xref: /titanic_41/usr/src/uts/common/fs/zfs/vdev.c (revision 661b8ac7d0f039c645db17e87130c2c1eebeda1c)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 
43 /*
44  * Virtual device management.
45  */
46 
47 static vdev_ops_t *vdev_ops_table[] = {
48 	&vdev_root_ops,
49 	&vdev_raidz_ops,
50 	&vdev_mirror_ops,
51 	&vdev_replacing_ops,
52 	&vdev_spare_ops,
53 	&vdev_disk_ops,
54 	&vdev_file_ops,
55 	&vdev_missing_ops,
56 	&vdev_hole_ops,
57 	NULL
58 };
59 
60 /* maximum scrub/resilver I/O queue per leaf vdev */
61 int zfs_scrub_limit = 10;
62 
63 /*
64  * Given a vdev type, return the appropriate ops vector.
65  */
66 static vdev_ops_t *
67 vdev_getops(const char *type)
68 {
69 	vdev_ops_t *ops, **opspp;
70 
71 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
72 		if (strcmp(ops->vdev_op_type, type) == 0)
73 			break;
74 
75 	return (ops);
76 }
77 
78 /*
79  * Default asize function: return the MAX of psize with the asize of
80  * all children.  This is what's used by anything other than RAID-Z.
81  */
82 uint64_t
83 vdev_default_asize(vdev_t *vd, uint64_t psize)
84 {
85 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
86 	uint64_t csize;
87 
88 	for (int c = 0; c < vd->vdev_children; c++) {
89 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
90 		asize = MAX(asize, csize);
91 	}
92 
93 	return (asize);
94 }
95 
96 /*
97  * Get the minimum allocatable size. We define the allocatable size as
98  * the vdev's asize rounded to the nearest metaslab. This allows us to
99  * replace or attach devices which don't have the same physical size but
100  * can still satisfy the same number of allocations.
101  */
102 uint64_t
103 vdev_get_min_asize(vdev_t *vd)
104 {
105 	vdev_t *pvd = vd->vdev_parent;
106 
107 	/*
108 	 * The our parent is NULL (inactive spare or cache) or is the root,
109 	 * just return our own asize.
110 	 */
111 	if (pvd == NULL)
112 		return (vd->vdev_asize);
113 
114 	/*
115 	 * The top-level vdev just returns the allocatable size rounded
116 	 * to the nearest metaslab.
117 	 */
118 	if (vd == vd->vdev_top)
119 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
120 
121 	/*
122 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
123 	 * so each child must provide at least 1/Nth of its asize.
124 	 */
125 	if (pvd->vdev_ops == &vdev_raidz_ops)
126 		return (pvd->vdev_min_asize / pvd->vdev_children);
127 
128 	return (pvd->vdev_min_asize);
129 }
130 
131 void
132 vdev_set_min_asize(vdev_t *vd)
133 {
134 	vd->vdev_min_asize = vdev_get_min_asize(vd);
135 
136 	for (int c = 0; c < vd->vdev_children; c++)
137 		vdev_set_min_asize(vd->vdev_child[c]);
138 }
139 
140 vdev_t *
141 vdev_lookup_top(spa_t *spa, uint64_t vdev)
142 {
143 	vdev_t *rvd = spa->spa_root_vdev;
144 
145 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
146 
147 	if (vdev < rvd->vdev_children) {
148 		ASSERT(rvd->vdev_child[vdev] != NULL);
149 		return (rvd->vdev_child[vdev]);
150 	}
151 
152 	return (NULL);
153 }
154 
155 vdev_t *
156 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
157 {
158 	vdev_t *mvd;
159 
160 	if (vd->vdev_guid == guid)
161 		return (vd);
162 
163 	for (int c = 0; c < vd->vdev_children; c++)
164 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
165 		    NULL)
166 			return (mvd);
167 
168 	return (NULL);
169 }
170 
171 void
172 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
173 {
174 	size_t oldsize, newsize;
175 	uint64_t id = cvd->vdev_id;
176 	vdev_t **newchild;
177 
178 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
179 	ASSERT(cvd->vdev_parent == NULL);
180 
181 	cvd->vdev_parent = pvd;
182 
183 	if (pvd == NULL)
184 		return;
185 
186 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
187 
188 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
189 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
190 	newsize = pvd->vdev_children * sizeof (vdev_t *);
191 
192 	newchild = kmem_zalloc(newsize, KM_SLEEP);
193 	if (pvd->vdev_child != NULL) {
194 		bcopy(pvd->vdev_child, newchild, oldsize);
195 		kmem_free(pvd->vdev_child, oldsize);
196 	}
197 
198 	pvd->vdev_child = newchild;
199 	pvd->vdev_child[id] = cvd;
200 
201 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
202 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
203 
204 	/*
205 	 * Walk up all ancestors to update guid sum.
206 	 */
207 	for (; pvd != NULL; pvd = pvd->vdev_parent)
208 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
209 
210 	if (cvd->vdev_ops->vdev_op_leaf)
211 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
212 }
213 
214 void
215 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
216 {
217 	int c;
218 	uint_t id = cvd->vdev_id;
219 
220 	ASSERT(cvd->vdev_parent == pvd);
221 
222 	if (pvd == NULL)
223 		return;
224 
225 	ASSERT(id < pvd->vdev_children);
226 	ASSERT(pvd->vdev_child[id] == cvd);
227 
228 	pvd->vdev_child[id] = NULL;
229 	cvd->vdev_parent = NULL;
230 
231 	for (c = 0; c < pvd->vdev_children; c++)
232 		if (pvd->vdev_child[c])
233 			break;
234 
235 	if (c == pvd->vdev_children) {
236 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
237 		pvd->vdev_child = NULL;
238 		pvd->vdev_children = 0;
239 	}
240 
241 	/*
242 	 * Walk up all ancestors to update guid sum.
243 	 */
244 	for (; pvd != NULL; pvd = pvd->vdev_parent)
245 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
246 
247 	if (cvd->vdev_ops->vdev_op_leaf)
248 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
249 }
250 
251 /*
252  * Remove any holes in the child array.
253  */
254 void
255 vdev_compact_children(vdev_t *pvd)
256 {
257 	vdev_t **newchild, *cvd;
258 	int oldc = pvd->vdev_children;
259 	int newc;
260 
261 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
262 
263 	for (int c = newc = 0; c < oldc; c++)
264 		if (pvd->vdev_child[c])
265 			newc++;
266 
267 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
268 
269 	for (int c = newc = 0; c < oldc; c++) {
270 		if ((cvd = pvd->vdev_child[c]) != NULL) {
271 			newchild[newc] = cvd;
272 			cvd->vdev_id = newc++;
273 		}
274 	}
275 
276 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
277 	pvd->vdev_child = newchild;
278 	pvd->vdev_children = newc;
279 }
280 
281 /*
282  * Allocate and minimally initialize a vdev_t.
283  */
284 vdev_t *
285 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
286 {
287 	vdev_t *vd;
288 
289 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
290 
291 	if (spa->spa_root_vdev == NULL) {
292 		ASSERT(ops == &vdev_root_ops);
293 		spa->spa_root_vdev = vd;
294 	}
295 
296 	if (guid == 0 && ops != &vdev_hole_ops) {
297 		if (spa->spa_root_vdev == vd) {
298 			/*
299 			 * The root vdev's guid will also be the pool guid,
300 			 * which must be unique among all pools.
301 			 */
302 			guid = spa_generate_guid(NULL);
303 		} else {
304 			/*
305 			 * Any other vdev's guid must be unique within the pool.
306 			 */
307 			guid = spa_generate_guid(spa);
308 		}
309 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
310 	}
311 
312 	vd->vdev_spa = spa;
313 	vd->vdev_id = id;
314 	vd->vdev_guid = guid;
315 	vd->vdev_guid_sum = guid;
316 	vd->vdev_ops = ops;
317 	vd->vdev_state = VDEV_STATE_CLOSED;
318 	vd->vdev_ishole = (ops == &vdev_hole_ops);
319 
320 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
321 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
322 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
323 	for (int t = 0; t < DTL_TYPES; t++) {
324 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
325 		    &vd->vdev_dtl_lock);
326 	}
327 	txg_list_create(&vd->vdev_ms_list,
328 	    offsetof(struct metaslab, ms_txg_node));
329 	txg_list_create(&vd->vdev_dtl_list,
330 	    offsetof(struct vdev, vdev_dtl_node));
331 	vd->vdev_stat.vs_timestamp = gethrtime();
332 	vdev_queue_init(vd);
333 	vdev_cache_init(vd);
334 
335 	return (vd);
336 }
337 
338 /*
339  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
340  * creating a new vdev or loading an existing one - the behavior is slightly
341  * different for each case.
342  */
343 int
344 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
345     int alloctype)
346 {
347 	vdev_ops_t *ops;
348 	char *type;
349 	uint64_t guid = 0, islog, nparity;
350 	vdev_t *vd;
351 
352 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
353 
354 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
355 		return (EINVAL);
356 
357 	if ((ops = vdev_getops(type)) == NULL)
358 		return (EINVAL);
359 
360 	/*
361 	 * If this is a load, get the vdev guid from the nvlist.
362 	 * Otherwise, vdev_alloc_common() will generate one for us.
363 	 */
364 	if (alloctype == VDEV_ALLOC_LOAD) {
365 		uint64_t label_id;
366 
367 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
368 		    label_id != id)
369 			return (EINVAL);
370 
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 			return (EINVAL);
373 	} else if (alloctype == VDEV_ALLOC_SPARE) {
374 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
375 			return (EINVAL);
376 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
377 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
378 			return (EINVAL);
379 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
380 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
381 			return (EINVAL);
382 	}
383 
384 	/*
385 	 * The first allocated vdev must be of type 'root'.
386 	 */
387 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
388 		return (EINVAL);
389 
390 	/*
391 	 * Determine whether we're a log vdev.
392 	 */
393 	islog = 0;
394 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
395 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
396 		return (ENOTSUP);
397 
398 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
399 		return (ENOTSUP);
400 
401 	/*
402 	 * Set the nparity property for RAID-Z vdevs.
403 	 */
404 	nparity = -1ULL;
405 	if (ops == &vdev_raidz_ops) {
406 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
407 		    &nparity) == 0) {
408 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
409 				return (EINVAL);
410 			/*
411 			 * Previous versions could only support 1 or 2 parity
412 			 * device.
413 			 */
414 			if (nparity > 1 &&
415 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
416 				return (ENOTSUP);
417 			if (nparity > 2 &&
418 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
419 				return (ENOTSUP);
420 		} else {
421 			/*
422 			 * We require the parity to be specified for SPAs that
423 			 * support multiple parity levels.
424 			 */
425 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
426 				return (EINVAL);
427 			/*
428 			 * Otherwise, we default to 1 parity device for RAID-Z.
429 			 */
430 			nparity = 1;
431 		}
432 	} else {
433 		nparity = 0;
434 	}
435 	ASSERT(nparity != -1ULL);
436 
437 	vd = vdev_alloc_common(spa, id, guid, ops);
438 
439 	vd->vdev_islog = islog;
440 	vd->vdev_nparity = nparity;
441 
442 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
443 		vd->vdev_path = spa_strdup(vd->vdev_path);
444 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
445 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
446 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
447 	    &vd->vdev_physpath) == 0)
448 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
449 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
450 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
451 
452 	/*
453 	 * Set the whole_disk property.  If it's not specified, leave the value
454 	 * as -1.
455 	 */
456 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
457 	    &vd->vdev_wholedisk) != 0)
458 		vd->vdev_wholedisk = -1ULL;
459 
460 	/*
461 	 * Look for the 'not present' flag.  This will only be set if the device
462 	 * was not present at the time of import.
