device size. 94 * If the parent is a mirror or raidz, the replaceable size is the minimum 95 * psize of all its children. For the rest, just return our own psize. 96 * 97 * e.g. 98 * psize rsize 99 * root - - 100 * mirror/raidz - - 101 * disk1 20g 20g 102 * disk2 40g 20g 103 * disk3 80g 80g 104 */ 105 uint64_t 106 vdev_get_rsize(vdev_t *vd) 107 { 108 vdev_t *pvd, *cvd; 109 uint64_t c, rsize; 110 111 pvd = vd->vdev_parent; 112 113 /* 114 * If our parent is NULL or the root, just return our own psize. 115 */ 116 if (pvd == NULL || pvd->vdev_parent == NULL) 117 return (vd->vdev_psize); 118 119 rsize = 0; 120 121 for (c = 0; c < pvd->vdev_children; c++) { 122 cvd = pvd->vdev_child[c]; 123 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 124 } 125 126 return (rsize); 127 } 128 129 vdev_t * 130 vdev_lookup_top(spa_t *spa, uint64_t vdev) 131 { 132 vdev_t *rvd = spa->spa_root_vdev; 133 134 if (vdev < rvd->vdev_children) 135 return (rvd->vdev_child[vdev]); 136 137 return (NULL); 138 } 139 140 vdev_t * 141 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 142 { 143 int c; 144 vdev_t *mvd; 145 146 if (vd->vdev_children == 0 && vd->vdev_guid == guid) 147 return (vd); 148 149 for (c = 0; c < vd->vdev_children; c++) 150 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 151 NULL) 152 return (mvd); 153 154 return (NULL); 155 } 156 157 void 158 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 159 { 160 size_t oldsize, newsize; 161 uint64_t id = cvd->vdev_id; 162 vdev_t **newchild; 163 164 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 165 ASSERT(cvd->vdev_parent == NULL); 166 167 cvd->vdev_parent = pvd; 168 169 if (pvd == NULL) 170 return; 171 172 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 173 174 oldsize = pvd->vdev_children * sizeof (vdev_t *); 175 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 176 newsize = pvd->vdev_children * sizeof (vdev_t *); 177 178 newchild = kmem_zalloc(newsize, KM_SLEEP); 179 if (pvd->vdev_child != NULL) { 180 bcopy(pvd->vdev_child, newchild, oldsize); 181 kmem_free(pvd->vdev_child, oldsize); 182 } 183 184 pvd->vdev_child = newchild; 185 pvd->vdev_child[id] = cvd; 186 187 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 188 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 189 190 /* 191 * Walk up all ancestors to update guid sum. 192 */ 193 for (; pvd != NULL; pvd = pvd->vdev_parent) 194 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 195 } 196 197 void 198 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 199 { 200 int c; 201 uint_t id = cvd->vdev_id; 202 203 ASSERT(cvd->vdev_parent == pvd); 204 205 if (pvd == NULL) 206 return; 207 208 ASSERT(id < pvd->vdev_children); 209 ASSERT(pvd->vdev_child[id] == cvd); 210 211 pvd->vdev_child[id] = NULL; 212 cvd->vdev_parent = NULL; 213 214 for (c = 0; c < pvd->vdev_children; c++) 215 if (pvd->vdev_child[c]) 216 break; 217 218 if (c == pvd->vdev_children) { 219 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 220 pvd->vdev_child = NULL; 221 pvd->vdev_children = 0; 222 } 223 224 /* 225 * Walk up all ancestors to update guid sum. 226 */ 227 for (; pvd != NULL; pvd = pvd->vdev_parent) 228 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 229 } 230 231 /* 232 * Remove any holes in the child array. 233 */ 234 void 235 vdev_compact_children(vdev_t *pvd) 236 { 237 vdev_t **newchild, *cvd; 238 int oldc = pvd->vdev_children; 239 int newc, c; 240 241 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 242 243 for (c = newc = 0; c < oldc; c++) 244 if (pvd->vdev_child[c]) 245 newc++; 246 247 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 248 249 for (c = newc = 0; c < oldc; c++) { 250 if ((cvd = pvd->vdev_child[c]) != NULL) { 251 newchild[newc] = cvd; 252 cvd->vdev_id = newc++; 253 } 254 } 255 256 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 257 pvd->vdev_child = newchild; 258 pvd->vdev_children = newc; 259 } 260 261 /* 262 * Allocate and minimally initialize a vdev_t. 263 */ 264 static vdev_t * 265 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 266 { 267 vdev_t *vd; 268 269 while (guid == 0) 270 guid = spa_get_random(-1ULL); 271 272 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 273 274 vd->vdev_spa = spa; 275 vd->vdev_id = id; 276 vd->vdev_guid = guid; 277 vd->vdev_guid_sum = guid; 278 vd->vdev_ops = ops; 279 vd->vdev_state = VDEV_STATE_CLOSED; 280 281 mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL); 282 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 283 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 284 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 285 txg_list_create(&vd->vdev_ms_list, 286 offsetof(struct metaslab, ms_txg_node)); 287 txg_list_create(&vd->vdev_dtl_list, 288 offsetof(struct vdev, vdev_dtl_node)); 289 vd->vdev_stat.vs_timestamp = gethrtime(); 290 291 return (vd); 292 } 293 294 /* 295 * Free a vdev_t that has been removed from service. 296 */ 297 static void 298 vdev_free_common(vdev_t *vd) 299 { 300 if (vd->vdev_path) 301 spa_strfree(vd->vdev_path); 302 if (vd->vdev_devid) 303 spa_strfree(vd->vdev_devid); 304 305 txg_list_destroy(&vd->vdev_ms_list); 306 txg_list_destroy(&vd->vdev_dtl_list); 307 mutex_enter(&vd->vdev_dtl_lock); 308 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 309 space_map_destroy(&vd->vdev_dtl_map); 310 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 311 space_map_destroy(&vd->vdev_dtl_scrub); 312 mutex_exit(&vd->vdev_dtl_lock); 313 mutex_destroy(&vd->vdev_dtl_lock); 314 mutex_destroy(&vd->vdev_dirty_lock); 315 316 kmem_free(vd, sizeof (vdev_t)); 317 } 318 319 /* 320 * Allocate a new vdev. The 'alloctype' is used to control whether we are 321 * creating a new vdev or loading an existing one - the behavior is slightly 322 * different for each case. 323 */ 324 vdev_t * 325 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) 326 { 327 vdev_ops_t *ops; 328 char *type; 329 uint64_t guid = 0, offline = 0; 330 vdev_t *vd; 331 332 ASSERT(spa_config_held(spa, RW_WRITER)); 333 334 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 335 return (NULL); 336 337 if ((ops = vdev_getops(type)) == NULL) 338 return (NULL); 339 340 /* 341 * If this is a load, get the vdev guid from the nvlist. 