1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * When a vdev is added, it will be divided into approximately (but no 69 * more than) this number of metaslabs. 70 */ 71 int metaslabs_per_vdev = 200; 72 73 /* 74 * Given a vdev type, return the appropriate ops vector. 75 */ 76 static vdev_ops_t * 77 vdev_getops(const char *type) 78 { 79 vdev_ops_t *ops, **opspp; 80 81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 82 if (strcmp(ops->vdev_op_type, type) == 0) 83 break; 84 85 return (ops); 86 } 87 88 /* 89 * Default asize function: return the MAX of psize with the asize of 90 * all children. This is what's used by anything other than RAID-Z. 91 */ 92 uint64_t 93 vdev_default_asize(vdev_t *vd, uint64_t psize) 94 { 95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 96 uint64_t csize; 97 98 for (int c = 0; c < vd->vdev_children; c++) { 99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 100 asize = MAX(asize, csize); 101 } 102 103 return (asize); 104 } 105 106 /* 107 * Get the minimum allocatable size. We define the allocatable size as 108 * the vdev's asize rounded to the nearest metaslab. This allows us to 109 * replace or attach devices which don't have the same physical size but 110 * can still satisfy the same number of allocations. 111 */ 112 uint64_t 113 vdev_get_min_asize(vdev_t *vd) 114 { 115 vdev_t *pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL (inactive spare or cache) or is the root, 119 * just return our own asize. 120 */ 121 if (pvd == NULL) 122 return (vd->vdev_asize); 123 124 /* 125 * The top-level vdev just returns the allocatable size rounded 126 * to the nearest metaslab. 127 */ 128 if (vd == vd->vdev_top) 129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 130 131 /* 132 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 133 * so each child must provide at least 1/Nth of its asize. 134 */ 135 if (pvd->vdev_ops == &vdev_raidz_ops) 136 return (pvd->vdev_min_asize / pvd->vdev_children); 137 138 return (pvd->vdev_min_asize); 139 } 140 141 void 142 vdev_set_min_asize(vdev_t *vd) 143 { 144 vd->vdev_min_asize = vdev_get_min_asize(vd); 145 146 for (int c = 0; c < vd->vdev_children; c++) 147 vdev_set_min_asize(vd->vdev_child[c]); 148 } 149 150 vdev_t * 151 vdev_lookup_top(spa_t *spa, uint64_t vdev) 152 { 153 vdev_t *rvd = spa->spa_root_vdev; 154 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 156 157 if (vdev < rvd->vdev_children) { 158 ASSERT(rvd->vdev_child[vdev] != NULL); 159 return (rvd->vdev_child[vdev]); 160 } 161 162 return (NULL); 163 } 164 165 vdev_t * 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 167 { 168 vdev_t *mvd; 169 170 if (vd->vdev_guid == guid) 171 return (vd); 172 173 for (int c = 0; c < vd->vdev_children; c++) 174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 175 NULL) 176 return (mvd); 177 178 return (NULL); 179 } 180 181 static int 182 vdev_count_leaves_impl(vdev_t *vd) 183 { 184 int n = 0; 185 186 if (vd->vdev_ops->vdev_op_leaf) 187 return (1); 188 189 for (int c = 0; c < vd->vdev_children; c++) 190 n += vdev_count_leaves_impl(vd->vdev_child[c]); 191 192 return (n); 193 } 194 195 int 196 vdev_count_leaves(spa_t *spa) 197 { 198 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 199 } 200 201 void 202 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 203 { 204 size_t oldsize, newsize; 205 uint64_t id = cvd->vdev_id; 206 vdev_t **newchild; 207 spa_t *spa = cvd->vdev_spa; 208 209 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 210 ASSERT(cvd->vdev_parent == NULL); 211 212 cvd->vdev_parent = pvd; 213 214 if (pvd == NULL) 215 return; 216 217 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 218 219 oldsize = pvd->vdev_children * sizeof (vdev_t *); 220 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 221 newsize = pvd->vdev_children * sizeof (vdev_t *); 222 223 newchild = kmem_zalloc(newsize, KM_SLEEP); 224 if (pvd->vdev_child != NULL) { 225 bcopy(pvd->vdev_child, newchild, oldsize); 226 kmem_free(pvd->vdev_child, oldsize); 227 } 228 229 pvd->vdev_child = newchild; 230 pvd->vdev_child[id] = cvd; 231 232 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 233 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 240 } 241 242 void 243 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 244 { 245 int c; 246 uint_t id = cvd->vdev_id; 247 248 ASSERT(cvd->vdev_parent == pvd); 249 250 if (pvd == NULL) 251 return; 252 253 ASSERT(id < pvd->vdev_children); 254 ASSERT(pvd->vdev_child[id] == cvd); 255 256 pvd->vdev_child[id] = NULL; 257 cvd->vdev_parent = NULL; 258 259 for (c = 0; c < pvd->vdev_children; c++) 260 if (pvd->vdev_child[c]) 261 break; 262 263 if (c == pvd->vdev_children) { 264 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 265 pvd->vdev_child = NULL; 266 pvd->vdev_children = 0; 267 } 268 269 /* 270 * Walk up all ancestors to update guid sum. 271 */ 272 for (; pvd != NULL; pvd = pvd->vdev_parent) 273 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 274 } 275 276 /* 277 * Remove any holes in the child array. 