463 	 */
464 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
465 	    &vd->vdev_not_present);
466 
467 	/*
468 	 * Get the alignment requirement.
469 	 */
470 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
471 
472 	/*
473 	 * Retrieve the vdev creation time.
474 	 */
475 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
476 	    &vd->vdev_crtxg);
477 
478 	/*
479 	 * If we're a top-level vdev, try to load the allocation parameters.
480 	 */
481 	if (parent && !parent->vdev_parent &&
482 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
483 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
484 		    &vd->vdev_ms_array);
485 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
486 		    &vd->vdev_ms_shift);
487 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
488 		    &vd->vdev_asize);
489 	}
490 
491 	if (parent && !parent->vdev_parent) {
492 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
493 		    alloctype == VDEV_ALLOC_ADD ||
494 		    alloctype == VDEV_ALLOC_SPLIT ||
495 		    alloctype == VDEV_ALLOC_ROOTPOOL);
496 		vd->vdev_mg = metaslab_group_create(islog ?
497 		    spa_log_class(spa) : spa_normal_class(spa), vd);
498 	}
499 
500 	/*
501 	 * If we're a leaf vdev, try to load the DTL object and other state.
502 	 */
503 	if (vd->vdev_ops->vdev_op_leaf &&
504 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
505 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
506 		if (alloctype == VDEV_ALLOC_LOAD) {
507 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
508 			    &vd->vdev_dtl_smo.smo_object);
509 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
510 			    &vd->vdev_unspare);
511 		}
512 
513 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
514 			uint64_t spare = 0;
515 
516 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
517 			    &spare) == 0 && spare)
518 				spa_spare_add(vd);
519 		}
520 
521 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
522 		    &vd->vdev_offline);
523 
524 		/*
525 		 * When importing a pool, we want to ignore the persistent fault
526 		 * state, as the diagnosis made on another system may not be
527 		 * valid in the current context.  Local vdevs will
528 		 * remain in the faulted state.
529 		 */
530 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
531 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
532 			    &vd->vdev_faulted);
533 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
534 			    &vd->vdev_degraded);
535 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
536 			    &vd->vdev_removed);
537 
538 			if (vd->vdev_faulted || vd->vdev_degraded) {
539 				char *aux;
540 
541 				vd->vdev_label_aux =
542 				    VDEV_AUX_ERR_EXCEEDED;
543 				if (nvlist_lookup_string(nv,
544 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
545 				    strcmp(aux, "external") == 0)
546 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
547 			}
548 		}
549 	}
550 
551 	/*
552 	 * Add ourselves to the parent's list of children.
553 	 */
554 	vdev_add_child(parent, vd);
555 
556 	*vdp = vd;
557 
558 	return (0);
559 }
560 
561 void
562 vdev_free(vdev_t *vd)
563 {
564 	spa_t *spa = vd->vdev_spa;
565 
566 	/*
567 	 * vdev_free() implies closing the vdev first.  This is simpler than
568 	 * trying to ensure complicated semantics for all callers.
569 	 */
570 	vdev_close(vd);
571 
572 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
573 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
574 
575 	/*
576 	 * Free all children.
577 	 */
578 	for (int c = 0; c < vd->vdev_children; c++)
579 		vdev_free(vd->vdev_child[c]);
580 
581 	ASSERT(vd->vdev_child == NULL);
582 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
583 
584 	/*
585 	 * Discard allocation state.
586 	 */
587 	if (vd->vdev_mg != NULL) {
588 		vdev_metaslab_fini(vd);
589 		metaslab_group_destroy(vd->vdev_mg);
590 	}
591 
592 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
593 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
594 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
595 
596 	/*
597 	 * Remove this vdev from its parent's child list.
598 	 */
599 	vdev_remove_child(vd->vdev_parent, vd);
600 
601 	ASSERT(vd->vdev_parent == NULL);
602 
603 	/*
604 	 * Clean up vdev structure.
605 	 */
606 	vdev_queue_fini(vd);
607 	vdev_cache_fini(vd);
608 
609 	if (vd->vdev_path)
610 		spa_strfree(vd->vdev_path);
611 	if (vd->vdev_devid)
612 		spa_strfree(vd->vdev_devid);
613 	if (vd->vdev_physpath)
614 		spa_strfree(vd->vdev_physpath);
615 	if (vd->vdev_fru)
616 		spa_strfree(vd->vdev_fru);
617 
618 	if (vd->vdev_isspare)
619 		spa_spare_remove(vd);
620 	if (vd->vdev_isl2cache)
621 		spa_l2cache_remove(vd);
622 
623 	txg_list_destroy(&vd->vdev_ms_list);
624 	txg_list_destroy(&vd->vdev_dtl_list);
625 
626 	mutex_enter(&vd->vdev_dtl_lock);
627 	for (int t = 0; t < DTL_TYPES; t++) {
628 		space_map_unload(&vd->vdev_dtl[t]);
629 		space_map_destroy(&vd->vdev_dtl[t]);
630 	}
631 	mutex_exit(&vd->vdev_dtl_lock);
632 
633 	mutex_destroy(&vd->vdev_dtl_lock);
634 	mutex_destroy(&vd->vdev_stat_lock);
635 	mutex_destroy(&vd->vdev_probe_lock);
636 
637 	if (vd == spa->spa_root_vdev)
638 		spa->spa_root_vdev = NULL;
639 
640 	kmem_free(vd, sizeof (vdev_t));
641 }
642 
643 /*
644  * Transfer top-level vdev state from svd to tvd.
645  */
646 static void
647 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
648 {
649 	spa_t *spa = svd->vdev_spa;
650 	metaslab_t *msp;
651 	vdev_t *vd;
652 	int t;
653 
654 	ASSERT(tvd == tvd->vdev_top);
655 
656 	tvd->vdev_ms_array = svd->vdev_ms_array;
657 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
658 	tvd->vdev_ms_count = svd->vdev_ms_count;
659 
660 	svd->vdev_ms_array = 0;
661 	svd->vdev_ms_shift = 0;
662 	svd->vdev_ms_count = 0;
663 
664 	tvd->vdev_mg = svd->vdev_mg;
665 	tvd->vdev_ms = svd->vdev_ms;
666 
667 	svd->vdev_mg = NULL;
668 	svd->vdev_ms = NULL;
669 
670 	if (tvd->vdev_mg != NULL)
671 		tvd->vdev_mg->mg_vd = tvd;
672 
673 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
674 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
675 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
676 
677 	svd->vdev_stat.vs_alloc = 0;
678 	svd->vdev_stat.vs_space = 0;
679 	svd->vdev_stat.vs_dspace = 0;
680 
681 	for (t = 0; t < TXG_SIZE; t++) {
682 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
683 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
684 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
685 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
686 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
687 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
688 	}
689 
690 	if (list_link_active(&svd->vdev_config_dirty_node)) {
691 		vdev_config_clean(svd);
692 		vdev_config_dirty(tvd);
693 	}
694 
695 	if (list_link_active(&svd->vdev_state_dirty_node)) {
696 		vdev_state_clean(svd);
697 		vdev_state_dirty(tvd);
698 	}
699 
700 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
701 	svd->vdev_deflate_ratio = 0;
702 
703 	tvd->vdev_islog = svd->vdev_islog;
704 	svd->vdev_islog = 0;
705 }
706 
707 static void
708 vdev_top_update(vdev_t *tvd, vdev_t *vd)
709 {
710 	if (vd == NULL)
711 		return;
712 
713 	vd->vdev_top = tvd;
714 
715 	for (int c = 0; c < vd->vdev_children; c++)
716 		vdev_top_update(tvd, vd->vdev_child[c]);
717 }
718 
719 /*
720  * Add a mirror/replacing vdev above an existing vdev.
721  */
722 vdev_t *
723 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
724 {
725 	spa_t *spa = cvd->vdev_spa;
726 	vdev_t *pvd = cvd->vdev_parent;
727 	vdev_t *mvd;
728 
729 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
730 
731 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
732 
733 	mvd->vdev_asize = cvd->vdev_asize;
734 	mvd->vdev_min_asize = cvd->vdev_min_asize;
735 	mvd->vdev_ashift = cvd->vdev_ashift;
736 	mvd->vdev_state = cvd->vdev_state;
737 	mvd->vdev_crtxg = cvd->vdev_crtxg;
738 
739 	vdev_remove_child(pvd, cvd);
740 	vdev_add_child(pvd, mvd);
741 	cvd->vdev_id = mvd->vdev_children;
742 	vdev_add_child(mvd, cvd);
743 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
744 
745 	if (mvd == mvd->vdev_top)
746 		vdev_top_transfer(cvd, mvd);
747 
748 	return (mvd);
749 }
750 
751 /*
752  * Remove a 1-way mirror/replacing vdev from the tree.
753  */
754 void
755 vdev_remove_parent(vdev_t *cvd)
756 {
757 	vdev_t *mvd = cvd->vdev_parent;
758 	vdev_t *pvd = mvd->vdev_parent;
759 
760 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
761 
762 	ASSERT(mvd->vdev_children == 1);
763 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
764 	    mvd->vdev_ops == &vdev_replacing_ops ||
765 	    mvd->vdev_ops == &vdev_spare_ops);
766 	cvd->vdev_ashift = mvd->vdev_ashift;
767 
768 	vdev_remove_child(mvd, cvd);
769 	vdev_remove_child(pvd, mvd);
770 
771 	/*
772 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
773 	 * Otherwise, we could have detached an offline device, and when we
774 	 * go to import the pool we'll think we have two top-level vdevs,
775 	 * instead of a different version of the same top-level vdev.
776 	 */
777 	if (mvd->vdev_top == mvd) {
778 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
779 		cvd->vdev_orig_guid = cvd->vdev_guid;
780 		cvd->vdev_guid += guid_delta;
781 		cvd->vdev_guid_sum += guid_delta;
782 	}
783 	cvd->vdev_id = mvd->vdev_id;
784 	vdev_add_child(pvd, cvd);
785 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
786 
787 	if (cvd == cvd->vdev_top)
788 		vdev_top_transfer(mvd, cvd);
789 
790 	ASSERT(mvd->vdev_children == 0);
791 	vdev_free(mvd);
792 }
793 
794 int
795 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
796 {
797 	spa_t *spa = vd->vdev_spa;
798 	objset_t *mos = spa->spa_meta_objset;
799 	uint64_t m;
800 	uint64_t oldc = vd->vdev_ms_count;
801 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
802 	metaslab_t **mspp;
803 	int error;
804 
805 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
806 
807 	/*
808 	 * This vdev is not being allocated from yet or is a hole.
809 	 */
810 	if (vd->vdev_ms_shift == 0)
811 		return (0);
812 
813 	ASSERT(!vd->vdev_ishole);
814 
815 	/*
816 	 * Compute the raidz-deflation ratio.  Note, we hard-code
817 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
818 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
819 	 * or we will inconsistently account for existing bp's.