342 * Otherwise, vdev_alloc_common() will generate one for us. 343 */ 344 if (alloctype == VDEV_ALLOC_LOAD) { 345 uint64_t label_id; 346 347 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 348 label_id != id) 349 return (NULL); 350 351 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 352 return (NULL); 353 } 354 355 vd = vdev_alloc_common(spa, id, guid, ops); 356 357 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 358 vd->vdev_path = spa_strdup(vd->vdev_path); 359 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 360 vd->vdev_devid = spa_strdup(vd->vdev_devid); 361 362 /* 363 * Set the whole_disk property. If it's not specified, leave the value 364 * as -1. 365 */ 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 367 &vd->vdev_wholedisk) != 0) 368 vd->vdev_wholedisk = -1ULL; 369 370 /* 371 * Look for the 'not present' flag. This will only be set if the device 372 * was not present at the time of import. 373 */ 374 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 375 &vd->vdev_not_present); 376 377 /* 378 * If we're a top-level vdev, try to load the allocation parameters. 379 */ 380 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 381 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 382 &vd->vdev_ms_array); 383 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 384 &vd->vdev_ms_shift); 385 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 386 &vd->vdev_ashift); 387 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 388 &vd->vdev_asize); 389 } 390 391 /* 392 * If we're a leaf vdev, try to load the DTL object 393 * and the offline state. 394 */ 395 vd->vdev_offline = B_FALSE; 396 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 397 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 398 &vd->vdev_dtl.smo_object); 399 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &offline) 401 == 0) 402 vd->vdev_offline = offline; 403 } 404 405 /* 406 * Add ourselves to the parent's list of children. 407 */ 408 vdev_add_child(parent, vd); 409 410 return (vd); 411 } 412 413 void 414 vdev_free(vdev_t *vd) 415 { 416 int c; 417 418 /* 419 * vdev_free() implies closing the vdev first. This is simpler than 420 * trying to ensure complicated semantics for all callers. 421 */ 422 vdev_close(vd); 423 424 /* 425 * It's possible to free a vdev that's been added to the dirty 426 * list when in the middle of spa_vdev_add(). Handle that case 427 * correctly here. 428 */ 429 if (vd->vdev_is_dirty) 430 vdev_config_clean(vd); 431 432 /* 433 * Free all children. 434 */ 435 for (c = 0; c < vd->vdev_children; c++) 436 vdev_free(vd->vdev_child[c]); 437 438 ASSERT(vd->vdev_child == NULL); 439 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 440 441 /* 442 * Discard allocation state. 443 */ 444 if (vd == vd->vdev_top) 445 vdev_metaslab_fini(vd); 446 447 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 448 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 449 450 /* 451 * Remove this vdev from its parent's child list. 452 */ 453 vdev_remove_child(vd->vdev_parent, vd); 454 455 ASSERT(vd->vdev_parent == NULL); 456 457 vdev_free_common(vd); 458 } 459 460 /* 461 * Transfer top-level vdev state from svd to tvd. 462 */ 463 static void 464 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 465 { 466 spa_t *spa = svd->vdev_spa; 467 metaslab_t *msp; 468 vdev_t *vd; 469 int t; 470 471 ASSERT(tvd == tvd->vdev_top); 472 473 tvd->vdev_ms_array = svd->vdev_ms_array; 474 tvd->vdev_ms_shift = svd->vdev_ms_shift; 475 tvd->vdev_ms_count = svd->vdev_ms_count; 476 477 svd->vdev_ms_array = 0; 478 svd->vdev_ms_shift = 0; 479 svd->vdev_ms_count = 0; 480 481 tvd->vdev_mg = svd->vdev_mg; 482 tvd->vdev_mg->mg_vd = tvd; 483 tvd->vdev_ms = svd->vdev_ms; 484 tvd->vdev_smo = svd->vdev_smo; 485 486 svd->vdev_mg = NULL; 487 svd->vdev_ms = NULL; 488 svd->vdev_smo = NULL; 489 490 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 491 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 492 493 svd->vdev_stat.vs_alloc = 0; 494 svd->vdev_stat.vs_space = 0; 495 496 for (t = 0; t < TXG_SIZE; t++) { 497 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 498 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 499 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 500 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 501 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 502 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 503 tvd->vdev_dirty[t] = svd->vdev_dirty[t]; 504 svd->vdev_dirty[t] = 0; 505 } 506 507 if (svd->vdev_is_dirty) { 508 vdev_config_clean(svd); 509 vdev_config_dirty(tvd); 510 } 511 512 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 513 svd->vdev_reopen_wanted = 0; 514 } 515 516 static void 517 vdev_top_update(vdev_t *tvd, vdev_t *vd) 518 { 519 int c; 520 521 if (vd == NULL) 522 return; 523 524 vd->vdev_top = tvd; 525 526 for (c = 0; c < vd->vdev_children; c++) 527 vdev_top_update(tvd, vd->vdev_child[c]); 528 } 529 530 /* 531 * Add a mirror/replacing vdev above an existing vdev. 532 */ 533 vdev_t * 534 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 535 { 536 spa_t *spa = cvd->vdev_spa; 537 vdev_t *pvd = cvd->vdev_parent; 538 vdev_t *mvd; 539 540 ASSERT(spa_config_held(spa, RW_WRITER)); 541 542 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 543 vdev_remove_child(pvd, cvd); 544 vdev_add_child(pvd, mvd); 545 cvd->vdev_id = mvd->vdev_children; 546 vdev_add_child(mvd, cvd); 547 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 548 549 mvd->vdev_asize = cvd->vdev_asize; 550 mvd->vdev_ashift = cvd->vdev_ashift; 551 