278 */ 279 void 280 vdev_compact_children(vdev_t *pvd) 281 { 282 vdev_t **newchild, *cvd; 283 int oldc = pvd->vdev_children; 284 int newc; 285 286 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 287 288 for (int c = newc = 0; c < oldc; c++) 289 if (pvd->vdev_child[c]) 290 newc++; 291 292 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 293 294 for (int c = newc = 0; c < oldc; c++) { 295 if ((cvd = pvd->vdev_child[c]) != NULL) { 296 newchild[newc] = cvd; 297 cvd->vdev_id = newc++; 298 } 299 } 300 301 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 302 pvd->vdev_child = newchild; 303 pvd->vdev_children = newc; 304 } 305 306 /* 307 * Allocate and minimally initialize a vdev_t. 308 */ 309 vdev_t * 310 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 311 { 312 vdev_t *vd; 313 314 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 315 316 if (spa->spa_root_vdev == NULL) { 317 ASSERT(ops == &vdev_root_ops); 318 spa->spa_root_vdev = vd; 319 spa->spa_load_guid = spa_generate_guid(NULL); 320 } 321 322 if (guid == 0 && ops != &vdev_hole_ops) { 323 if (spa->spa_root_vdev == vd) { 324 /* 325 * The root vdev's guid will also be the pool guid, 326 * which must be unique among all pools. 327 */ 328 guid = spa_generate_guid(NULL); 329 } else { 330 /* 331 * Any other vdev's guid must be unique within the pool. 332 */ 333 guid = spa_generate_guid(spa); 334 } 335 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 336 } 337 338 vd->vdev_spa = spa; 339 vd->vdev_id = id; 340 vd->vdev_guid = guid; 341 vd->vdev_guid_sum = guid; 342 vd->vdev_ops = ops; 343 vd->vdev_state = VDEV_STATE_CLOSED; 344 vd->vdev_ishole = (ops == &vdev_hole_ops); 345 346 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 347 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 348 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 349 for (int t = 0; t < DTL_TYPES; t++) { 350 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 351 &vd->vdev_dtl_lock); 352 } 353 txg_list_create(&vd->vdev_ms_list, 354 offsetof(struct metaslab, ms_txg_node)); 355 txg_list_create(&vd->vdev_dtl_list, 356 offsetof(struct vdev, vdev_dtl_node)); 357 vd->vdev_stat.vs_timestamp = gethrtime(); 358 vdev_queue_init(vd); 359 vdev_cache_init(vd); 360 361 return (vd); 362 } 363 364 /* 365 * Allocate a new vdev. The 'alloctype' is used to control whether we are 366 * creating a new vdev or loading an existing one - the behavior is slightly 367 * different for each case. 368 */ 369 int 370 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 371 int alloctype) 372 { 373 vdev_ops_t *ops; 374 char *type; 375 uint64_t guid = 0, islog, nparity; 376 vdev_t *vd; 377 378 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 379 380 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 381 return (SET_ERROR(EINVAL)); 382 383 if ((ops = vdev_getops(type)) == NULL) 384 return (SET_ERROR(EINVAL)); 385 386 /* 387 * If this is a load, get the vdev guid from the nvlist. 388 * Otherwise, vdev_alloc_common() will generate one for us. 389 */ 390 if (alloctype == VDEV_ALLOC_LOAD) { 391 uint64_t label_id; 392 393 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 394 label_id != id) 395 return (SET_ERROR(EINVAL)); 396 397 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 398 return (SET_ERROR(EINVAL)); 399 } else if (alloctype == VDEV_ALLOC_SPARE) { 400 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 401 return (SET_ERROR(EINVAL)); 402 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 403 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 404 return (SET_ERROR(EINVAL)); 405 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 406 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 407 return (SET_ERROR(EINVAL)); 408 } 409 410 /* 411 * The first allocated vdev must be of type 'root'. 