820 	 */
821 	vd->vdev_deflate_ratio = (1 << 17) /
822 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
823 
824 	ASSERT(oldc <= newc);
825 
826 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
827 
828 	if (oldc != 0) {
829 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
830 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
831 	}
832 
833 	vd->vdev_ms = mspp;
834 	vd->vdev_ms_count = newc;
835 
836 	for (m = oldc; m < newc; m++) {
837 		space_map_obj_t smo = { 0, 0, 0 };
838 		if (txg == 0) {
839 			uint64_t object = 0;
840 			error = dmu_read(mos, vd->vdev_ms_array,
841 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
842 			    DMU_READ_PREFETCH);
843 			if (error)
844 				return (error);
845 			if (object != 0) {
846 				dmu_buf_t *db;
847 				error = dmu_bonus_hold(mos, object, FTAG, &db);
848 				if (error)
849 					return (error);
850 				ASSERT3U(db->db_size, >=, sizeof (smo));
851 				bcopy(db->db_data, &smo, sizeof (smo));
852 				ASSERT3U(smo.smo_object, ==, object);
853 				dmu_buf_rele(db, FTAG);
854 			}
855 		}
856 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
857 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
858 	}
859 
860 	if (txg == 0)
861 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
862 
863 	if (oldc == 0)
864 		metaslab_group_activate(vd->vdev_mg);
865 
866 	if (txg == 0)
867 		spa_config_exit(spa, SCL_ALLOC, FTAG);
868 
869 	return (0);
870 }
871 
872 void
873 vdev_metaslab_fini(vdev_t *vd)
874 {
875 	uint64_t m;
876 	uint64_t count = vd->vdev_ms_count;
877 
878 	if (vd->vdev_ms != NULL) {
879 		metaslab_group_passivate(vd->vdev_mg);
880 		for (m = 0; m < count; m++)
881 			if (vd->vdev_ms[m] != NULL)
882 				metaslab_fini(vd->vdev_ms[m]);
883 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
884 		vd->vdev_ms = NULL;
885 	}
886 }
887 
888 typedef struct vdev_probe_stats {
889 	boolean_t	vps_readable;
890 	boolean_t	vps_writeable;
891 	int		vps_flags;
892 } vdev_probe_stats_t;
893 
894 static void
895 vdev_probe_done(zio_t *zio)
896 {
897 	spa_t *spa = zio->io_spa;
898 	vdev_t *vd = zio->io_vd;
899 	vdev_probe_stats_t *vps = zio->io_private;
900 
901 	ASSERT(vd->vdev_probe_zio != NULL);
902 
903 	if (zio->io_type == ZIO_TYPE_READ) {
904 		if (zio->io_error == 0)
905 			vps->vps_readable = 1;
906 		if (zio->io_error == 0 && spa_writeable(spa)) {
907 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
908 			    zio->io_offset, zio->io_size, zio->io_data,
909 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
910 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
911 		} else {
912 			zio_buf_free(zio->io_data, zio->io_size);
913 		}
914 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
915 		if (zio->io_error == 0)
916 			vps->vps_writeable = 1;
917 		zio_buf_free(zio->io_data, zio->io_size);
918 	} else if (zio->io_type == ZIO_TYPE_NULL) {
919 		zio_t *pio;
920 
921 		vd->vdev_cant_read |= !vps->vps_readable;
922 		vd->vdev_cant_write |= !vps->vps_writeable;
923 
924 		if (vdev_readable(vd) &&
925 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
926 			zio->io_error = 0;
927 		} else {
928 			ASSERT(zio->io_error != 0);
929 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
930 			    spa, vd, NULL, 0, 0);
931 			zio->io_error = ENXIO;
932 		}
933 
934 		mutex_enter(&vd->vdev_probe_lock);
935 		ASSERT(vd->vdev_probe_zio == zio);
936 		vd->vdev_probe_zio = NULL;
937 		mutex_exit(&vd->vdev_probe_lock);
938 
939 		while ((pio = zio_walk_parents(zio)) != NULL)
940 			if (!vdev_accessible(vd, pio))
941 				pio->io_error = ENXIO;
942 
943 		kmem_free(vps, sizeof (*vps));
944 	}
945 }
946 
947 /*
948  * Determine whether this device is accessible by reading and writing
949  * to several known locations: the pad regions of each vdev label
950  * but the first (which we leave alone in case it contains a VTOC).
951  */
952 zio_t *
953 vdev_probe(vdev_t *vd, zio_t *zio)
954 {
955 	spa_t *spa = vd->vdev_spa;
956 	vdev_probe_stats_t *vps = NULL;
957 	zio_t *pio;
958 
959 	ASSERT(vd->vdev_ops->vdev_op_leaf);
960 
961 	/*
962 	 * Don't probe the probe.
963 	 */
964 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
965 		return (NULL);
966 
967 	/*
968 	 * To prevent 'probe storms' when a device fails, we create
969 	 * just one probe i/o at a time.  All zios that want to probe
970 	 * this vdev will become parents of the probe io.
971 	 */
972 	mutex_enter(&vd->vdev_probe_lock);
973 
974 	if ((pio = vd->vdev_probe_zio) == NULL) {
975 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
976 
977 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
978 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
979 		    ZIO_FLAG_TRYHARD;
980 
981 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
982 			/*
983 			 * vdev_cant_read and vdev_cant_write can only
984 			 * transition from TRUE to FALSE when we have the
985 			 * SCL_ZIO lock as writer; otherwise they can only
986 			 * transition from FALSE to TRUE.  This ensures that
987 			 * any zio looking at these values can assume that
988 			 * failures persist for the life of the I/O.  That's
989 			 * important because when a device has intermittent
990 			 * connectivity problems, we want to ensure that
991 			 * they're ascribed to the device (ENXIO) and not
992 			 * the zio (EIO).
993 			 *
994 			 * Since we hold SCL_ZIO as writer here, clear both
995 			 * values so the probe can reevaluate from first
996 			 * principles.
997 			 */
998 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
999 			vd->vdev_cant_read = B_FALSE;
1000 			vd->vdev_cant_write = B_FALSE;
1001 		}
1002 
1003 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1004 		    vdev_probe_done, vps,
1005 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1006 
1007 		/*
1008 		 * We can't change the vdev state in this context, so we
1009 		 * kick off an async task to do it on our behalf.
1010 		 */
1011 		if (zio != NULL) {
1012 			vd->vdev_probe_wanted = B_TRUE;
1013 			spa_async_request(spa, SPA_ASYNC_PROBE);
1014 		}
1015 	}
1016 
1017 	if (zio != NULL)
1018 		zio_add_child(zio, pio);
1019 
1020 	mutex_exit(&vd->vdev_probe_lock);
1021 
1022 	if (vps == NULL) {
1023 		ASSERT(zio != NULL);
1024 		return (NULL);
1025 	}
1026 
1027 	for (int l = 1; l < VDEV_LABELS; l++) {
1028 		zio_nowait(zio_read_phys(pio, vd,
1029 		    vdev_label_offset(vd->vdev_psize, l,
1030 		    offsetof(vdev_label_t, vl_pad2)),
1031 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1032 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1033 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1034 	}
1035 
1036 	if (zio == NULL)
1037 		return (pio);
1038 
1039 	zio_nowait(pio);
1040 	return (NULL);
1041 }
1042 
1043 static void
1044 vdev_open_child(void *arg)
1045 {
1046 	vdev_t *vd = arg;
1047 
1048 	vd->vdev_open_thread = curthread;
1049 	vd->vdev_open_error = vdev_open(vd);
1050 	vd->vdev_open_thread = NULL;
1051 }
1052 
1053 boolean_t
1054 vdev_uses_zvols(vdev_t *vd)
1055 {
1056 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1057 	    strlen(ZVOL_DIR)) == 0)
1058 		return (B_TRUE);
1059 	for (int c = 0; c < vd->vdev_children; c++)
1060 		if (vdev_uses_zvols(vd->vdev_child[c]))
1061 			return (B_TRUE);
1062 	return (B_FALSE);
1063 }
1064 
1065 void
1066 vdev_open_children(vdev_t *vd)
1067 {
1068 	taskq_t *tq;
1069 	int children = vd->vdev_children;
1070 
1071 	/*
1072 	 * in order to handle pools on top of zvols, do the opens
1073 	 * in a single thread so that the same thread holds the
1074 	 * spa_namespace_lock
1075 	 */
1076 	if (vdev_uses_zvols(vd)) {
1077 		for (int c = 0; c < children; c++)
1078 			vd->vdev_child[c]->vdev_open_error =
1079 			    vdev_open(vd->vdev_child[c]);
1080 		return;
1081 	}
1082 	tq = taskq_create("vdev_open", children, minclsyspri,
1083 	    children, children, TASKQ_PREPOPULATE);
1084 
1085 	for (int c = 0; c < children; c++)
1086 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1087 		    TQ_SLEEP) != NULL);
1088 
1089 	taskq_destroy(tq);
1090 }
1091 
1092 /*
1093  * Prepare a virtual device for access.
1094  */
1095 int
1096 vdev_open(vdev_t *vd)
1097 {
1098 	spa_t *spa = vd->vdev_spa;
1099 	int error;
1100 	uint64_t osize = 0;
1101 	uint64_t asize, psize;
1102 	uint64_t ashift = 0;
1103 
1104 	ASSERT(vd->vdev_open_thread == curthread ||
1105 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1106 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1107 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1108 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1109 
1110 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1111 	vd->vdev_cant_read = B_FALSE;
1112 	vd->vdev_cant_write = B_FALSE;
1113 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1114 
1115 	/*
1116 	 * If this vdev is not removed, check its fault status.  If it's
1117 	 * faulted, bail out of the open.
1118 	 */
1119 	if (!vd->vdev_removed && vd->vdev_faulted) {
1120 		ASSERT(vd->vdev_children == 0);
1121 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1122 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1123 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1124 		    vd->vdev_label_aux);
1125 		return (ENXIO);
1126 	} else if (vd->vdev_offline) {
1127 		ASSERT(vd->vdev_children == 0);
1128 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1129 		return (ENXIO);
1130 	}
1131 
1132 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1133 
1134 	/*
1135 	 * Reset the vdev_reopening flag so that we actually close
1136 	 * the vdev on error.
1137 	 */
1138 	vd->vdev_reopening = B_FALSE;
1139 	if (zio_injection_enabled && error == 0)
1140 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1141 
1142 	if (error) {
1143 		if (vd->vdev_removed &&
1144 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1145 			vd->vdev_removed = B_FALSE;
1146 
1147 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1148 		    vd->vdev_stat.vs_aux);
1149 		return (error);
1150 	}
1151 
1152 	vd->vdev_removed = B_FALSE;
1153 
1154 	/*
1155 	 * Recheck the faulted flag now that we have confirmed that
1156 	 * the vdev is accessible.  If we're faulted, bail.
1157 	 */
1158 	if (vd->vdev_faulted) {
1159 		ASSERT(vd->vdev_children == 0);
1160 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1161 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1162 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1163 		    vd->vdev_label_aux);
1164 		return (ENXIO);
1165 	}
1166 
1167 	if (vd->vdev_degraded) {
1168 		ASSERT(vd->vdev_children == 0);
1169 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1170 		    VDEV_AUX_ERR_EXCEEDED);
1171 	} else {
1172 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1173 	}
1174 
1175 	/*
1176 	 * For hole or missing vdevs we just return success.
1177 	 */
1178 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1179 		return (0);
1180 
1181 	for (int c = 0; c < vd->vdev_children; c++) {
1182 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1183 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1184 			    VDEV_AUX_NONE);
1185 			break;
1186 		}
1187 	}
1188 
1189 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1190 
1191 	if (vd->vdev_children == 0) {
1192 		if (osize < SPA_MINDEVSIZE) {
1193 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1194 			    VDEV_AUX_TOO_SMALL);
1195 			return (EOVERFLOW);
1196 		}
1197 		psize = osize;
1198 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1199 	} else {
1200 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1201 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1202 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203 			    VDEV_AUX_TOO_SMALL);
1204 			return (EOVERFLOW);
1205 		}
1206 		psize = 0;
1207 		asize = osize;
1208 	}
1209 
1210 	vd->vdev_psize = psize;
1211 
1212 	/*
1213 	 * Make sure the allocatable size hasn't shrunk.
1214 	 */
1215 	if (asize < vd->vdev_min_asize) {
1216 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1217 		    VDEV_AUX_BAD_LABEL);
1218 		return (EINVAL);
1219 	}
1220 
1221 	if (vd->vdev_asize == 0) {
1222 		/*
1223 		 * This is the first-ever open, so use the computed values.