mvd->vdev_state = cvd->vdev_state; 552 553 if (mvd == mvd->vdev_top) 554 vdev_top_transfer(cvd, mvd); 555 556 return (mvd); 557 } 558 559 /* 560 * Remove a 1-way mirror/replacing vdev from the tree. 561 */ 562 void 563 vdev_remove_parent(vdev_t *cvd) 564 { 565 vdev_t *mvd = cvd->vdev_parent; 566 vdev_t *pvd = mvd->vdev_parent; 567 568 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 569 570 ASSERT(mvd->vdev_children == 1); 571 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 572 mvd->vdev_ops == &vdev_replacing_ops); 573 574 vdev_remove_child(mvd, cvd); 575 vdev_remove_child(pvd, mvd); 576 cvd->vdev_id = mvd->vdev_id; 577 vdev_add_child(pvd, cvd); 578 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 579 580 if (cvd == cvd->vdev_top) 581 vdev_top_transfer(mvd, cvd); 582 583 ASSERT(mvd->vdev_children == 0); 584 vdev_free(mvd); 585 } 586 587 int 588 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 589 { 590 spa_t *spa = vd->vdev_spa; 591 metaslab_class_t *mc = spa_metaslab_class_select(spa); 592 uint64_t c; 593 uint64_t oldc = vd->vdev_ms_count; 594 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 595 space_map_obj_t *smo = vd->vdev_smo; 596 metaslab_t **mspp = vd->vdev_ms; 597 int ret; 598 599 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 600 601 ASSERT(oldc <= newc); 602 603 vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP); 604 vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 605 vd->vdev_ms_count = newc; 606 607 if (vd->vdev_mg == NULL) { 608 if (txg == 0) { 609 dmu_buf_t *db; 610 uint64_t *ms_array; 611 612 ms_array = kmem_zalloc(newc * sizeof (uint64_t), 613 KM_SLEEP); 614 615 if ((ret = dmu_read(spa->spa_meta_objset, 616 vd->vdev_ms_array, 0, 617 newc * sizeof (uint64_t), ms_array)) != 0) { 618 kmem_free(ms_array, newc * sizeof (uint64_t)); 619 goto error; 620 } 621 622 for (c = 0; c < newc; c++) { 623 if (ms_array[c] == 0) 624 continue; 625 if ((ret = dmu_bonus_hold( 626 spa->spa_meta_objset, ms_array[c], 627 FTAG, &db)) != 0) { 628 kmem_free(ms_array, 629 newc * sizeof (uint64_t)); 630 goto error; 631 } 632 ASSERT3U(db->db_size, ==, sizeof (*smo)); 633 bcopy(db->db_data, &vd->vdev_smo[c], 634 db->db_size); 635 ASSERT3U(vd->vdev_smo[c].smo_object, ==, 636 ms_array[c]); 637 dmu_buf_rele(db, FTAG); 638 } 639 kmem_free(ms_array, newc * sizeof (uint64_t)); 640 } 641 vd->vdev_mg = metaslab_group_create(mc, vd); 642 } 643 644 for (c = 0; c < oldc; c++) { 645 vd->vdev_smo[c] = smo[c]; 646 vd->vdev_ms[c] = mspp[c]; 647 mspp[c]->ms_smo = &vd->vdev_smo[c]; 648 } 649 650 for (c = oldc; c < newc; c++) 651 metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c], 652 c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 653 654 if (oldc != 0) { 655 kmem_free(smo, oldc * sizeof (*smo)); 656 kmem_free(mspp, oldc * sizeof (*mspp)); 657 } 658 659 return (0); 660 661 error: 662 /* 663 * On error, undo any partial progress we may have made, and restore the 664 * old metaslab values. 665 */ 666 kmem_free(vd->vdev_smo, newc * sizeof (*smo)); 667 kmem_free(vd->vdev_ms, newc * sizeof (*mspp)); 668 669 vd->vdev_smo = smo; 670 vd->vdev_ms = mspp; 671 vd->vdev_ms_count = oldc; 672 673 return (ret); 674 } 675 676 void 677 vdev_metaslab_fini(vdev_t *vd) 678 { 679 uint64_t m; 680 uint64_t count = vd->vdev_ms_count; 681 682 if (vd->vdev_ms != NULL) { 683 for (m = 0; m < count; m++) 684 metaslab_fini(vd->vdev_ms[m]); 685 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 686 vd->vdev_ms = NULL; 687 } 688 689 if (vd->vdev_smo != NULL) { 690 kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t)); 691 vd->vdev_smo = NULL; 692 } 693 } 694 695 /* 696 * Prepare a virtual device for access. 697 */ 698 int 699 vdev_open(vdev_t *vd) 700 { 701 int error; 702 vdev_knob_t *vk; 703 int c; 704 uint64_t osize = 0; 705 uint64_t asize, psize; 706 uint64_t ashift = -1ULL; 707 708 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 709 vd->vdev_state == VDEV_STATE_CANT_OPEN || 710 vd->vdev_state == VDEV_STATE_OFFLINE); 711 712 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 713 vd->vdev_fault_arg >>= 1; 714 else 715 vd->vdev_fault_mode = VDEV_FAULT_NONE; 716 717 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 718 719 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 720 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 721 722 *valp = vk->vk_default; 723 *valp = MAX(*valp, vk->vk_min); 724 *valp = MIN(*valp, vk->vk_max); 725 } 726 727 if (vd->vdev_ops->vdev_op_leaf) { 728 vdev_cache_init(vd); 729 vdev_queue_init(vd); 730 vd->vdev_cache_active = B_TRUE; 731 } 732 733 if (vd->vdev_offline) { 734 ASSERT(vd->vdev_children == 0); 735 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 736 return (ENXIO); 737 } 738 739 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 740 741 if (zio_injection_enabled && error == 0) 742 error = zio_handle_device_injection(vd, ENXIO); 743 744 dprintf("%s = %d, osize %llu, state = %d\n", 745 vdev_description(vd), error, osize, vd->vdev_state); 746 747 if (error) { 748 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 749 vd->vdev_stat.vs_aux); 750 return (error); 751 } 752 753 vd->vdev_state = VDEV_STATE_HEALTHY; 754 755 for (c = 0; c < vd->vdev_children; c++) 756 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 757 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 758 VDEV_AUX_NONE); 759 break; 760 } 761 762 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 763 764 if (vd->vdev_children == 0) { 765 if (osize < SPA_MINDEVSIZE) { 766 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 767 VDEV_AUX_TOO_SMALL); 768 return (EOVERFLOW); 769 } 770 psize = osize; 771 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 772 } else { 773 if (osize < SPA_MINDEVSIZE - 774 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 775 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 776 VDEV_AUX_TOO_SMALL); 777 return (EOVERFLOW); 778 } 779 psize = 0; 780 asize = osize; 781 } 782 783 vd->vdev_psize = psize; 784 785 if (vd->vdev_asize == 0) { 786 /* 787 * This is the first-ever open, so use the computed values. 