412 */ 413 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 414 return (SET_ERROR(EINVAL)); 415 416 /* 417 * Determine whether we're a log vdev. 418 */ 419 islog = 0; 420 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 421 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 422 return (SET_ERROR(ENOTSUP)); 423 424 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 425 return (SET_ERROR(ENOTSUP)); 426 427 /* 428 * Set the nparity property for RAID-Z vdevs. 429 */ 430 nparity = -1ULL; 431 if (ops == &vdev_raidz_ops) { 432 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 433 &nparity) == 0) { 434 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 435 return (SET_ERROR(EINVAL)); 436 /* 437 * Previous versions could only support 1 or 2 parity 438 * device. 439 */ 440 if (nparity > 1 && 441 spa_version(spa) < SPA_VERSION_RAIDZ2) 442 return (SET_ERROR(ENOTSUP)); 443 if (nparity > 2 && 444 spa_version(spa) < SPA_VERSION_RAIDZ3) 445 return (SET_ERROR(ENOTSUP)); 446 } else { 447 /* 448 * We require the parity to be specified for SPAs that 449 * support multiple parity levels. 450 */ 451 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 452 return (SET_ERROR(EINVAL)); 453 /* 454 * Otherwise, we default to 1 parity device for RAID-Z. 455 */ 456 nparity = 1; 457 } 458 } else { 459 nparity = 0; 460 } 461 ASSERT(nparity != -1ULL); 462 463 vd = vdev_alloc_common(spa, id, guid, ops); 464 465 vd->vdev_islog = islog; 466 vd->vdev_nparity = nparity; 467 468 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 469 vd->vdev_path = spa_strdup(vd->vdev_path); 470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 471 vd->vdev_devid = spa_strdup(vd->vdev_devid); 472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 473 &vd->vdev_physpath) == 0) 474 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 475 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 476 vd->vdev_fru = spa_strdup(vd->vdev_fru); 477 478 /* 479 * Set the whole_disk property. If it's not specified, leave the value 480 * as -1. 481 */ 482 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 483 &vd->vdev_wholedisk) != 0) 484 vd->vdev_wholedisk = -1ULL; 485 486 /* 487 * Look for the 'not present' flag. This will only be set if the device 488 * was not present at the time of import. 489 */ 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 491 &vd->vdev_not_present); 492 493 /* 494 * Get the alignment requirement. 495 */ 496 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 497 498 /* 499 * Retrieve the vdev creation time. 500 */ 501 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 502 &vd->vdev_crtxg); 503 504 /* 505 * If we're a top-level vdev, try to load the allocation parameters. 506 */ 507 if (parent && !parent->vdev_parent && 508 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 509 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 510 &vd->vdev_ms_array); 511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 512 &vd->vdev_ms_shift); 513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 514 &vd->vdev_asize); 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 516 &vd->vdev_removing); 517 } 518 519 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 520 ASSERT(alloctype == VDEV_ALLOC_LOAD || 521 alloctype == VDEV_ALLOC_ADD || 522 alloctype == VDEV_ALLOC_SPLIT || 523 alloctype == VDEV_ALLOC_ROOTPOOL); 524 vd->vdev_mg = metaslab_group_create(islog ? 525 spa_log_class(spa) : spa_normal_class(spa), vd); 526 } 527 528 /* 529 * If we're a leaf vdev, try to load the DTL object and other state. 530 */ 531 if (vd->vdev_ops->vdev_op_leaf && 532 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 533 alloctype == VDEV_ALLOC_ROOTPOOL)) { 534 if (alloctype == VDEV_ALLOC_LOAD) { 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 536 &vd->vdev_dtl_object); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 538 &vd->vdev_unspare); 539 } 540 541 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 542 uint64_t spare = 0; 543 544 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 545 &spare) == 0 && spare) 546 spa_spare_add(vd); 547 } 548 549 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 550 &vd->vdev_offline); 551 552 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 553 &vd->vdev_resilver_txg); 554 555 /* 556 * When importing a pool, we want to ignore the persistent fault 557 * state, as the diagnosis made on another system may not be 558 * valid in the current context. Local vdevs will 559 * remain in the faulted state. 