1224 		 * For testing purposes, a higher ashift can be requested.
1225 		 */
1226 		vd->vdev_asize = asize;
1227 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1228 	} else {
1229 		/*
1230 		 * Make sure the alignment requirement hasn't increased.
1231 		 */
1232 		if (ashift > vd->vdev_top->vdev_ashift) {
1233 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1234 			    VDEV_AUX_BAD_LABEL);
1235 			return (EINVAL);
1236 		}
1237 	}
1238 
1239 	/*
1240 	 * If all children are healthy and the asize has increased,
1241 	 * then we've experienced dynamic LUN growth.  If automatic
1242 	 * expansion is enabled then use the additional space.
1243 	 */
1244 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1245 	    (vd->vdev_expanding || spa->spa_autoexpand))
1246 		vd->vdev_asize = asize;
1247 
1248 	vdev_set_min_asize(vd);
1249 
1250 	/*
1251 	 * Ensure we can issue some IO before declaring the
1252 	 * vdev open for business.
1253 	 */
1254 	if (vd->vdev_ops->vdev_op_leaf &&
1255 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1256 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1257 		    VDEV_AUX_ERR_EXCEEDED);
1258 		return (error);
1259 	}
1260 
1261 	/*
1262 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1263 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1264 	 * since this would just restart the scrub we are already doing.
1265 	 */
1266 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1267 	    vdev_resilver_needed(vd, NULL, NULL))
1268 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1269 
1270 	return (0);
1271 }
1272 
1273 /*
1274  * Called once the vdevs are all opened, this routine validates the label
1275  * contents.  This needs to be done before vdev_load() so that we don't
1276  * inadvertently do repair I/Os to the wrong device.
1277  *
1278  * This function will only return failure if one of the vdevs indicates that it
1279  * has since been destroyed or exported.  This is only possible if
1280  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1281  * will be updated but the function will return 0.
1282  */
1283 int
1284 vdev_validate(vdev_t *vd)
1285 {
1286 	spa_t *spa = vd->vdev_spa;
1287 	nvlist_t *label;
1288 	uint64_t guid = 0, top_guid;
1289 	uint64_t state;
1290 
1291 	for (int c = 0; c < vd->vdev_children; c++)
1292 		if (vdev_validate(vd->vdev_child[c]) != 0)
1293 			return (EBADF);
1294 
1295 	/*
1296 	 * If the device has already failed, or was marked offline, don't do
1297 	 * any further validation.  Otherwise, label I/O will fail and we will
1298 	 * overwrite the previous state.
1299 	 */
1300 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1301 		uint64_t aux_guid = 0;
1302 		nvlist_t *nvl;
1303 
1304 		if ((label = vdev_label_read_config(vd)) == NULL) {
1305 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1306 			    VDEV_AUX_BAD_LABEL);
1307 			return (0);
1308 		}
1309 
1310 		/*
1311 		 * Determine if this vdev has been split off into another
1312 		 * pool.  If so, then refuse to open it.
1313 		 */
1314 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1315 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1316 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1317 			    VDEV_AUX_SPLIT_POOL);
1318 			nvlist_free(label);
1319 			return (0);
1320 		}
1321 
1322 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1323 		    &guid) != 0 || guid != spa_guid(spa)) {
1324 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325 			    VDEV_AUX_CORRUPT_DATA);
1326 			nvlist_free(label);
1327 			return (0);
1328 		}
1329 
1330 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1331 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1332 		    &aux_guid) != 0)
1333 			aux_guid = 0;
1334 
1335 		/*
1336 		 * If this vdev just became a top-level vdev because its
1337 		 * sibling was detached, it will have adopted the parent's
1338 		 * vdev guid -- but the label may or may not be on disk yet.
1339 		 * Fortunately, either version of the label will have the
1340 		 * same top guid, so if we're a top-level vdev, we can
1341 		 * safely compare to that instead.
1342 		 *
1343 		 * If we split this vdev off instead, then we also check the
1344 		 * original pool's guid.  We don't want to consider the vdev
1345 		 * corrupt if it is partway through a split operation.
1346 		 */
1347 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1348 		    &guid) != 0 ||
1349 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1350 		    &top_guid) != 0 ||
1351 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1352 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1353 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1354 			    VDEV_AUX_CORRUPT_DATA);
1355 			nvlist_free(label);
1356 			return (0);
1357 		}
1358 
1359 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1360 		    &state) != 0) {
1361 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362 			    VDEV_AUX_CORRUPT_DATA);
1363 			nvlist_free(label);
1364 			return (0);
1365 		}
1366 
1367 		nvlist_free(label);
1368 
1369 		/*
1370 		 * If spa->spa_load_verbatim is true, no need to check the
1371 		 * state of the pool.
1372 		 */
1373 		if (!spa->spa_load_verbatim &&
1374 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1375 		    state != POOL_STATE_ACTIVE)
1376 			return (EBADF);
1377 
1378 		/*
1379 		 * If we were able to open and validate a vdev that was
1380 		 * previously marked permanently unavailable, clear that state
1381 		 * now.
1382 		 */
1383 		if (vd->vdev_not_present)
1384 			vd->vdev_not_present = 0;
1385 	}
1386 
1387 	return (0);
1388 }
1389 
1390 /*
1391  * Close a virtual device.
1392  */
1393 void
1394 vdev_close(vdev_t *vd)
1395 {
1396 	spa_t *spa = vd->vdev_spa;
1397 	vdev_t *pvd = vd->vdev_parent;
1398 
1399 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1400 
1401 	/*
1402 	 * If our parent is reopening, then we are as well, unless we are
1403 	 * going offline.
1404 	 */
1405 	if (pvd != NULL && pvd->vdev_reopening)
1406 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1407 
1408 	vd->vdev_ops->vdev_op_close(vd);
1409 
1410 	vdev_cache_purge(vd);
1411 
1412 	/*
1413 	 * We record the previous state before we close it, so that if we are
1414 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1415 	 * it's still faulted.
1416 	 */
1417 	vd->vdev_prevstate = vd->vdev_state;
1418 
1419 	if (vd->vdev_offline)
1420 		vd->vdev_state = VDEV_STATE_OFFLINE;
1421 	else
1422 		vd->vdev_state = VDEV_STATE_CLOSED;
1423 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1424 }
1425 
1426 void
1427 vdev_hold(vdev_t *vd)
1428 {
1429 	spa_t *spa = vd->vdev_spa;
1430 
1431 	ASSERT(spa_is_root(spa));
1432 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1433 		return;
1434 
1435 	for (int c = 0; c < vd->vdev_children; c++)
1436 		vdev_hold(vd->vdev_child[c]);
1437 
1438 	if (vd->vdev_ops->vdev_op_leaf)
1439 		vd->vdev_ops->vdev_op_hold(vd);
1440 }
1441 
1442 void
1443 vdev_rele(vdev_t *vd)
1444 {
1445 	spa_t *spa = vd->vdev_spa;
1446 
1447 	ASSERT(spa_is_root(spa));
1448 	for (int c = 0; c < vd->vdev_children; c++)
1449 		vdev_rele(vd->vdev_child[c]);
1450 
1451 	if (vd->vdev_ops->vdev_op_leaf)
1452 		vd->vdev_ops->vdev_op_rele(vd);
1453 }
1454 
1455 /*
1456  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1457  * reopen leaf vdevs which had previously been opened as they might deadlock
1458  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1459  * If the leaf has never been opened then open it, as usual.
1460  */
1461 void
1462 vdev_reopen(vdev_t *vd)
1463 {
1464 	spa_t *spa = vd->vdev_spa;
1465 
1466 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1467 
1468 	/* set the reopening flag unless we're taking the vdev offline */
1469 	vd->vdev_reopening = !vd->vdev_offline;
1470 	vdev_close(vd);
1471 	(void) vdev_open(vd);
1472 
1473 	/*
1474 	 * Call vdev_validate() here to make sure we have the same device.
1475 	 * Otherwise, a device with an invalid label could be successfully
1476 	 * opened in response to vdev_reopen().
1477 	 */
1478 	if (vd->vdev_aux) {
1479 		(void) vdev_validate_aux(vd);
1480 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1481 		    vd->vdev_aux == &spa->spa_l2cache &&
1482 		    !l2arc_vdev_present(vd))
1483 			l2arc_add_vdev(spa, vd);
1484 	} else {
1485 		(void) vdev_validate(vd);
1486 	}
1487 
1488 	/*
1489 	 * Reassess parent vdev's health.
1490 	 */
1491 	vdev_propagate_state(vd);
1492 }
1493 
1494 int
1495 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1496 {
1497 	int error;
1498 
1499 	/*
1500 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1501 	 * For a create, however, we want to fail the request if
1502 	 * there are any components we can't open.
1503 	 */
1504 	error = vdev_open(vd);
1505 
1506 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1507 		vdev_close(vd);
1508 		return (error ? error : ENXIO);
1509 	}
1510 
1511 	/*
1512 	 * Recursively initialize all labels.
1513 	 */
1514 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1515 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1516 		vdev_close(vd);
1517 		return (error);
1518 	}
1519 
1520 	return (0);
1521 }
1522 
1523 void
1524 vdev_metaslab_set_size(vdev_t *vd)
1525 {
1526 	/*
1527 	 * Aim for roughly 200 metaslabs per vdev.
1528 	 */
1529 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1530 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1531 }
1532 
1533 void
1534 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1535 {
1536 	ASSERT(vd == vd->vdev_top);
1537 	ASSERT(!vd->vdev_ishole);
1538 	ASSERT(ISP2(flags));
1539 
1540 	if (flags & VDD_METASLAB)
1541 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1542 
1543 	if (flags & VDD_DTL)
1544 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1545 
1546 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1547 }
1548 
1549 /*
1550  * DTLs.
1551  *
1552  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1553  * the vdev has less than perfect replication.  There are four kinds of DTL:
1554  *
1555  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1556  *
1557  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1558  *
1559  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1560  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1561  *	txgs that was scrubbed.
1562  *
1563  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1564  *	persistent errors or just some device being offline.
1565  *	Unlike the other three, the DTL_OUTAGE map is not generally
1566  *	maintained; it's only computed when needed, typically to
1567  *	determine whether a device can be detached.
1568  *
1569  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1570  * either has the data or it doesn't.
1571  *
1572  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1573  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1574  * if any child is less than fully replicated, then so is its parent.
1575  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1576  * comprising only those txgs which appear in 'maxfaults' or more children;
1577  * those are the txgs we don't have enough replication to read.  For example,
1578  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1579  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1580  * two child DTL_MISSING maps.
1581  *
1582  * It should be clear from the above that to compute the DTLs and outage maps
1583  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1584  * Therefore, that is all we keep on disk.  When loading the pool, or after
1585  * a configuration change, we generate all other DTLs from first principles.
1586  */
1587 void
1588 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1589 {
1590 	space_map_t *sm = &vd->vdev_dtl[t];
1591 
1592 	ASSERT(t < DTL_TYPES);
1593 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1594 
1595 	mutex_enter(sm->sm_lock);
1596 	if (!space_map_contains(sm, txg, size))
1597 		space_map_add(sm, txg, size);
1598 	mutex_exit(sm->sm_lock);
1599 }
1600 
1601 boolean_t
1602 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1603 {
1604 	space_map_t *sm = &vd->vdev_dtl[t];
1605 	boolean_t dirty = B_FALSE;
1606 
1607 	ASSERT(t < DTL_TYPES);
1608 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1609 
1610 	mutex_enter(sm->sm_lock);
1611 	if (sm->sm_space != 0)
1612 		dirty = space_map_contains(sm, txg, size);
1613 	mutex_exit(sm->sm_lock);
1614 
1615 	return (dirty);
1616 }
1617 
1618 boolean_t
1619 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1620 {
1621 	space_map_t *sm = &vd->vdev_dtl[t];
1622 	boolean_t empty;
1623 
1624 	mutex_enter(sm->sm_lock);
1625 	empty = (sm->sm_space == 0);
1626 	mutex_exit(sm->sm_lock);
1627 
1628 	return (empty);
1629 }
1630 
1631 /*
1632  * Reassess DTLs after a config change or scrub completion.