788 */ 789 vd->vdev_asize = asize; 790 vd->vdev_ashift = ashift; 791 } else { 792 /* 793 * Make sure the alignment requirement hasn't increased. 794 */ 795 if (ashift > vd->vdev_ashift) { 796 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 797 VDEV_AUX_BAD_LABEL); 798 return (EINVAL); 799 } 800 801 /* 802 * Make sure the device hasn't shrunk. 803 */ 804 if (asize < vd->vdev_asize) { 805 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 806 VDEV_AUX_BAD_LABEL); 807 return (EINVAL); 808 } 809 810 /* 811 * If all children are healthy and the asize has increased, 812 * then we've experienced dynamic LUN growth. 813 */ 814 if (vd->vdev_state == VDEV_STATE_HEALTHY && 815 asize > vd->vdev_asize) { 816 vd->vdev_asize = asize; 817 } 818 } 819 820 /* 821 * If we were able to open a vdev that was marked permanently 822 * unavailable, clear that state now. 823 */ 824 if (vd->vdev_not_present) 825 vd->vdev_not_present = 0; 826 827 /* 828 * This allows the ZFS DE to close cases appropriately. If a device 829 * goes away and later returns, we want to close the associated case. 830 * But it's not enough to simply post this only when a device goes from 831 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 832 * back, we also need to close the case (otherwise we will try to replay 833 * it). So we have to post this notifier every time. Since this only 834 * occurs during pool open or error recovery, this should not be an 835 * issue. 836 */ 837 zfs_post_ok(vd->vdev_spa, vd); 838 839 return (0); 840 } 841 842 /* 843 * Close a virtual device. 844 */ 845 void 846 vdev_close(vdev_t *vd) 847 { 848 vd->vdev_ops->vdev_op_close(vd); 849 850 if (vd->vdev_cache_active) { 851 vdev_cache_fini(vd); 852 vdev_queue_fini(vd); 853 vd->vdev_cache_active = B_FALSE; 854 } 855 856 if (vd->vdev_offline) 857 vd->vdev_state = VDEV_STATE_OFFLINE; 858 else 859 vd->vdev_state = VDEV_STATE_CLOSED; 860 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 861 } 862 863 void 864 vdev_reopen(vdev_t *vd) 865 { 866 spa_t *spa = vd->vdev_spa; 867 vdev_t *rvd = spa->spa_root_vdev; 868 int c; 869 870 ASSERT(spa_config_held(spa, RW_WRITER)); 871 872 if (vd == rvd) { 873 for (c = 0; c < rvd->vdev_children; c++) 874 vdev_reopen(rvd->vdev_child[c]); 875 return; 876 } 877 878 /* only valid for top-level vdevs */ 879 ASSERT3P(vd, ==, vd->vdev_top); 880 881 vdev_close(vd); 882 (void) vdev_open(vd); 883 884 /* 885 * Reassess root vdev's health. 886 */ 887 rvd->vdev_state = VDEV_STATE_HEALTHY; 888 for (c = 0; c < rvd->vdev_children; c++) { 889 uint64_t state = rvd->vdev_child[c]->vdev_state; 890 rvd->vdev_state = MIN(rvd->vdev_state, state); 891 } 892 } 893 894 int 895 vdev_create(vdev_t *vd, uint64_t txg) 896 { 897 int error; 898 899 /* 900 * Normally, partial opens (e.g. of a mirror) are allowed. 901 * For a create, however, we want to fail the request if 902 * there are any components we can't open. 903 */ 904 error = vdev_open(vd); 905 906 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 907 vdev_close(vd); 908 return (error ? error : ENXIO); 909 } 910 911 /* 912 * Recursively initialize all labels. 913 */ 914 if ((error = vdev_label_init(vd, txg)) != 0) { 915 vdev_close(vd); 916 return (error); 917 } 918 919 return (0); 920 } 921 922 /* 923 * The is the latter half of vdev_create(). It is distinct because it 924 * involves initiating transactions in order to do metaslab creation. 925 * For creation, we want to try to create all vdevs at once and then undo it 926 * if anything fails; this is much harder if we have pending transactions. 927 */ 928 int 929 vdev_init(vdev_t *vd, uint64_t txg) 930 { 931 /* 932 * Aim for roughly 200 metaslabs per vdev. 933 */ 934 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 935 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 936 937 /* 938 * Initialize the vdev's metaslabs. 939 */ 940 return (vdev_metaslab_init(vd, txg)); 941 } 942 943 void 944 vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg) 945 { 946 vdev_t *tvd = vd->vdev_top; 947 948 mutex_enter(&tvd->vdev_dirty_lock); 949 if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) { 950 tvd->vdev_dirty[txg & TXG_MASK] |= flags; 951 (void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list, 952 tvd, txg); 953 } 954 mutex_exit(&tvd->vdev_dirty_lock); 955 } 956 957 void 958 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 959 { 960 mutex_enter(sm->sm_lock); 961 if (!space_map_contains(sm, txg, size)) 962 space_map_add(sm, txg, size); 963 mutex_exit(sm->sm_lock); 964 } 965 966 int 967 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 968 { 969 int dirty; 970 971 /* 972 * Quick test without the lock -- covers the common case that 973 * there are no dirty time segments. 974 */ 975 if (sm->sm_space == 0) 976 return (0); 977 978 mutex_enter(sm->sm_lock); 979 dirty = space_map_contains(sm, txg, size); 980 mutex_exit(sm->sm_lock); 981 982 return (dirty); 983 } 984 985 /* 986 * Reassess DTLs after a config change or scrub completion. 987 */ 988 void 989 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 990 { 991 spa_t *spa = vd->vdev_spa; 992 int c; 993 994 ASSERT(spa_config_held(spa, RW_WRITER)); 995 996 if (vd->vdev_children == 0) { 997 mutex_enter(&vd->vdev_dtl_lock); 998 /* 999 * We're successfully scrubbed everything up to scrub_txg. 1000 * Therefore, excise all old DTLs up to that point, then 1001 * fold in the DTLs for everything we couldn't scrub. 