560 */ 561 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 562 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 563 &vd->vdev_faulted); 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 565 &vd->vdev_degraded); 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 567 &vd->vdev_removed); 568 569 if (vd->vdev_faulted || vd->vdev_degraded) { 570 char *aux; 571 572 vd->vdev_label_aux = 573 VDEV_AUX_ERR_EXCEEDED; 574 if (nvlist_lookup_string(nv, 575 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 576 strcmp(aux, "external") == 0) 577 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 578 } 579 } 580 } 581 582 /* 583 * Add ourselves to the parent's list of children. 584 */ 585 vdev_add_child(parent, vd); 586 587 *vdp = vd; 588 589 return (0); 590 } 591 592 void 593 vdev_free(vdev_t *vd) 594 { 595 spa_t *spa = vd->vdev_spa; 596 597 /* 598 * vdev_free() implies closing the vdev first. This is simpler than 599 * trying to ensure complicated semantics for all callers. 600 */ 601 vdev_close(vd); 602 603 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 604 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 605 606 /* 607 * Free all children. 608 */ 609 for (int c = 0; c < vd->vdev_children; c++) 610 vdev_free(vd->vdev_child[c]); 611 612 ASSERT(vd->vdev_child == NULL); 613 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 614 615 /* 616 * Discard allocation state. 617 */ 618 if (vd->vdev_mg != NULL) { 619 vdev_metaslab_fini(vd); 620 metaslab_group_destroy(vd->vdev_mg); 621 } 622 623 ASSERT0(vd->vdev_stat.vs_space); 624 ASSERT0(vd->vdev_stat.vs_dspace); 625 ASSERT0(vd->vdev_stat.vs_alloc); 626 627 /* 628 * Remove this vdev from its parent's child list. 629 */ 630 vdev_remove_child(vd->vdev_parent, vd); 631 632 ASSERT(vd->vdev_parent == NULL); 633 634 /* 635 * Clean up vdev structure. 636 */ 637 vdev_queue_fini(vd); 638 vdev_cache_fini(vd); 639 640 if (vd->vdev_path) 641 spa_strfree(vd->vdev_path); 642 if (vd->vdev_devid) 643 spa_strfree(vd->vdev_devid); 644 if (vd->vdev_physpath) 645 spa_strfree(vd->vdev_physpath); 646 if (vd->vdev_fru) 647 spa_strfree(vd->vdev_fru); 648 649 if (vd->vdev_isspare) 650 spa_spare_remove(vd); 651 if (vd->vdev_isl2cache) 652 spa_l2cache_remove(vd); 653 654 txg_list_destroy(&vd->vdev_ms_list); 655 txg_list_destroy(&vd->vdev_dtl_list); 656 657 mutex_enter(&vd->vdev_dtl_lock); 658 space_map_close(vd->vdev_dtl_sm); 659 for (int t = 0; t < DTL_TYPES; t++) { 660 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 661 range_tree_destroy(vd->vdev_dtl[t]); 662 } 663 mutex_exit(&vd->vdev_dtl_lock); 664 665 mutex_destroy(&vd->vdev_dtl_lock); 666 mutex_destroy(&vd->vdev_stat_lock); 667 mutex_destroy(&vd->vdev_probe_lock); 668 669 if (vd == spa->spa_root_vdev) 670 spa->spa_root_vdev = NULL; 671 672 kmem_free(vd, sizeof (vdev_t)); 673 } 674 675 /* 676 * Transfer top-level vdev state from svd to tvd. 677 */ 678 static void 679 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 680 { 681 spa_t *spa = svd->vdev_spa; 682 metaslab_t *msp; 683 vdev_t *vd; 684 int t; 685 686 ASSERT(tvd == tvd->vdev_top); 687 688 tvd->vdev_ms_array = svd->vdev_ms_array; 689 tvd->vdev_ms_shift = svd->vdev_ms_shift; 690 tvd->vdev_ms_count = svd->vdev_ms_count; 691 692 svd->vdev_ms_array = 0; 693 svd->vdev_ms_shift = 0; 694 svd->vdev_ms_count = 0; 695 696 if (tvd->vdev_mg) 697 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 698 tvd->vdev_mg = svd->vdev_mg; 699 tvd->vdev_ms = svd->vdev_ms; 700 701 svd->vdev_mg = NULL; 702 svd->vdev_ms = NULL; 703 704 if (tvd->vdev_mg != NULL) 705 tvd->vdev_mg->mg_vd = tvd; 706 707 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 708 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 709 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 710 711 svd->vdev_stat.vs_alloc = 0; 712 svd->vdev_stat.vs_space = 0; 713 svd->vdev_stat.vs_dspace = 0; 714 715 for (t = 0; t < TXG_SIZE; t++) { 716 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 717 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 718 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 719 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 720 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 721 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 722 } 723 724 if (list_link_active(&svd->vdev_config_dirty_node)) { 725 vdev_config_clean(svd); 726 vdev_config_dirty(tvd); 727 } 728 729 if (list_link_active(&svd->vdev_state_dirty_node)) { 730 vdev_state_clean(svd); 731 vdev_state_dirty(tvd); 732 } 733 734 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 735 svd->vdev_deflate_ratio = 0; 736 737 tvd->vdev_islog = svd->vdev_islog; 738 svd->vdev_islog = 0; 739 } 740 741 static void 742 vdev_top_update(vdev_t *tvd, vdev_t *vd) 743 { 744 if (vd == NULL) 745 return; 746 747 vd->vdev_top = tvd; 748 749 for (int c = 0; c < vd->vdev_children; c++) 750 vdev_top_update(tvd, vd->vdev_child[c]); 751 } 752 753 /* 754 * Add a mirror/replacing vdev above an existing vdev. 755 */ 756 vdev_t * 757 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 758 { 759 spa_t *spa = cvd->vdev_spa; 760 vdev_t *pvd = cvd->vdev_parent; 761 vdev_t *mvd; 762 763 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 764 765 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 766 767 mvd->vdev_asize = cvd->vdev_asize; 768 mvd->vdev_min_asize = cvd->vdev_min_asize; 769 mvd->vdev_max_asize = cvd->vdev_max_asize; 770 mvd->vdev_ashift = cvd->vdev_ashift; 771 mvd->vdev_state = cvd->vdev_state; 772 mvd->vdev_crtxg = cvd->vdev_crtxg; 773 774 vdev_remove_child(pvd, cvd); 775 vdev_add_child(pvd, mvd); 776 cvd->vdev_id = mvd->vdev_children; 777 vdev_add_child(mvd, cvd); 778 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 779 780 if (mvd == mvd->vdev_top) 781 vdev_top_transfer(cvd, mvd); 782 783 return (mvd); 784 } 785 786 /* 787 * Remove a 1-way mirror/replacing vdev from the tree. 788 */ 789 void 790 vdev_remove_parent(vdev_t *cvd) 791 { 792 vdev_t *mvd = cvd->vdev_parent; 793 vdev_t *pvd = mvd->vdev_parent; 794 795 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 796 797 ASSERT(mvd->vdev_children == 1); 798 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 799 mvd->vdev_ops == &vdev_replacing_ops || 800 mvd->vdev_ops == &vdev_spare_ops); 801 cvd->vdev_ashift = mvd->vdev_ashift; 802 803 vdev_remove_child(mvd, cvd); 804 vdev_remove_child(pvd, mvd); 805 806 /* 807 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 808 * Otherwise, we could have detached an offline device, and when we 809 * go to import the pool we'll think we have two top-level vdevs, 810 * instead of a different version of the same top-level vdev. 811 */ 812 if (mvd->vdev_top == mvd) { 813 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 814 cvd->vdev_orig_guid = cvd->vdev_guid; 815 cvd->vdev_guid += guid_delta; 816 cvd->vdev_guid_sum += guid_delta; 817 } 818 cvd->vdev_id = mvd->vdev_id; 819 vdev_add_child(pvd, cvd); 820 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 821 822 if (cvd == cvd->vdev_top) 823 vdev_top_transfer(mvd, cvd); 824 825 ASSERT(mvd->vdev_children == 0); 826 vdev_free(mvd); 827 } 828 829 int 830 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 831 { 832 spa_t *spa = vd->vdev_spa; 833 objset_t *mos = spa->spa_meta_objset; 834 uint64_t m; 835 uint64_t oldc = vd->vdev_ms_count; 836 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 837 metaslab_t **mspp; 838 int error; 839 840 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 841 842 /* 843 * This vdev is not being allocated from yet or is a hole. 844 */ 845 if (vd->vdev_ms_shift == 0) 846 return (0); 847 848 ASSERT(!vd->vdev_ishole); 849 850 /* 851 * Compute the raidz-deflation ratio. Note, we hard-code 852 * in 128k (1 << 17) because it is the "typical" blocksize. 853 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 854 * otherwise it would inconsistently account for existing bp's. 855 */ 856 vd->vdev_deflate_ratio = (1 << 17) / 857 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 858 859 ASSERT(oldc <= newc); 860 861 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 862 863 if (oldc != 0) { 864 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 865 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 866 } 867 868 vd->vdev_ms = mspp; 869 vd->vdev_ms_count = newc; 870 871 for (m = oldc; m < newc; m++) { 872 uint64_t object = 0; 873 874 if (txg == 0) { 875 error = dmu_read(mos, vd->vdev_ms_array, 876 m * sizeof (uint64_t), sizeof (uint64_t), &object, 877 DMU_READ_PREFETCH); 878 if (error) 879 return (error); 880 } 881 882 error = metaslab_init(vd->vdev_mg, m, object, txg, 883 &(vd->vdev_ms[m])); 884 if (error) 885 return (error); 886 } 887 888 if (txg == 0) 889 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 890 891 /* 892 * If the vdev is being removed we don't activate 893 * the metaslabs since we want to ensure that no new 894 * allocations are performed on this device. 