1633  */
1634 void
1635 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1636 {
1637 	spa_t *spa = vd->vdev_spa;
1638 	avl_tree_t reftree;
1639 	int minref;
1640 
1641 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1642 
1643 	for (int c = 0; c < vd->vdev_children; c++)
1644 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1645 		    scrub_txg, scrub_done);
1646 
1647 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1648 		return;
1649 
1650 	if (vd->vdev_ops->vdev_op_leaf) {
1651 		mutex_enter(&vd->vdev_dtl_lock);
1652 		if (scrub_txg != 0 &&
1653 		    (spa->spa_scrub_started || spa->spa_scrub_errors == 0)) {
1654 			/*
1655 			 * We completed a scrub up to scrub_txg.  If we
1656 			 * did it without rebooting, then the scrub dtl
1657 			 * will be valid, so excise the old region and
1658 			 * fold in the scrub dtl.  Otherwise, leave the
1659 			 * dtl as-is if there was an error.
1660 			 *
1661 			 * There's little trick here: to excise the beginning
1662 			 * of the DTL_MISSING map, we put it into a reference
1663 			 * tree and then add a segment with refcnt -1 that
1664 			 * covers the range [0, scrub_txg).  This means
1665 			 * that each txg in that range has refcnt -1 or 0.
1666 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1667 			 * entries in the range [0, scrub_txg) will have a
1668 			 * positive refcnt -- either 1 or 2.  We then convert
1669 			 * the reference tree into the new DTL_MISSING map.
1670 			 */
1671 			space_map_ref_create(&reftree);
1672 			space_map_ref_add_map(&reftree,
1673 			    &vd->vdev_dtl[DTL_MISSING], 1);
1674 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1675 			space_map_ref_add_map(&reftree,
1676 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1677 			space_map_ref_generate_map(&reftree,
1678 			    &vd->vdev_dtl[DTL_MISSING], 1);
1679 			space_map_ref_destroy(&reftree);
1680 		}
1681 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1682 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1683 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1684 		if (scrub_done)
1685 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1686 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1687 		if (!vdev_readable(vd))
1688 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1689 		else
1690 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1691 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1692 		mutex_exit(&vd->vdev_dtl_lock);
1693 
1694 		if (txg != 0)
1695 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1696 		return;
1697 	}
1698 
1699 	mutex_enter(&vd->vdev_dtl_lock);
1700 	for (int t = 0; t < DTL_TYPES; t++) {
1701 		/* account for child's outage in parent's missing map */
1702 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1703 		if (t == DTL_SCRUB)
1704 			continue;			/* leaf vdevs only */
1705 		if (t == DTL_PARTIAL)
1706 			minref = 1;			/* i.e. non-zero */
1707 		else if (vd->vdev_nparity != 0)
1708 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1709 		else
1710 			minref = vd->vdev_children;	/* any kind of mirror */
1711 		space_map_ref_create(&reftree);
1712 		for (int c = 0; c < vd->vdev_children; c++) {
1713 			vdev_t *cvd = vd->vdev_child[c];
1714 			mutex_enter(&cvd->vdev_dtl_lock);
1715 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1716 			mutex_exit(&cvd->vdev_dtl_lock);
1717 		}
1718 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1719 		space_map_ref_destroy(&reftree);
1720 	}
1721 	mutex_exit(&vd->vdev_dtl_lock);
1722 }
1723 
1724 static int
1725 vdev_dtl_load(vdev_t *vd)
1726 {
1727 	spa_t *spa = vd->vdev_spa;
1728 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1729 	objset_t *mos = spa->spa_meta_objset;
1730 	dmu_buf_t *db;
1731 	int error;
1732 
1733 	ASSERT(vd->vdev_children == 0);
1734 
1735 	if (smo->smo_object == 0)
1736 		return (0);
1737 
1738 	ASSERT(!vd->vdev_ishole);
1739 
1740 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1741 		return (error);
1742 
1743 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1744 	bcopy(db->db_data, smo, sizeof (*smo));
1745 	dmu_buf_rele(db, FTAG);
1746 
1747 	mutex_enter(&vd->vdev_dtl_lock);
1748 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1749 	    NULL, SM_ALLOC, smo, mos);
1750 	mutex_exit(&vd->vdev_dtl_lock);
1751 
1752 	return (error);
1753 }
1754 
1755 void
1756 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1757 {
1758 	spa_t *spa = vd->vdev_spa;
1759 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1760 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1761 	objset_t *mos = spa->spa_meta_objset;
1762 	space_map_t smsync;
1763 	kmutex_t smlock;
1764 	dmu_buf_t *db;
1765 	dmu_tx_t *tx;
1766 
1767 	ASSERT(!vd->vdev_ishole);
1768 
1769 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1770 
1771 	if (vd->vdev_detached) {
1772 		if (smo->smo_object != 0) {
1773 			int err = dmu_object_free(mos, smo->smo_object, tx);
1774 			ASSERT3U(err, ==, 0);
1775 			smo->smo_object = 0;
1776 		}
1777 		dmu_tx_commit(tx);
1778 		return;
1779 	}
1780 
1781 	if (smo->smo_object == 0) {
1782 		ASSERT(smo->smo_objsize == 0);
1783 		ASSERT(smo->smo_alloc == 0);
1784 		smo->smo_object = dmu_object_alloc(mos,
1785 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1786 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1787 		ASSERT(smo->smo_object != 0);
1788 		vdev_config_dirty(vd->vdev_top);
1789 	}
1790 
1791 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1792 
1793 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1794 	    &smlock);
1795 
1796 	mutex_enter(&smlock);
1797 
1798 	mutex_enter(&vd->vdev_dtl_lock);
1799 	space_map_walk(sm, space_map_add, &smsync);
1800 	mutex_exit(&vd->vdev_dtl_lock);
1801 
1802 	space_map_truncate(smo, mos, tx);
1803 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1804 
1805 	space_map_destroy(&smsync);
1806 
1807 	mutex_exit(&smlock);
1808 	mutex_destroy(&smlock);
1809 
1810 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1811 	dmu_buf_will_dirty(db, tx);
1812 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1813 	bcopy(smo, db->db_data, sizeof (*smo));
1814 	dmu_buf_rele(db, FTAG);
1815 
1816 	dmu_tx_commit(tx);
1817 }
1818 
1819 /*
1820  * Determine whether the specified vdev can be offlined/detached/removed
1821  * without losing data.
1822  */
1823 boolean_t
1824 vdev_dtl_required(vdev_t *vd)
1825 {
1826 	spa_t *spa = vd->vdev_spa;
1827 	vdev_t *tvd = vd->vdev_top;
1828 	uint8_t cant_read = vd->vdev_cant_read;
1829 	boolean_t required;
1830 
1831 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1832 
1833 	if (vd == spa->spa_root_vdev || vd == tvd)
1834 		return (B_TRUE);
1835 
1836 	/*
1837 	 * Temporarily mark the device as unreadable, and then determine
1838 	 * whether this results in any DTL outages in the top-level vdev.
1839 	 * If not, we can safely offline/detach/remove the device.
1840 	 */
1841 	vd->vdev_cant_read = B_TRUE;
1842 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1843 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1844 	vd->vdev_cant_read = cant_read;
1845 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1846 
1847 	return (required);
1848 }
1849 
1850 /*
1851  * Determine if resilver is needed, and if so the txg range.
1852  */
1853 boolean_t
1854 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1855 {
1856 	boolean_t needed = B_FALSE;
1857 	uint64_t thismin = UINT64_MAX;
1858 	uint64_t thismax = 0;
1859 
1860 	if (vd->vdev_children == 0) {
1861 		mutex_enter(&vd->vdev_dtl_lock);
1862 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1863 		    vdev_writeable(vd)) {
1864 			space_seg_t *ss;
1865 
1866 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1867 			thismin = ss->ss_start - 1;
1868 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1869 			thismax = ss->ss_end;
1870 			needed = B_TRUE;
1871 		}
1872 		mutex_exit(&vd->vdev_dtl_lock);
1873 	} else {
1874 		for (int c = 0; c < vd->vdev_children; c++) {
1875 			vdev_t *cvd = vd->vdev_child[c];
1876 			uint64_t cmin, cmax;
1877 
1878 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1879 				thismin = MIN(thismin, cmin);
1880 				thismax = MAX(thismax, cmax);
1881 				needed = B_TRUE;
1882 			}
1883 		}
1884 	}
1885 
1886 	if (needed && minp) {
1887 		*minp = thismin;
1888 		*maxp = thismax;
1889 	}
1890 	return (needed);
1891 }
1892 
1893 void
1894 vdev_load(vdev_t *vd)
1895 {
1896 	/*
1897 	 * Recursively load all children.
1898 	 */
1899 	for (int c = 0; c < vd->vdev_children; c++)
1900 		vdev_load(vd->vdev_child[c]);
1901 
1902 	/*
1903 	 * If this is a top-level vdev, initialize its metaslabs.
1904 	 */
1905 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1906 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1907 	    vdev_metaslab_init(vd, 0) != 0))
1908 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1909 		    VDEV_AUX_CORRUPT_DATA);
1910 
1911 	/*
1912 	 * If this is a leaf vdev, load its DTL.
1913 	 */
1914 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1915 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1916 		    VDEV_AUX_CORRUPT_DATA);
1917 }
1918 
1919 /*
1920  * The special vdev case is used for hot spares and l2cache devices.  Its
1921  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1922  * we make sure that we can open the underlying device, then try to read the
1923  * label, and make sure that the label is sane and that it hasn't been
1924  * repurposed to another pool.
1925  */
1926 int
1927 vdev_validate_aux(vdev_t *vd)
1928 {
1929 	nvlist_t *label;
1930 	uint64_t guid, version;
1931 	uint64_t state;
1932 
1933 	if (!vdev_readable(vd))
1934 		return (0);
1935 
1936 	if ((label = vdev_label_read_config(vd)) == NULL) {
1937 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1938 		    VDEV_AUX_CORRUPT_DATA);
1939 		return (-1);
1940 	}
1941 
1942 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1943 	    version > SPA_VERSION ||
1944 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1945 	    guid != vd->vdev_guid ||
1946 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1947 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1948 		    VDEV_AUX_CORRUPT_DATA);
1949 		nvlist_free(label);
1950 		return (-1);
1951 	}
1952 
1953 	/*
1954 	 * We don't actually check the pool state here.  If it's in fact in
1955 	 * use by another pool, we update this fact on the fly when requested.