1002 */ 1003 if (scrub_txg != 0) { 1004 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1005 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1006 } 1007 if (scrub_done) 1008 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1009 mutex_exit(&vd->vdev_dtl_lock); 1010 if (txg != 0) { 1011 vdev_t *tvd = vd->vdev_top; 1012 vdev_dirty(tvd, VDD_DTL, txg); 1013 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 1014 } 1015 return; 1016 } 1017 1018 /* 1019 * Make sure the DTLs are always correct under the scrub lock. 1020 */ 1021 if (vd == spa->spa_root_vdev) 1022 mutex_enter(&spa->spa_scrub_lock); 1023 1024 mutex_enter(&vd->vdev_dtl_lock); 1025 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1026 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1027 mutex_exit(&vd->vdev_dtl_lock); 1028 1029 for (c = 0; c < vd->vdev_children; c++) { 1030 vdev_t *cvd = vd->vdev_child[c]; 1031 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1032 mutex_enter(&vd->vdev_dtl_lock); 1033 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1034 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1035 mutex_exit(&vd->vdev_dtl_lock); 1036 } 1037 1038 if (vd == spa->spa_root_vdev) 1039 mutex_exit(&spa->spa_scrub_lock); 1040 } 1041 1042 static int 1043 vdev_dtl_load(vdev_t *vd) 1044 { 1045 spa_t *spa = vd->vdev_spa; 1046 space_map_obj_t *smo = &vd->vdev_dtl; 1047 dmu_buf_t *db; 1048 int error; 1049 1050 ASSERT(vd->vdev_children == 0); 1051 1052 if (smo->smo_object == 0) 1053 return (0); 1054 1055 if ((error = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object, 1056 FTAG, &db)) != 0) 1057 return (error); 1058 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1059 bcopy(db->db_data, smo, db->db_size); 1060 dmu_buf_rele(db, FTAG); 1061 1062 mutex_enter(&vd->vdev_dtl_lock); 1063 error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC, 1064 spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc); 1065 mutex_exit(&vd->vdev_dtl_lock); 1066 1067 return (error); 1068 } 1069 1070 void 1071 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1072 { 1073 spa_t *spa = vd->vdev_spa; 1074 space_map_obj_t *smo = &vd->vdev_dtl; 1075 space_map_t *sm = &vd->vdev_dtl_map; 1076 space_map_t smsync; 1077 kmutex_t smlock; 1078 avl_tree_t *t = &sm->sm_root; 1079 space_seg_t *ss; 1080 dmu_buf_t *db; 1081 dmu_tx_t *tx; 1082 1083 dprintf("%s in txg %llu pass %d\n", 1084 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1085 1086 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1087 1088 if (vd->vdev_detached) { 1089 if (smo->smo_object != 0) { 1090 int err = dmu_object_free(spa->spa_meta_objset, 1091 smo->smo_object, tx); 1092 ASSERT3U(err, ==, 0); 1093 smo->smo_object = 0; 1094 } 1095 dmu_tx_commit(tx); 1096 return; 1097 } 1098 1099 if (smo->smo_object == 0) { 1100 ASSERT(smo->smo_objsize == 0); 1101 ASSERT(smo->smo_alloc == 0); 1102 smo->smo_object = dmu_object_alloc(spa->spa_meta_objset, 1103 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1104 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1105 ASSERT(smo->smo_object != 0); 1106 vdev_config_dirty(vd->vdev_top); 1107 } 1108 1109 VERIFY(0 == dmu_free_range(spa->spa_meta_objset, smo->smo_object, 1110 0, smo->smo_objsize, tx)); 1111 1112 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1113 1114 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1115 &smlock); 1116 1117 mutex_enter(&smlock); 1118 1119 mutex_enter(&vd->vdev_dtl_lock); 1120 for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) 1121 space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start); 1122 mutex_exit(&vd->vdev_dtl_lock); 1123 1124 smo->smo_objsize = 0; 1125 smo->smo_alloc = smsync.sm_space; 1126 1127 space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx); 1128 space_map_destroy(&smsync); 1129 1130 mutex_exit(&smlock); 1131 mutex_destroy(&smlock); 1132 1133 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object, 1134 FTAG, &db)); 1135 dmu_buf_will_dirty(db, tx); 1136 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1137 bcopy(smo, db->db_data, db->db_size); 1138 dmu_buf_rele(db, FTAG); 1139 1140 dmu_tx_commit(tx); 1141 } 1142 1143 int 1144 vdev_load(vdev_t *vd) 1145 { 1146 spa_t *spa = vd->vdev_spa; 1147 int c, error; 1148 nvlist_t *label; 1149 uint64_t guid, state; 1150 1151 dprintf("loading %s\n", vdev_description(vd)); 1152 1153 /* 1154 * Recursively load all children. 1155 */ 1156 for (c = 0; c < vd->vdev_children; c++) 1157 if ((error = vdev_load(vd->vdev_child[c])) != 0) 1158 return (error); 1159 1160 /* 1161 * If this is a leaf vdev, make sure its agrees with its disk labels. 1162 */ 1163 if (vd->vdev_ops->vdev_op_leaf) { 1164 1165 if (vdev_is_dead(vd)) 1166 return (0); 1167 1168 /* 1169 * XXX state transitions don't propagate to parent here. 1170 * Also, merely setting the state isn't sufficient because 1171 * it's not persistent; a vdev_reopen() would make us 1172 * forget all about it. 1173 */ 1174 if ((label = vdev_label_read_config(vd)) == NULL) { 1175 dprintf("can't load label config\n"); 1176 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1177 VDEV_AUX_CORRUPT_DATA); 1178 return (0); 1179 } 1180 1181 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1182 &guid) != 0 || guid != spa_guid(spa)) { 1183 dprintf("bad or missing pool GUID (%llu)\n", guid); 1184 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1185 VDEV_AUX_CORRUPT_DATA); 1186 nvlist_free(label); 1187 return (0); 1188 } 1189 1190 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) || 1191 guid != vd->vdev_guid) { 1192 dprintf("bad or missing vdev guid (%llu != %llu)\n", 1193 guid, vd->vdev_guid); 1194 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1195 VDEV_AUX_CORRUPT_DATA); 1196 nvlist_free(label); 1197 return (0); 1198 } 1199 1200 /* 1201 * If we find a vdev with a matching pool guid and vdev guid, 1202 * but the pool state is not active, it indicates that the user 1203 * exported or destroyed the pool without affecting the config 1204 * cache (if / was mounted readonly, for example). In this 1205 * case, immediately return EBADF so the caller can remove it 1206 * from the config. 