895 */ 896 if (oldc == 0 && !vd->vdev_removing) 897 metaslab_group_activate(vd->vdev_mg); 898 899 if (txg == 0) 900 spa_config_exit(spa, SCL_ALLOC, FTAG); 901 902 return (0); 903 } 904 905 void 906 vdev_metaslab_fini(vdev_t *vd) 907 { 908 uint64_t m; 909 uint64_t count = vd->vdev_ms_count; 910 911 if (vd->vdev_ms != NULL) { 912 metaslab_group_passivate(vd->vdev_mg); 913 for (m = 0; m < count; m++) { 914 metaslab_t *msp = vd->vdev_ms[m]; 915 916 if (msp != NULL) 917 metaslab_fini(msp); 918 } 919 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 920 vd->vdev_ms = NULL; 921 } 922 } 923 924 typedef struct vdev_probe_stats { 925 boolean_t vps_readable; 926 boolean_t vps_writeable; 927 int vps_flags; 928 } vdev_probe_stats_t; 929 930 static void 931 vdev_probe_done(zio_t *zio) 932 { 933 spa_t *spa = zio->io_spa; 934 vdev_t *vd = zio->io_vd; 935 vdev_probe_stats_t *vps = zio->io_private; 936 937 ASSERT(vd->vdev_probe_zio != NULL); 938 939 if (zio->io_type == ZIO_TYPE_READ) { 940 if (zio->io_error == 0) 941 vps->vps_readable = 1; 942 if (zio->io_error == 0 && spa_writeable(spa)) { 943 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 944 zio->io_offset, zio->io_size, zio->io_data, 945 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 946 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 947 } else { 948 zio_buf_free(zio->io_data, zio->io_size); 949 } 950 } else if (zio->io_type == ZIO_TYPE_WRITE) { 951 if (zio->io_error == 0) 952 vps->vps_writeable = 1; 953 zio_buf_free(zio->io_data, zio->io_size); 954 } else if (zio->io_type == ZIO_TYPE_NULL) { 955 zio_t *pio; 956 957 vd->vdev_cant_read |= !vps->vps_readable; 958 vd->vdev_cant_write |= !vps->vps_writeable; 959 960 if (vdev_readable(vd) && 961 (vdev_writeable(vd) || !spa_writeable(spa))) { 962 zio->io_error = 0; 963 } else { 964 ASSERT(zio->io_error != 0); 965 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 966 spa, vd, NULL, 0, 0); 967 zio->io_error = SET_ERROR(ENXIO); 968 } 969 970 mutex_enter(&vd->vdev_probe_lock); 971 ASSERT(vd->vdev_probe_zio == zio); 972 vd->vdev_probe_zio = NULL; 973 mutex_exit(&vd->vdev_probe_lock); 974 975 while ((pio = zio_walk_parents(zio)) != NULL) 976 if (!vdev_accessible(vd, pio)) 977 pio->io_error = SET_ERROR(ENXIO); 978 979 kmem_free(vps, sizeof (*vps)); 980 } 981 } 982 983 /* 984 * Determine whether this device is accessible. 985 * 986 * Read and write to several known locations: the pad regions of each 987 * vdev label but the first, which we leave alone in case it contains 988 * a VTOC. 989 */ 990 zio_t * 991 vdev_probe(vdev_t *vd, zio_t *zio) 992 { 993 spa_t *spa = vd->vdev_spa; 994 vdev_probe_stats_t *vps = NULL; 995 zio_t *pio; 996 997 ASSERT(vd->vdev_ops->vdev_op_leaf); 998 999 /* 1000 * Don't probe the probe. 1001 */ 1002 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1003 return (NULL); 1004 1005 /* 1006 * To prevent 'probe storms' when a device fails, we create 1007 * just one probe i/o at a time. All zios that want to probe 1008 * this vdev will become parents of the probe io. 1009 */ 1010 mutex_enter(&vd->vdev_probe_lock); 1011 1012 if ((pio = vd->vdev_probe_zio) == NULL) { 1013 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1014 1015 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1016 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1017 ZIO_FLAG_TRYHARD; 1018 1019 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1020 /* 1021 * vdev_cant_read and vdev_cant_write can only 1022 * transition from TRUE to FALSE when we have the 1023 * SCL_ZIO lock as writer; otherwise they can only 1024 * transition from FALSE to TRUE. This ensures that 1025 * any zio looking at these values can assume that 1026 * failures persist for the life of the I/O. That's 1027 * important because when a device has intermittent 1028 * connectivity problems, we want to ensure that 1029 * they're ascribed to the device (ENXIO) and not 1030 * the zio (EIO). 1031 * 1032 * Since we hold SCL_ZIO as writer here, clear both 1033 * values so the probe can reevaluate from first 1034 * principles. 1035 */ 1036 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1037 vd->vdev_cant_read = B_FALSE; 1038 vd->vdev_cant_write = B_FALSE; 1039 } 1040 1041 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1042 vdev_probe_done, vps, 1043 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1044 1045 /* 1046 * We can't change the vdev state in this context, so we 1047 * kick off an async task to do it on our behalf. 