1956 	 */
1957 	nvlist_free(label);
1958 	return (0);
1959 }
1960 
1961 void
1962 vdev_remove(vdev_t *vd, uint64_t txg)
1963 {
1964 	spa_t *spa = vd->vdev_spa;
1965 	objset_t *mos = spa->spa_meta_objset;
1966 	dmu_tx_t *tx;
1967 
1968 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1969 
1970 	if (vd->vdev_dtl_smo.smo_object) {
1971 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1972 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1973 		vd->vdev_dtl_smo.smo_object = 0;
1974 	}
1975 
1976 	if (vd->vdev_ms != NULL) {
1977 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1978 			metaslab_t *msp = vd->vdev_ms[m];
1979 
1980 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1981 				continue;
1982 
1983 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1984 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1985 			msp->ms_smo.smo_object = 0;
1986 		}
1987 	}
1988 
1989 	if (vd->vdev_ms_array) {
1990 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
1991 		vd->vdev_ms_array = 0;
1992 		vd->vdev_ms_shift = 0;
1993 	}
1994 	dmu_tx_commit(tx);
1995 }
1996 
1997 void
1998 vdev_sync_done(vdev_t *vd, uint64_t txg)
1999 {
2000 	metaslab_t *msp;
2001 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2002 
2003 	ASSERT(!vd->vdev_ishole);
2004 
2005 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2006 		metaslab_sync_done(msp, txg);
2007 
2008 	if (reassess)
2009 		metaslab_sync_reassess(vd->vdev_mg);
2010 }
2011 
2012 void
2013 vdev_sync(vdev_t *vd, uint64_t txg)
2014 {
2015 	spa_t *spa = vd->vdev_spa;
2016 	vdev_t *lvd;
2017 	metaslab_t *msp;
2018 	dmu_tx_t *tx;
2019 
2020 	ASSERT(!vd->vdev_ishole);
2021 
2022 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2023 		ASSERT(vd == vd->vdev_top);
2024 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2025 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2026 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2027 		ASSERT(vd->vdev_ms_array != 0);
2028 		vdev_config_dirty(vd);
2029 		dmu_tx_commit(tx);
2030 	}
2031 
2032 	if (vd->vdev_removing)
2033 		vdev_remove(vd, txg);
2034 
2035 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2036 		metaslab_sync(msp, txg);
2037 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2038 	}
2039 
2040 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2041 		vdev_dtl_sync(lvd, txg);
2042 
2043 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2044 }
2045 
2046 uint64_t
2047 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2048 {
2049 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2050 }
2051 
2052 /*
2053  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2054  * not be opened, and no I/O is attempted.
2055  */
2056 int
2057 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2058 {
2059 	vdev_t *vd;
2060 
2061 	spa_vdev_state_enter(spa, SCL_NONE);
2062 
2063 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2064 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2065 
2066 	if (!vd->vdev_ops->vdev_op_leaf)
2067 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2068 
2069 	/*
2070 	 * We don't directly use the aux state here, but if we do a
2071 	 * vdev_reopen(), we need this value to be present to remember why we
2072 	 * were faulted.
2073 	 */
2074 	vd->vdev_label_aux = aux;
2075 
2076 	/*
2077 	 * Faulted state takes precedence over degraded.
2078 	 */
2079 	vd->vdev_delayed_close = B_FALSE;
2080 	vd->vdev_faulted = 1ULL;
2081 	vd->vdev_degraded = 0ULL;
2082 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2083 
2084 	/*
2085 	 * If this device has the only valid copy of the data, then
2086 	 * back off and simply mark the vdev as degraded instead.
2087 	 */
2088 	if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2089 		vd->vdev_degraded = 1ULL;
2090 		vd->vdev_faulted = 0ULL;
2091 
2092 		/*
2093 		 * If we reopen the device and it's not dead, only then do we
2094 		 * mark it degraded.
2095 		 */
2096 		vdev_reopen(vd);
2097 
2098 		if (vdev_readable(vd))
2099 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2100 	}
2101 
2102 	return (spa_vdev_state_exit(spa, vd, 0));
2103 }
2104 
2105 /*
2106  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2107  * user that something is wrong.  The vdev continues to operate as normal as far
2108  * as I/O is concerned.
2109  */
2110 int
2111 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2112 {
2113 	vdev_t *vd;
2114 
2115 	spa_vdev_state_enter(spa, SCL_NONE);
2116 
2117 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2118 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2119 
2120 	if (!vd->vdev_ops->vdev_op_leaf)
2121 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2122 
2123 	/*
2124 	 * If the vdev is already faulted, then don't do anything.
2125 	 */
2126 	if (vd->vdev_faulted || vd->vdev_degraded)
2127 		return (spa_vdev_state_exit(spa, NULL, 0));
2128 
2129 	vd->vdev_degraded = 1ULL;
2130 	if (!vdev_is_dead(vd))
2131 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2132 		    aux);
2133 
2134 	return (spa_vdev_state_exit(spa, vd, 0));
2135 }
2136 
2137 /*
2138  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2139  * any attached spare device should be detached when the device finishes
2140  * resilvering.  Second, the online should be treated like a 'test' online case,
2141  * so no FMA events are generated if the device fails to open.
2142  */
2143 int
2144 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2145 {
2146 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2147 
2148 	spa_vdev_state_enter(spa, SCL_NONE);
2149 
2150 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2151 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2152 
2153 	if (!vd->vdev_ops->vdev_op_leaf)
2154 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2155 
2156 	tvd = vd->vdev_top;
2157 	vd->vdev_offline = B_FALSE;
2158 	vd->vdev_tmpoffline = B_FALSE;
2159 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2160 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2161 
2162 	/* XXX - L2ARC 1.0 does not support expansion */
2163 	if (!vd->vdev_aux) {
2164 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2165 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2166 	}
2167 
2168 	vdev_reopen(tvd);
2169 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2170 
2171 	if (!vd->vdev_aux) {
2172 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2173 			pvd->vdev_expanding = B_FALSE;
2174 	}
2175 
2176 	if (newstate)
2177 		*newstate = vd->vdev_state;
2178 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2179 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2180 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2181 	    vd->vdev_parent->vdev_child[0] == vd)
2182 		vd->vdev_unspare = B_TRUE;
2183 
2184 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2185 
2186 		/* XXX - L2ARC 1.0 does not support expansion */
2187 		if (vd->vdev_aux)
2188 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2189 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2190 	}
2191 	return (spa_vdev_state_exit(spa, vd, 0));
2192 }
2193 
2194 static int
2195 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2196 {
2197 	vdev_t *vd, *tvd;
2198 	int error = 0;
2199 	uint64_t generation;
2200 	metaslab_group_t *mg;
2201 
2202 top:
2203 	spa_vdev_state_enter(spa, SCL_ALLOC);
2204 
2205 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2206 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2207 
2208 	if (!vd->vdev_ops->vdev_op_leaf)
2209 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2210 
2211 	tvd = vd->vdev_top;
2212 	mg = tvd->vdev_mg;
2213 	generation = spa->spa_config_generation + 1;
2214 
2215 	/*
2216 	 * If the device isn't already offline, try to offline it.
2217 	 */
2218 	if (!vd->vdev_offline) {
2219 		/*
2220 		 * If this device has the only valid copy of some data,
2221 		 * don't allow it to be offlined. Log devices are always
2222 		 * expendable.
2223 		 */
2224 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2225 		    vdev_dtl_required(vd))
2226 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2227 
2228 		/*
2229 		 * If the top-level is a slog and it has had allocations
2230 		 * then proceed.  We check that the vdev's metaslab group
2231 		 * is not NULL since it's possible that we may have just
2232 		 * added this vdev but not yet initialized its metaslabs.
2233 		 */
2234 		if (tvd->vdev_islog && mg != NULL) {
2235 			/*
2236 			 * Prevent any future allocations.
2237 			 */
2238 			metaslab_group_passivate(mg);
2239 			(void) spa_vdev_state_exit(spa, vd, 0);
2240 
2241 			error = spa_offline_log(spa);
2242 
2243 			spa_vdev_state_enter(spa, SCL_ALLOC);
2244 
2245 			/*
2246 			 * Check to see if the config has changed.
2247 			 */
2248 			if (error || generation != spa->spa_config_generation) {
2249 				metaslab_group_activate(mg);
2250 				if (error)
2251 					return (spa_vdev_state_exit(spa,
2252 					    vd, error));
2253 				(void) spa_vdev_state_exit(spa, vd, 0);
2254 				goto top;
2255 			}
2256 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2257 		}
2258 
2259 		/*
2260 		 * Offline this device and reopen its top-level vdev.
2261 		 * If the top-level vdev is a log device then just offline
2262 		 * it. Otherwise, if this action results in the top-level
2263 		 * vdev becoming unusable, undo it and fail the request.
2264 		 */
2265 		vd->vdev_offline = B_TRUE;
2266 		vdev_reopen(tvd);
2267 
2268 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2269 		    vdev_is_dead(tvd)) {
2270 			vd->vdev_offline = B_FALSE;
2271 			vdev_reopen(tvd);
2272 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2273 		}
2274 
2275 		/*
2276 		 * Add the device back into the metaslab rotor so that
2277 		 * once we online the device it's open for business.
2278 		 */
2279 		if (tvd->vdev_islog && mg != NULL)
2280 			metaslab_group_activate(mg);
2281 	}
2282 
2283 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2284 
2285 	return (spa_vdev_state_exit(spa, vd, 0));
2286 }
2287 
2288 int
2289 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2290 {
2291 	int error;
2292 
2293 	mutex_enter(&spa->spa_vdev_top_lock);
2294 	error = vdev_offline_locked(spa, guid, flags);
2295 	mutex_exit(&spa->spa_vdev_top_lock);
2296 
2297 	return (error);
2298 }
2299 
2300 /*
2301  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2302  * vdev_offline(), we assume the spa config is locked.  We also clear all
2303  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2304  */
2305 void
2306 vdev_clear(spa_t *spa, vdev_t *vd)
2307 {
2308 	vdev_t *rvd = spa->spa_root_vdev;
2309 
2310 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2311 
2312 	if (vd == NULL)
2313 		vd = rvd;
2314 
2315 	vd->vdev_stat.vs_read_errors = 0;
2316 	vd->vdev_stat.vs_write_errors = 0;
2317 	vd->vdev_stat.vs_checksum_errors = 0;
2318 
2319 	for (int c = 0; c < vd->vdev_children; c++)
2320 		vdev_clear(spa, vd->vdev_child[c]);
2321 
2322 	/*
2323 	 * If we're in the FAULTED state or have experienced failed I/O, then
2324 	 * clear the persistent state and attempt to reopen the device.  We
2325 	 * also mark the vdev config dirty, so that the new faulted state is
2326 	 * written out to disk.
2327 	 */
2328 	if (vd->vdev_faulted || vd->vdev_degraded ||
2329 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2330 
2331 		/*
2332 		 * When reopening in reponse to a clear event, it may be due to
2333 		 * a fmadm repair request.  In this case, if the device is
2334 		 * still broken, we want to still post the ereport again.
2335 		 */
2336 		vd->vdev_forcefault = B_TRUE;
2337 
2338 		vd->vdev_faulted = vd->vdev_degraded = 0;
2339 		vd->vdev_cant_read = B_FALSE;
2340 		vd->vdev_cant_write = B_FALSE;
2341 
2342 		vdev_reopen(vd);
2343 
2344 		vd->vdev_forcefault = B_FALSE;
2345 
2346 		if (vd != rvd)
2347 			vdev_state_dirty(vd->vdev_top);
2348 
2349 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2350 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2351 
2352 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2353 	}
2354 
2355 	/*
2356 	 * When clearing a FMA-diagnosed fault, we always want to
2357 	 * unspare the device, as we assume that the original spare was
2358 	 * done in response to the FMA fault.
2359 	 */
2360 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2361 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2362 	    vd->vdev_parent->vdev_child[0] == vd)
2363 		vd->vdev_unspare = B_TRUE;
2364 }
2365 
2366 boolean_t
2367 vdev_is_dead(vdev_t *vd)
2368 {
2369 	/*
2370 	 * Holes and missing devices are always considered "dead".
2371 	 * This simplifies the code since we don't have to check for
2372 	 * these types of devices in the various code paths.
2373 	 * Instead we rely on the fact that we skip over dead devices
2374 	 * before issuing I/O to them.