1207 */ 1208 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1209 &state)) { 1210 dprintf("missing pool state\n"); 1211 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1212 VDEV_AUX_CORRUPT_DATA); 1213 nvlist_free(label); 1214 return (0); 1215 } 1216 1217 if (state != POOL_STATE_ACTIVE && 1218 (spa->spa_load_state == SPA_LOAD_OPEN || 1219 state != POOL_STATE_EXPORTED)) { 1220 dprintf("pool state not active (%llu)\n", state); 1221 nvlist_free(label); 1222 return (EBADF); 1223 } 1224 1225 nvlist_free(label); 1226 } 1227 1228 /* 1229 * If this is a top-level vdev, make sure its allocation parameters 1230 * exist and initialize its metaslabs. 1231 */ 1232 if (vd == vd->vdev_top) { 1233 1234 if (vd->vdev_ms_array == 0 || 1235 vd->vdev_ms_shift == 0 || 1236 vd->vdev_ashift == 0 || 1237 vd->vdev_asize == 0) { 1238 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1239 VDEV_AUX_CORRUPT_DATA); 1240 return (0); 1241 } 1242 1243 if ((error = vdev_metaslab_init(vd, 0)) != 0) { 1244 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1245 VDEV_AUX_CORRUPT_DATA); 1246 return (0); 1247 } 1248 } 1249 1250 /* 1251 * If this is a leaf vdev, load its DTL. 1252 */ 1253 if (vd->vdev_ops->vdev_op_leaf) { 1254 error = vdev_dtl_load(vd); 1255 if (error) { 1256 dprintf("can't load DTL for %s, error %d\n", 1257 vdev_description(vd), error); 1258 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1259 VDEV_AUX_CORRUPT_DATA); 1260 return (0); 1261 } 1262 } 1263 1264 return (0); 1265 } 1266 1267 void 1268 vdev_sync_done(vdev_t *vd, uint64_t txg) 1269 { 1270 metaslab_t *msp; 1271 1272 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1273 1274 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1275 metaslab_sync_done(msp, txg); 1276 } 1277 1278 void 1279 vdev_add_sync(vdev_t *vd, uint64_t txg) 1280 { 1281 spa_t *spa = vd->vdev_spa; 1282 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1283 1284 ASSERT(vd == vd->vdev_top); 1285 1286 if (vd->vdev_ms_array == 0) 1287 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1288 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1289 1290 ASSERT(vd->vdev_ms_array != 0); 1291 1292 vdev_config_dirty(vd); 1293 1294 dmu_tx_commit(tx); 1295 } 1296 1297 void 1298 vdev_sync(vdev_t *vd, uint64_t txg) 1299 { 1300 spa_t *spa = vd->vdev_spa; 1301 vdev_t *lvd; 1302 metaslab_t *msp; 1303 uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK]; 1304 uint8_t dirty = *dirtyp; 1305 1306 mutex_enter(&vd->vdev_dirty_lock); 1307 *dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL); 1308 mutex_exit(&vd->vdev_dirty_lock); 1309 1310 dprintf("%s txg %llu pass %d\n", 1311 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1312 1313 if (dirty & VDD_ADD) 1314 vdev_add_sync(vd, txg); 1315 1316 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) 1317 metaslab_sync(msp, txg); 1318 1319 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1320 vdev_dtl_sync(lvd, txg); 1321 1322 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1323 } 1324 1325 uint64_t 1326 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1327 { 1328 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1329 } 1330 1331 void 1332 vdev_io_start(zio_t *zio) 1333 { 1334 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1335 } 1336 1337 void 1338 vdev_io_done(zio_t *zio) 1339 { 1340 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1341 } 1342 1343 const char * 1344 vdev_description(vdev_t *vd) 1345 { 1346 if (vd == NULL || vd->vdev_ops == NULL) 1347 return ("<unknown>"); 1348 1349 if (vd->vdev_path != NULL) 1350 return (vd->vdev_path); 1351 1352 if (vd->vdev_parent == NULL) 1353 return (spa_name(vd->vdev_spa)); 1354 1355 return (vd->vdev_ops->vdev_op_type); 1356 } 1357 1358 int 1359 vdev_online(spa_t *spa, uint64_t guid) 1360 { 1361 vdev_t *rvd, *vd; 1362 uint64_t txg; 1363 1364 txg = spa_vdev_enter(spa); 1365 1366 rvd = spa->spa_root_vdev; 1367 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1368 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1369 1370 dprintf("ONLINE: %s\n", vdev_description(vd)); 1371 1372 vd->vdev_offline = B_FALSE; 1373 vd->vdev_tmpoffline = B_FALSE; 1374 vdev_reopen(vd->vdev_top); 1375 1376 spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0)); 1377 1378 vdev_config_dirty(vd->vdev_top); 1379 1380 (void) spa_vdev_exit(spa, NULL, txg, 0); 1381 1382 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1383 1384 return (0); 1385 } 1386 1387 int 1388 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1389 { 1390 vdev_t *rvd, *vd; 1391 uint64_t txg; 1392 1393 txg = spa_vdev_enter(spa); 1394 1395 rvd = spa->spa_root_vdev; 1396 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1397 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1398 1399 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1400 1401 /* vdev is already offlined, do nothing */ 1402 if (vd->vdev_offline) 1403 return (spa_vdev_exit(spa, NULL, txg, 0)); 1404 1405 /* 1406 * If this device's top-level vdev has a non-empty DTL, 1407 * don't allow the device to be offlined. 1408 * 1409 * XXX -- we should make this more precise by allowing the offline 1410 * as long as the remaining devices don't have any DTL holes. 1411 */ 1412 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1413 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1414 1415 /* 1416 * Set this device to offline state and reopen its top-level vdev. 1417 * If this action results in the top-level vdev becoming unusable, 1418 * undo it and fail the request. 