1048 */ 1049 if (zio != NULL) { 1050 vd->vdev_probe_wanted = B_TRUE; 1051 spa_async_request(spa, SPA_ASYNC_PROBE); 1052 } 1053 } 1054 1055 if (zio != NULL) 1056 zio_add_child(zio, pio); 1057 1058 mutex_exit(&vd->vdev_probe_lock); 1059 1060 if (vps == NULL) { 1061 ASSERT(zio != NULL); 1062 return (NULL); 1063 } 1064 1065 for (int l = 1; l < VDEV_LABELS; l++) { 1066 zio_nowait(zio_read_phys(pio, vd, 1067 vdev_label_offset(vd->vdev_psize, l, 1068 offsetof(vdev_label_t, vl_pad2)), 1069 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1070 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1071 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1072 } 1073 1074 if (zio == NULL) 1075 return (pio); 1076 1077 zio_nowait(pio); 1078 return (NULL); 1079 } 1080 1081 static void 1082 vdev_open_child(void *arg) 1083 { 1084 vdev_t *vd = arg; 1085 1086 vd->vdev_open_thread = curthread; 1087 vd->vdev_open_error = vdev_open(vd); 1088 vd->vdev_open_thread = NULL; 1089 } 1090 1091 boolean_t 1092 vdev_uses_zvols(vdev_t *vd) 1093 { 1094 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1095 strlen(ZVOL_DIR)) == 0) 1096 return (B_TRUE); 1097 for (int c = 0; c < vd->vdev_children; c++) 1098 if (vdev_uses_zvols(vd->vdev_child[c])) 1099 return (B_TRUE); 1100 return (B_FALSE); 1101 } 1102 1103 void 1104 vdev_open_children(vdev_t *vd) 1105 { 1106 taskq_t *tq; 1107 int children = vd->vdev_children; 1108 1109 /* 1110 * in order to handle pools on top of zvols, do the opens 1111 * in a single thread so that the same thread holds the 1112 * spa_namespace_lock 1113 */ 1114 if (vdev_uses_zvols(vd)) { 1115 for (int c = 0; c < children; c++) 1116 vd->vdev_child[c]->vdev_open_error = 1117 vdev_open(vd->vdev_child[c]); 1118 return; 1119 } 1120 tq = taskq_create("vdev_open", children, minclsyspri, 1121 children, children, TASKQ_PREPOPULATE); 1122 1123 for (int c = 0; c < children; c++) 1124 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1125 TQ_SLEEP) != NULL); 1126 1127 taskq_destroy(tq); 1128 } 1129 1130 /* 1131 * Prepare a virtual device for access. 1132 */ 1133 int 1134 vdev_open(vdev_t *vd) 1135 { 1136 spa_t *spa = vd->vdev_spa; 1137 int error; 1138 uint64_t osize = 0; 1139 uint64_t max_osize = 0; 1140 uint64_t asize, max_asize, psize; 1141 uint64_t ashift = 0; 1142 1143 ASSERT(vd->vdev_open_thread == curthread || 1144 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1145 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1146 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1147 vd->vdev_state == VDEV_STATE_OFFLINE); 1148 1149 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1150 vd->vdev_cant_read = B_FALSE; 1151 vd->vdev_cant_write = B_FALSE; 1152 vd->vdev_min_asize = vdev_get_min_asize(vd); 1153 1154 /* 1155 * If this vdev is not removed, check its fault status. If it's 1156 * faulted, bail out of the open. 1157 */ 1158 if (!vd->vdev_removed && vd->vdev_faulted) { 1159 ASSERT(vd->vdev_children == 0); 1160 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1161 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1162 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1163 vd->vdev_label_aux); 1164 return (SET_ERROR(ENXIO)); 1165 } else if (vd->vdev_offline) { 1166 ASSERT(vd->vdev_children == 0); 1167 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1168 return (SET_ERROR(ENXIO)); 1169 } 1170 1171 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1172 1173 /* 1174 * Reset the vdev_reopening flag so that we actually close 1175 * the vdev on error. 1176 */ 1177 vd->vdev_reopening = B_FALSE; 1178 if (zio_injection_enabled && error == 0) 1179 error = zio_handle_device_injection(vd, NULL, ENXIO); 1180 1181 if (error) { 1182 if (vd->vdev_removed && 1183 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1184 vd->vdev_removed = B_FALSE; 1185 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1187 vd->vdev_stat.vs_aux); 1188 return (error); 1189 } 1190 1191 vd->vdev_removed = B_FALSE; 1192 1193 /* 1194 * Recheck the faulted flag now that we have confirmed that 1195 * the vdev is accessible. If we're faulted, bail. 1196 */ 1197 if (vd->vdev_faulted) { 1198 ASSERT(vd->vdev_children == 0); 1199 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1200 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1201 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1202 vd->vdev_label_aux); 1203 return (SET_ERROR(ENXIO)); 1204 } 1205 1206 if (vd->vdev_degraded) { 1207 ASSERT(vd->vdev_children == 0); 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1209 VDEV_AUX_ERR_EXCEEDED); 1210 } else { 1211 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1212 } 1213 1214 /* 1215 * For hole or missing vdevs we just return success. 