2375 	 */
2376 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2377 	    vd->vdev_ops == &vdev_missing_ops);
2378 }
2379 
2380 boolean_t
2381 vdev_readable(vdev_t *vd)
2382 {
2383 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2384 }
2385 
2386 boolean_t
2387 vdev_writeable(vdev_t *vd)
2388 {
2389 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2390 }
2391 
2392 boolean_t
2393 vdev_allocatable(vdev_t *vd)
2394 {
2395 	uint64_t state = vd->vdev_state;
2396 
2397 	/*
2398 	 * We currently allow allocations from vdevs which may be in the
2399 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2400 	 * fails to reopen then we'll catch it later when we're holding
2401 	 * the proper locks.  Note that we have to get the vdev state
2402 	 * in a local variable because although it changes atomically,
2403 	 * we're asking two separate questions about it.
2404 	 */
2405 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2406 	    !vd->vdev_cant_write && !vd->vdev_ishole && !vd->vdev_removing);
2407 }
2408 
2409 boolean_t
2410 vdev_accessible(vdev_t *vd, zio_t *zio)
2411 {
2412 	ASSERT(zio->io_vd == vd);
2413 
2414 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2415 		return (B_FALSE);
2416 
2417 	if (zio->io_type == ZIO_TYPE_READ)
2418 		return (!vd->vdev_cant_read);
2419 
2420 	if (zio->io_type == ZIO_TYPE_WRITE)
2421 		return (!vd->vdev_cant_write);
2422 
2423 	return (B_TRUE);
2424 }
2425 
2426 /*
2427  * Get statistics for the given vdev.
2428  */
2429 void
2430 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2431 {
2432 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2433 
2434 	mutex_enter(&vd->vdev_stat_lock);
2435 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2436 	vs->vs_scrub_errors = vd->vdev_spa->spa_scrub_errors;
2437 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2438 	vs->vs_state = vd->vdev_state;
2439 	vs->vs_rsize = vdev_get_min_asize(vd);
2440 	if (vd->vdev_ops->vdev_op_leaf)
2441 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2442 	mutex_exit(&vd->vdev_stat_lock);
2443 
2444 	/*
2445 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2446 	 * over all top-level vdevs (i.e. the direct children of the root).
2447 	 */
2448 	if (vd == rvd) {
2449 		for (int c = 0; c < rvd->vdev_children; c++) {
2450 			vdev_t *cvd = rvd->vdev_child[c];
2451 			vdev_stat_t *cvs = &cvd->vdev_stat;
2452 
2453 			mutex_enter(&vd->vdev_stat_lock);
2454 			for (int t = 0; t < ZIO_TYPES; t++) {
2455 				vs->vs_ops[t] += cvs->vs_ops[t];
2456 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2457 			}
2458 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
2459 			mutex_exit(&vd->vdev_stat_lock);
2460 		}
2461 	}
2462 }
2463 
2464 void
2465 vdev_clear_stats(vdev_t *vd)
2466 {
2467 	mutex_enter(&vd->vdev_stat_lock);
2468 	vd->vdev_stat.vs_space = 0;
2469 	vd->vdev_stat.vs_dspace = 0;
2470 	vd->vdev_stat.vs_alloc = 0;
2471 	mutex_exit(&vd->vdev_stat_lock);
2472 }
2473 
2474 void
2475 vdev_stat_update(zio_t *zio, uint64_t psize)
2476 {
2477 	spa_t *spa = zio->io_spa;
2478 	vdev_t *rvd = spa->spa_root_vdev;
2479 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2480 	vdev_t *pvd;
2481 	uint64_t txg = zio->io_txg;
2482 	vdev_stat_t *vs = &vd->vdev_stat;
2483 	zio_type_t type = zio->io_type;
2484 	int flags = zio->io_flags;
2485 
2486 	/*
2487 	 * If this i/o is a gang leader, it didn't do any actual work.
2488 	 */
2489 	if (zio->io_gang_tree)
2490 		return;
2491 
2492 	if (zio->io_error == 0) {
2493 		/*
2494 		 * If this is a root i/o, don't count it -- we've already
2495 		 * counted the top-level vdevs, and vdev_get_stats() will
2496 		 * aggregate them when asked.  This reduces contention on
2497 		 * the root vdev_stat_lock and implicitly handles blocks
2498 		 * that compress away to holes, for which there is no i/o.
2499 		 * (Holes never create vdev children, so all the counters
2500 		 * remain zero, which is what we want.)
2501 		 *
2502 		 * Note: this only applies to successful i/o (io_error == 0)
2503 		 * because unlike i/o counts, errors are not additive.
2504 		 * When reading a ditto block, for example, failure of
2505 		 * one top-level vdev does not imply a root-level error.
2506 		 */
2507 		if (vd == rvd)
2508 			return;
2509 
2510 		ASSERT(vd == zio->io_vd);
2511 
2512 		if (flags & ZIO_FLAG_IO_BYPASS)
2513 			return;
2514 
2515 		mutex_enter(&vd->vdev_stat_lock);
2516 
2517 		if (flags & ZIO_FLAG_IO_REPAIR) {
2518 			if (flags & ZIO_FLAG_SCRUB_THREAD)
2519 				vs->vs_scrub_repaired += psize;
2520 			if (flags & ZIO_FLAG_SELF_HEAL)
2521 				vs->vs_self_healed += psize;
2522 		}
2523 
2524 		vs->vs_ops[type]++;
2525 		vs->vs_bytes[type] += psize;
2526 
2527 		mutex_exit(&vd->vdev_stat_lock);
2528 		return;
2529 	}
2530 
2531 	if (flags & ZIO_FLAG_SPECULATIVE)
2532 		return;
2533 
2534 	/*
2535 	 * If this is an I/O error that is going to be retried, then ignore the
2536 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2537 	 * hard errors, when in reality they can happen for any number of
2538 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2539 	 */
2540 	if (zio->io_error == EIO &&
2541 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2542 		return;
2543 
2544 	/*
2545 	 * Intent logs writes won't propagate their error to the root
2546 	 * I/O so don't mark these types of failures as pool-level
2547 	 * errors.
2548 	 */
2549 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2550 		return;
2551 
2552 	mutex_enter(&vd->vdev_stat_lock);
2553 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2554 		if (zio->io_error == ECKSUM)
2555 			vs->vs_checksum_errors++;
2556 		else
2557 			vs->vs_read_errors++;
2558 	}
2559 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2560 		vs->vs_write_errors++;
2561 	mutex_exit(&vd->vdev_stat_lock);
2562 
2563 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2564 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2565 	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2566 	    spa->spa_claiming)) {
2567 		/*
2568 		 * This is either a normal write (not a repair), or it's
2569 		 * a repair induced by the scrub thread, or it's a repair
2570 		 * made by zil_claim() during spa_load() in the first txg.
2571 		 * In the normal case, we commit the DTL change in the same
2572 		 * txg as the block was born.  In the scrub-induced repair
2573 		 * case, we know that scrubs run in first-pass syncing context,
2574 		 * so we commit the DTL change in spa_syncing_txg(spa).
2575 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2576 		 *
2577 		 * We currently do not make DTL entries for failed spontaneous
2578 		 * self-healing writes triggered by normal (non-scrubbing)
2579 		 * reads, because we have no transactional context in which to
2580 		 * do so -- and it's not clear that it'd be desirable anyway.
2581 		 */
2582 		if (vd->vdev_ops->vdev_op_leaf) {
2583 			uint64_t commit_txg = txg;
2584 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2585 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2586 				ASSERT(spa_sync_pass(spa) == 1);
2587 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2588 				commit_txg = spa_syncing_txg(spa);
2589 			} else if (spa->spa_claiming) {
2590 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2591 				commit_txg = spa_first_txg(spa);
2592 			}
2593 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2594 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2595 				return;
2596 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2597 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2598 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2599 		}
2600 		if (vd != rvd)
2601 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2602 	}
2603 }
2604 
2605 void
2606 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
2607 {
2608 	vdev_stat_t *vs = &vd->vdev_stat;
2609 
2610 	for (int c = 0; c < vd->vdev_children; c++)
2611 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
2612 
2613 	mutex_enter(&vd->vdev_stat_lock);
2614 
2615 	if (type == POOL_SCRUB_NONE) {
2616 		/*
2617 		 * Update completion and end time.  Leave everything else alone
2618 		 * so we can report what happened during the previous scrub.
2619 		 */
2620 		vs->vs_scrub_complete = complete;
2621 		vs->vs_scrub_end = gethrestime_sec();
2622 	} else {
2623 		vs->vs_scrub_type = type;
2624 		vs->vs_scrub_complete = 0;
2625 		vs->vs_scrub_examined = 0;
2626 		vs->vs_scrub_repaired = 0;
2627 		vs->vs_scrub_start = gethrestime_sec();
2628 		vs->vs_scrub_end = 0;
2629 	}
2630 
2631 	mutex_exit(&vd->vdev_stat_lock);
2632 }
2633 
2634 /*
2635  * Update the in-core space usage stats for this vdev, its metaslab class,
2636  * and the root vdev.
2637  */
2638 void
2639 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2640     int64_t space_delta)
2641 {
2642 	int64_t dspace_delta = space_delta;
2643 	spa_t *spa = vd->vdev_spa;
2644 	vdev_t *rvd = spa->spa_root_vdev;
2645 	metaslab_group_t *mg = vd->vdev_mg;
2646 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2647 
2648 	ASSERT(vd == vd->vdev_top);
2649 
2650 	/*
2651 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2652 	 * factor.  We must calculate this here and not at the root vdev
2653 	 * because the root vdev's psize-to-asize is simply the max of its
2654 	 * childrens', thus not accurate enough for us.
2655 	 */
2656 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2657 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2658 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2659 	    vd->vdev_deflate_ratio;
2660 
2661 	mutex_enter(&vd->vdev_stat_lock);
2662 	vd->vdev_stat.vs_alloc += alloc_delta;
2663 	vd->vdev_stat.vs_space += space_delta;
2664 	vd->vdev_stat.vs_dspace += dspace_delta;
2665 	mutex_exit(&vd->vdev_stat_lock);
2666 
2667 	if (mc == spa_normal_class(spa)) {
2668 		mutex_enter(&rvd->vdev_stat_lock);
2669 		rvd->vdev_stat.vs_alloc += alloc_delta;
2670 		rvd->vdev_stat.vs_space += space_delta;
2671 		rvd->vdev_stat.vs_dspace += dspace_delta;
2672 		mutex_exit(&rvd->vdev_stat_lock);
2673 	}
2674 
2675 	if (mc != NULL) {
2676 		ASSERT(rvd == vd->vdev_parent);
2677 		ASSERT(vd->vdev_ms_count != 0);
2678 
2679 		metaslab_class_space_update(mc,
2680 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2681 	}
2682 }
2683 
2684 /*
2685  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2686  * so that it will be written out next time the vdev configuration is synced.
2687  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2688  */
2689 void
2690 vdev_config_dirty(vdev_t *vd)
2691 {
2692 	spa_t *spa = vd->vdev_spa;
2693 	vdev_t *rvd = spa->spa_root_vdev;
2694 	int c;
2695 
2696 	/*
2697 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2698 	 * update the vdev config manually and set the sync flag.
2699 	 */
2700 	if (vd->vdev_aux != NULL) {
2701 		spa_aux_vdev_t *sav = vd->vdev_aux;
2702 		nvlist_t **aux;
2703 		uint_t naux;
2704 
2705 		for (c = 0; c < sav->sav_count; c++) {
2706 			if (sav->sav_vdevs[c] == vd)
2707 				break;
2708 		}
2709 
2710 		if (c == sav->sav_count) {
2711 			/*
2712 			 * We're being removed.  There's nothing more to do.