1419 */ 1420 vd->vdev_offline = B_TRUE; 1421 vdev_reopen(vd->vdev_top); 1422 if (vdev_is_dead(vd->vdev_top)) { 1423 vd->vdev_offline = B_FALSE; 1424 vdev_reopen(vd->vdev_top); 1425 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1426 } 1427 1428 vd->vdev_tmpoffline = istmp; 1429 if (istmp) 1430 return (spa_vdev_exit(spa, NULL, txg, 0)); 1431 1432 spa_config_set(spa, spa_config_generate(spa, rvd, txg, 0)); 1433 1434 vdev_config_dirty(vd->vdev_top); 1435 1436 return (spa_vdev_exit(spa, NULL, txg, 0)); 1437 } 1438 1439 /* 1440 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1441 * vdev_offline(), we assume the spa config is locked. We also clear all 1442 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1443 */ 1444 void 1445 vdev_clear(spa_t *spa, vdev_t *vd) 1446 { 1447 int c; 1448 1449 if (vd == NULL) 1450 vd = spa->spa_root_vdev; 1451 1452 vd->vdev_stat.vs_read_errors = 0; 1453 vd->vdev_stat.vs_write_errors = 0; 1454 vd->vdev_stat.vs_checksum_errors = 0; 1455 1456 for (c = 0; c < vd->vdev_children; c++) 1457 vdev_clear(spa, vd->vdev_child[c]); 1458 } 1459 1460 int 1461 vdev_is_dead(vdev_t *vd) 1462 { 1463 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1464 } 1465 1466 int 1467 vdev_error_inject(vdev_t *vd, zio_t *zio) 1468 { 1469 int error = 0; 1470 1471 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1472 return (0); 1473 1474 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1475 return (0); 1476 1477 switch (vd->vdev_fault_mode) { 1478 case VDEV_FAULT_RANDOM: 1479 if (spa_get_random(vd->vdev_fault_arg) == 0) 1480 error = EIO; 1481 break; 1482 1483 case VDEV_FAULT_COUNT: 1484 if ((int64_t)--vd->vdev_fault_arg <= 0) 1485 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1486 error = EIO; 1487 break; 1488 } 1489 1490 if (error != 0) { 1491 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1492 error, zio->io_type, vdev_description(vd), 1493 vd->vdev_state, zio->io_offset); 1494 } 1495 1496 return (error); 1497 } 1498 1499 /* 1500 * Get statistics for the given vdev. 1501 */ 1502 void 1503 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1504 { 1505 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1506 int c, t; 1507 1508 mutex_enter(&vd->vdev_stat_lock); 1509 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1510 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1511 vs->vs_state = vd->vdev_state; 1512 vs->vs_rsize = vdev_get_rsize(vd); 1513 mutex_exit(&vd->vdev_stat_lock); 1514 1515 /* 1516 * If we're getting stats on the root vdev, aggregate the I/O counts 1517 * over all top-level vdevs (i.e. the direct children of the root). 1518 */ 1519 if (vd == rvd) { 1520 for (c = 0; c < rvd->vdev_children; c++) { 1521 vdev_t *cvd = rvd->vdev_child[c]; 1522 vdev_stat_t *cvs = &cvd->vdev_stat; 1523 1524 mutex_enter(&vd->vdev_stat_lock); 1525 for (t = 0; t < ZIO_TYPES; t++) { 1526 vs->vs_ops[t] += cvs->vs_ops[t]; 1527 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1528 } 1529 vs->vs_read_errors += cvs->vs_read_errors; 1530 vs->vs_write_errors += cvs->vs_write_errors; 1531 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1532 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1533 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1534 mutex_exit(&vd->vdev_stat_lock); 1535 } 1536 } 1537 } 1538 1539 void 1540 vdev_stat_update(zio_t *zio) 1541 { 1542 vdev_t *vd = zio->io_vd; 1543 vdev_t *pvd; 1544 uint64_t txg = zio->io_txg; 1545 vdev_stat_t *vs = &vd->vdev_stat; 1546 zio_type_t type = zio->io_type; 1547 int flags = zio->io_flags; 1548 1549 if (zio->io_error == 0) { 1550 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1551 mutex_enter(&vd->vdev_stat_lock); 1552 vs->vs_ops[type]++; 1553 vs->vs_bytes[type] += zio->io_size; 1554 mutex_exit(&vd->vdev_stat_lock); 1555 } 1556 if ((flags & ZIO_FLAG_IO_REPAIR) && 1557 zio->io_delegate_list == NULL) { 1558 mutex_enter(&vd->vdev_stat_lock); 1559 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) 1560 vs->vs_scrub_repaired += zio->io_size; 1561 else 1562 vs->vs_self_healed += zio->io_size; 1563 mutex_exit(&vd->vdev_stat_lock); 1564 } 1565 return; 1566 } 1567 1568 if (flags & ZIO_FLAG_SPECULATIVE) 1569 return; 1570 1571 if (!vdev_is_dead(vd)) { 1572 mutex_enter(&vd->vdev_stat_lock); 1573 if (type == ZIO_TYPE_READ) { 1574 if (zio->io_error == ECKSUM) 1575 vs->vs_checksum_errors++; 1576 else 1577 vs->vs_read_errors++; 1578 } 1579 if (type == ZIO_TYPE_WRITE) 1580 vs->vs_write_errors++; 1581 mutex_exit(&vd->vdev_stat_lock); 1582 } 1583 1584 if (type == ZIO_TYPE_WRITE) { 1585 if (txg == 0 || vd->vdev_children != 0) 1586 return; 1587 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) { 1588 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1589 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1590 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1591 } 1592 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1593 vdev_t *tvd = vd->vdev_top; 1594 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1595 return; 1596 vdev_dirty(tvd, VDD_DTL, txg); 1597 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 1598 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1599 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1600 } 1601 } 1602 } 1603 1604 void 1605 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1606 { 1607 int c; 1608 vdev_stat_t *vs = &vd->vdev_stat; 1609 1610 for (c = 0; c < vd->vdev_children; c++) 1611 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1612 1613 mutex_enter(&vd->vdev_stat_lock); 1614 1615 if (type == POOL_SCRUB_NONE) { 1616 /* 1617 * Update completion and end time. Leave everything else alone 1618 * so we can report what happened during the previous scrub. 1619 */ 1620 vs->vs_scrub_complete = complete; 1621 vs->vs_scrub_end = gethrestime_sec(); 1622 } else { 1623 vs->vs_scrub_type = type; 1624 vs->vs_scrub_complete = 0; 1625 vs->vs_scrub_examined = 0; 1626 vs->vs_scrub_repaired = 0; 1627 vs->vs_scrub_errors = 0; 1628 vs->vs_scrub_start = gethrestime_sec(); 1629 vs->vs_scrub_end = 0; 1630 } 1631 1632 mutex_exit(&vd->vdev_stat_lock); 1633 } 1634 1635 /* 1636 * Update the in-core space usage stats for this vdev and the root vdev. 1637 */ 1638 void 1639 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta) 1640 { 1641 ASSERT(vd == vd->vdev_top); 1642 1643 do { 1644 mutex_enter(&vd->vdev_stat_lock); 1645 vd->vdev_stat.vs_space += space_delta; 1646 vd->vdev_stat.vs_alloc += alloc_delta; 1647 mutex_exit(&vd->vdev_stat_lock); 1648 } while ((vd = vd->vdev_parent) != NULL); 1649 } 1650 1651 /* 1652 * Various knobs to tune a vdev. 1653 */ 1654 static vdev_knob_t vdev_knob[] = { 1655 { 1656 "cache_size", 1657 "size of the read-ahead cache", 1658 0, 1659 1ULL << 30, 1660 10ULL << 20, 1661 offsetof(struct vdev, vdev_cache.vc_size) 1662 }, 1663 { 1664 "cache_bshift", 1665 "log2 of cache blocksize", 1666 SPA_MINBLOCKSHIFT, 1667 SPA_MAXBLOCKSHIFT, 1668 16, 1669 offsetof(struct vdev, vdev_cache.vc_bshift) 1670 }, 1671 { 1672 "cache_max", 1673 "largest block size to cache", 1674 0, 1675 SPA_MAXBLOCKSIZE, 1676 1ULL << 14, 1677 offsetof(struct vdev, vdev_cache.vc_max) 1678 }, 1679 { 1680 "min_pending", 1681 "minimum pending I/Os to the disk", 1682 1, 1683 10000, 1684 2, 1685 offsetof(struct vdev, vdev_queue.vq_min_pending) 1686 }, 1687 { 1688 "max_pending", 1689 "maximum pending I/Os to the disk", 1690 1, 1691 10000, 1692 35, 1693 offsetof(struct vdev, vdev_queue.vq_max_pending) 1694 }, 1695 { 1696 "scrub_limit", 1697 "maximum scrub/resilver I/O queue", 1698 0, 1699 10000, 1700 70, 1701 offsetof(struct vdev, vdev_queue.vq_scrub_limit) 1702 }, 1703 { 1704 "agg_limit", 1705 "maximum size of aggregated I/Os", 1706 0, 1707 SPA_MAXBLOCKSIZE, 1708 SPA_MAXBLOCKSIZE, 1709 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1710 }, 1711 { 1712 "time_shift", 1713 "deadline = pri + (lbolt >> time_shift)", 1714 0, 1715 63, 1716 4, 1717 offsetof(struct vdev, vdev_queue.vq_time_shift) 1718 }, 1719 { 1720 "ramp_rate", 1721 "exponential I/O issue ramp-up rate", 1722 1, 1723 10000, 1724 2, 1725 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1726 }, 1727 }; 1728 1729 vdev_knob_t * 1730 vdev_knob_next(vdev_knob_t *vk) 1731 { 1732 if (vk == NULL) 1733 return (vdev_knob); 1734 1735 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1736 return (NULL); 1737 1738 return (vk); 1739 } 1740 1741 /* 1742 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1743 * so that it will be written out next time the vdev configuration is synced. 1744 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1745 */ 1746 void 1747 vdev_config_dirty(vdev_t *vd) 1748 { 1749 spa_t *spa = vd->vdev_spa; 1750 vdev_t *rvd = spa->spa_root_vdev; 1751 int c; 1752 1753 if (vd == rvd) { 1754 for (c = 0; c < rvd->vdev_children; c++) 1755 vdev_config_dirty(rvd->vdev_child[c]); 1756 } else { 1757 ASSERT(vd == vd->vdev_top); 1758 1759 if (!vd->vdev_is_dirty) { 1760 list_insert_head(&spa->spa_dirty_list, vd); 1761 vd->vdev_is_dirty = B_TRUE; 1762 } 1763 } 1764 } 1765 1766 void 1767 vdev_config_clean(vdev_t *vd) 1768 { 1769 ASSERT(vd->vdev_is_dirty); 1770 1771 list_remove(&vd->vdev_spa->spa_dirty_list, vd); 1772 vd->vdev_is_dirty = B_FALSE; 1773 } 1774 1775 /* 1776 * Set a vdev's state. If this is during an open, we don't update the parent 1777 * state, because we're in the process of opening children depth-first. 1778 * Otherwise, we propagate the change to the parent. 1779 * 1780 * If this routine places a device in a faulted state, an appropriate ereport is 1781 * generated. 1782 */ 1783 void 1784 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1785 { 1786 uint64_t prev_state; 1787 1788 if (state == vd->vdev_state) { 1789 vd->vdev_stat.vs_aux = aux; 1790 return; 1791 } 1792 1793 prev_state = vd->vdev_state; 1794 1795 vd->vdev_state = state; 1796 vd->vdev_stat.vs_aux = aux; 1797 1798 if (state == VDEV_STATE_CANT_OPEN) { 1799 /* 1800 * If we fail to open a vdev during an import, we mark it as 1801 * "not available", which signifies that it was never there to 1802 * begin with. Failure to open such a device is not considered 1803 * an error. 1804 */ 1805 if (!vd->vdev_not_present && 1806 vd != vd->vdev_spa->spa_root_vdev) { 1807 const char *class; 1808 1809 switch (aux) { 1810 case VDEV_AUX_OPEN_FAILED: 1811 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1812 break; 1813 case VDEV_AUX_CORRUPT_DATA: 1814 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1815 break; 1816 case VDEV_AUX_NO_REPLICAS: 1817 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1818 break; 1819 case VDEV_AUX_BAD_GUID_SUM: 1820 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1821 break; 1822 case VDEV_AUX_TOO_SMALL: 1823 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1824 break; 1825 case VDEV_AUX_BAD_LABEL: 1826 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1827 break; 1828 default: 1829 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1830 } 1831 1832 zfs_ereport_post(class, vd->vdev_spa, 1833 vd, NULL, prev_state, 0); 1834 } 1835 1836 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1837 vd->vdev_ops->vdev_op_leaf) 1838 vd->vdev_not_present = 1; 1839 } 1840 1841 if (isopen) 1842 return; 1843 1844 if (vd->vdev_parent != NULL) { 1845 int c; 1846 int degraded = 0, faulted = 0; 1847 int corrupted = 0; 1848 vdev_t *parent, *child; 1849 1850 parent = vd->vdev_parent; 1851 for (c = 0; c < parent->vdev_children; c++) { 1852 child = parent->vdev_child[c]; 1853 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1854 faulted++; 1855 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1856 degraded++; 1857 1858 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1859 corrupted++; 1860 } 1861 1862 vd->vdev_parent->vdev_ops->vdev_op_state_change( 1863 vd->vdev_parent, faulted, degraded); 1864 1865 /* 1866 * Root special: if this is a toplevel vdev that cannot be 1867 * opened due to corrupted metadata, then propagate the root 1868 * vdev's aux state as 'corrupt' rather than 'insufficient 1869 * replicas'. 1870 */ 1871 if (corrupted && vd == vd->vdev_top) 1872 vdev_set_state(vd->vdev_spa->spa_root_vdev, 1873 B_FALSE, VDEV_STATE_CANT_OPEN, 1874 VDEV_AUX_CORRUPT_DATA); 1875 } 1876 } 1877