2713 			 */
2714 			ASSERT(sav->sav_sync == B_TRUE);
2715 			return;
2716 		}
2717 
2718 		sav->sav_sync = B_TRUE;
2719 
2720 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2721 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2722 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2723 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2724 		}
2725 
2726 		ASSERT(c < naux);
2727 
2728 		/*
2729 		 * Setting the nvlist in the middle if the array is a little
2730 		 * sketchy, but it will work.
2731 		 */
2732 		nvlist_free(aux[c]);
2733 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2734 
2735 		return;
2736 	}
2737 
2738 	/*
2739 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2740 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2741 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2742 	 * so this is sufficient to ensure mutual exclusion.
2743 	 */
2744 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2745 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2746 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2747 
2748 	if (vd == rvd) {
2749 		for (c = 0; c < rvd->vdev_children; c++)
2750 			vdev_config_dirty(rvd->vdev_child[c]);
2751 	} else {
2752 		ASSERT(vd == vd->vdev_top);
2753 
2754 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2755 		    !vd->vdev_ishole)
2756 			list_insert_head(&spa->spa_config_dirty_list, vd);
2757 	}
2758 }
2759 
2760 void
2761 vdev_config_clean(vdev_t *vd)
2762 {
2763 	spa_t *spa = vd->vdev_spa;
2764 
2765 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2766 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2767 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2768 
2769 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2770 	list_remove(&spa->spa_config_dirty_list, vd);
2771 }
2772 
2773 /*
2774  * Mark a top-level vdev's state as dirty, so that the next pass of
2775  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2776  * the state changes from larger config changes because they require
2777  * much less locking, and are often needed for administrative actions.
2778  */
2779 void
2780 vdev_state_dirty(vdev_t *vd)
2781 {
2782 	spa_t *spa = vd->vdev_spa;
2783 
2784 	ASSERT(vd == vd->vdev_top);
2785 
2786 	/*
2787 	 * The state list is protected by the SCL_STATE lock.  The caller
2788 	 * must either hold SCL_STATE as writer, or must be the sync thread
2789 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2790 	 * so this is sufficient to ensure mutual exclusion.
2791 	 */
2792 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2793 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2794 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2795 
2796 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2797 		list_insert_head(&spa->spa_state_dirty_list, vd);
2798 }
2799 
2800 void
2801 vdev_state_clean(vdev_t *vd)
2802 {
2803 	spa_t *spa = vd->vdev_spa;
2804 
2805 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2806 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2807 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2808 
2809 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2810 	list_remove(&spa->spa_state_dirty_list, vd);
2811 }
2812 
2813 /*
2814  * Propagate vdev state up from children to parent.
2815  */
2816 void
2817 vdev_propagate_state(vdev_t *vd)
2818 {
2819 	spa_t *spa = vd->vdev_spa;
2820 	vdev_t *rvd = spa->spa_root_vdev;
2821 	int degraded = 0, faulted = 0;
2822 	int corrupted = 0;
2823 	vdev_t *child;
2824 
2825 	if (vd->vdev_children > 0) {
2826 		for (int c = 0; c < vd->vdev_children; c++) {
2827 			child = vd->vdev_child[c];
2828 
2829 			/*
2830 			 * Don't factor holes into the decision.
2831 			 */
2832 			if (child->vdev_ishole)
2833 				continue;
2834 
2835 			if (!vdev_readable(child) ||
2836 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2837 				/*
2838 				 * Root special: if there is a top-level log
2839 				 * device, treat the root vdev as if it were
2840 				 * degraded.
2841 				 */
2842 				if (child->vdev_islog && vd == rvd)
2843 					degraded++;
2844 				else
2845 					faulted++;
2846 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2847 				degraded++;
2848 			}
2849 
2850 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2851 				corrupted++;
2852 		}
2853 
2854 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2855 
2856 		/*
2857 		 * Root special: if there is a top-level vdev that cannot be
2858 		 * opened due to corrupted metadata, then propagate the root
2859 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2860 		 * replicas'.
2861 		 */
2862 		if (corrupted && vd == rvd &&
2863 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2864 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2865 			    VDEV_AUX_CORRUPT_DATA);
2866 	}
2867 
2868 	if (vd->vdev_parent)
2869 		vdev_propagate_state(vd->vdev_parent);
2870 }
2871 
2872 /*
2873  * Set a vdev's state.  If this is during an open, we don't update the parent
2874  * state, because we're in the process of opening children depth-first.
2875  * Otherwise, we propagate the change to the parent.
2876  *
2877  * If this routine places a device in a faulted state, an appropriate ereport is
2878  * generated.
2879  */
2880 void
2881 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2882 {
2883 	uint64_t save_state;
2884 	spa_t *spa = vd->vdev_spa;
2885 
2886 	if (state == vd->vdev_state) {
2887 		vd->vdev_stat.vs_aux = aux;
2888 		return;
2889 	}
2890 
2891 	save_state = vd->vdev_state;
2892 
2893 	vd->vdev_state = state;
2894 	vd->vdev_stat.vs_aux = aux;
2895 
2896 	/*
2897 	 * If we are setting the vdev state to anything but an open state, then
2898 	 * always close the underlying device unless the device has requested
2899 	 * a delayed close (i.e. we're about to remove or fault the device).
2900 	 * Otherwise, we keep accessible but invalid devices open forever.
2901 	 * We don't call vdev_close() itself, because that implies some extra
2902 	 * checks (offline, etc) that we don't want here.  This is limited to
2903 	 * leaf devices, because otherwise closing the device will affect other
2904 	 * children.
2905 	 */
2906 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2907 	    vd->vdev_ops->vdev_op_leaf)
2908 		vd->vdev_ops->vdev_op_close(vd);
2909 
2910 	/*
2911 	 * If we have brought this vdev back into service, we need
2912 	 * to notify fmd so that it can gracefully repair any outstanding
2913 	 * cases due to a missing device.  We do this in all cases, even those
2914 	 * that probably don't correlate to a repaired fault.  This is sure to
2915 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2916 	 * this is a transient state it's OK, as the retire agent will
2917 	 * double-check the state of the vdev before repairing it.
2918 	 */
2919 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2920 	    vd->vdev_prevstate != state)
2921 		zfs_post_state_change(spa, vd);
2922 
2923 	if (vd->vdev_removed &&
2924 	    state == VDEV_STATE_CANT_OPEN &&
2925 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2926 		/*
2927 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2928 		 * device was previously marked removed and someone attempted to
2929 		 * reopen it.  If this failed due to a nonexistent device, then
2930 		 * keep the device in the REMOVED state.  We also let this be if
2931 		 * it is one of our special test online cases, which is only
2932 		 * attempting to online the device and shouldn't generate an FMA
2933 		 * fault.
2934 		 */
2935 		vd->vdev_state = VDEV_STATE_REMOVED;
2936 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2937 	} else if (state == VDEV_STATE_REMOVED) {
2938 		vd->vdev_removed = B_TRUE;
2939 	} else if (state == VDEV_STATE_CANT_OPEN) {
2940 		/*
2941 		 * If we fail to open a vdev during an import, we mark it as
2942 		 * "not available", which signifies that it was never there to
2943 		 * begin with.  Failure to open such a device is not considered
2944 		 * an error.
2945 		 */
2946 		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2947 		    vd->vdev_ops->vdev_op_leaf)
2948 			vd->vdev_not_present = 1;
2949 
2950 		/*
2951 		 * Post the appropriate ereport.  If the 'prevstate' field is
2952 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2953 		 * that this is part of a vdev_reopen().  In this case, we don't
2954 		 * want to post the ereport if the device was already in the
2955 		 * CANT_OPEN state beforehand.
2956 		 *
2957 		 * If the 'checkremove' flag is set, then this is an attempt to
2958 		 * online the device in response to an insertion event.  If we
2959 		 * hit this case, then we have detected an insertion event for a
2960 		 * faulted or offline device that wasn't in the removed state.
2961 		 * In this scenario, we don't post an ereport because we are
2962 		 * about to replace the device, or attempt an online with
2963 		 * vdev_forcefault, which will generate the fault for us.
2964 		 */
2965 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2966 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2967 		    vd != spa->spa_root_vdev) {
2968 			const char *class;
2969 
2970 			switch (aux) {
2971 			case VDEV_AUX_OPEN_FAILED:
2972 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2973 				break;
2974 			case VDEV_AUX_CORRUPT_DATA:
2975 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2976 				break;
2977 			case VDEV_AUX_NO_REPLICAS:
2978 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2979 				break;
2980 			case VDEV_AUX_BAD_GUID_SUM:
2981 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2982 				break;
2983 			case VDEV_AUX_TOO_SMALL:
2984 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2985 				break;
2986 			case VDEV_AUX_BAD_LABEL:
2987 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2988 				break;
2989 			default:
2990 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2991 			}
2992 
2993 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2994 		}
2995 
2996 		/* Erase any notion of persistent removed state */
2997 		vd->vdev_removed = B_FALSE;
2998 	} else {
2999 		vd->vdev_removed = B_FALSE;
3000 	}
3001 
3002 	if (!isopen && vd->vdev_parent)
3003 		vdev_propagate_state(vd->vdev_parent);
3004 }
3005 
3006 /*
3007  * Check the vdev configuration to ensure that it's capable of supporting
3008  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3009  * In addition, only a single top-level vdev is allowed and none of the leaves
3010  * can be wholedisks.
3011  */
3012 boolean_t
3013 vdev_is_bootable(vdev_t *vd)
3014 {
3015 	if (!vd->vdev_ops->vdev_op_leaf) {
3016 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3017 
3018 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3019 		    vd->vdev_children > 1) {
3020 			return (B_FALSE);
3021 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3022 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3023 			return (B_FALSE);
3024 		}
3025 	} else if (vd->vdev_wholedisk == 1) {
3026 		return (B_FALSE);
3027 	}
3028 
3029 	for (int c = 0; c < vd->vdev_children; c++) {
3030 		if (!vdev_is_bootable(vd->vdev_child[c]))
3031 			return (B_FALSE);
3032 	}
3033 	return (B_TRUE);
3034 }
3035 
3036 /*
3037  * Load the state from the original vdev tree (ovd) which
3038  * we've retrieved from the MOS config object. If the original
3039  * vdev was offline then we transfer that state to the device
3040  * in the current vdev tree (nvd).
3041  */
3042 void
3043 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3044 {
3045 	spa_t *spa = nvd->vdev_spa;
3046 
3047 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3048 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3049 
3050 	for (int c = 0; c < nvd->vdev_children; c++)
3051 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3052 
3053 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3054 		/*
3055 		 * It would be nice to call vdev_offline()
3056 		 * directly but the pool isn't fully loaded and
3057 		 * the txg threads have not been started yet.
3058 		 */
3059 		nvd->vdev_offline = ovd->vdev_offline;
3060 		vdev_reopen(nvd->vdev_top);
3061 	}
3062 }
3063 
3064 /*
3065  * Expand a vdev if possible.
3066  */
3067 void
3068 vdev_expand(vdev_t *vd, uint64_t txg)
3069 {
3070 	ASSERT(vd->vdev_top == vd);
3071 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3072 
3073 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3074 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3075 		vdev_config_dirty(vd);
3076 	}
3077 }
3078 
3079 /*
3080  * Split a vdev.
3081  */
3082 void
3083 vdev_split(vdev_t *vd)
3084 {
3085 	vdev_t *cvd, *pvd = vd->vdev_parent;
3086 
3087 	vdev_remove_child(pvd, vd);
3088 	vdev_compact_children(pvd);
3089 
3090 	cvd = pvd->vdev_child[0];
3091 	if (pvd->vdev_children == 1) {
3092 		vdev_remove_parent(cvd);
3093 		cvd->vdev_splitting = B_TRUE;
3094 	}
3095 	vdev_propagate_state(cvd);
3096 }
3097