1216 */ 1217 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1218 return (0); 1219 1220 for (int c = 0; c < vd->vdev_children; c++) { 1221 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1222 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1223 VDEV_AUX_NONE); 1224 break; 1225 } 1226 } 1227 1228 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1229 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1230 1231 if (vd->vdev_children == 0) { 1232 if (osize < SPA_MINDEVSIZE) { 1233 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1234 VDEV_AUX_TOO_SMALL); 1235 return (SET_ERROR(EOVERFLOW)); 1236 } 1237 psize = osize; 1238 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1239 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1240 VDEV_LABEL_END_SIZE); 1241 } else { 1242 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1243 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1244 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1245 VDEV_AUX_TOO_SMALL); 1246 return (SET_ERROR(EOVERFLOW)); 1247 } 1248 psize = 0; 1249 asize = osize; 1250 max_asize = max_osize; 1251 } 1252 1253 vd->vdev_psize = psize; 1254 1255 /* 1256 * Make sure the allocatable size hasn't shrunk. 1257 */ 1258 if (asize < vd->vdev_min_asize) { 1259 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1260 VDEV_AUX_BAD_LABEL); 1261 return (SET_ERROR(EINVAL)); 1262 } 1263 1264 if (vd->vdev_asize == 0) { 1265 /* 1266 * This is the first-ever open, so use the computed values. 1267 * For testing purposes, a higher ashift can be requested. 1268 */ 1269 vd->vdev_asize = asize; 1270 vd->vdev_max_asize = max_asize; 1271 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1272 } else { 1273 /* 1274 * Detect if the alignment requirement has increased. 1275 * We don't want to make the pool unavailable, just 1276 * issue a warning instead. 1277 */ 1278 if (ashift > vd->vdev_top->vdev_ashift && 1279 vd->vdev_ops->vdev_op_leaf) { 1280 cmn_err(CE_WARN, 1281 "Disk, '%s', has a block alignment that is " 1282 "larger than the pool's alignment\n", 1283 vd->vdev_path); 1284 } 1285 vd->vdev_max_asize = max_asize; 1286 } 1287 1288 /* 1289 * If all children are healthy and the asize has increased, 1290 * then we've experienced dynamic LUN growth. If automatic 1291 * expansion is enabled then use the additional space. 1292 */ 1293 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1294 (vd->vdev_expanding || spa->spa_autoexpand)) 1295 vd->vdev_asize = asize; 1296 1297 vdev_set_min_asize(vd); 1298 1299 /* 1300 * Ensure we can issue some IO before declaring the 1301 * vdev open for business. 1302 */ 1303 if (vd->vdev_ops->vdev_op_leaf && 1304 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1305 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1306 VDEV_AUX_ERR_EXCEEDED); 1307 return (error); 1308 } 1309 1310 /* 1311 * Track the min and max ashift values for normal data devices. 1312 */ 1313 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1314 !vd->vdev_islog && vd->vdev_aux == NULL) { 1315 if (vd->vdev_ashift > spa->spa_max_ashift) 1316 spa->spa_max_ashift = vd->vdev_ashift; 1317 if (vd->vdev_ashift < spa->spa_min_ashift) 1318 spa->spa_min_ashift = vd->vdev_ashift; 1319 } 1320 1321 /* 1322 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1323 * resilver. But don't do this if we are doing a reopen for a scrub, 1324 * since this would just restart the scrub we are already doing. 1325 */ 1326 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1327 vdev_resilver_needed(vd, NULL, NULL)) 1328 spa_async_request(spa, SPA_ASYNC_RESILVER); 1329 1330 return (0); 1331 } 1332 1333 /* 1334 * Called once the vdevs are all opened, this routine validates the label 1335 * contents. This needs to be done before vdev_load() so that we don't 1336 * inadvertently do repair I/Os to the wrong device. 1337 * 1338 * If 'strict' is false ignore the spa guid check. This is necessary because 1339 * if the machine crashed during a re-guid the new guid might have been written 1340 * to all of the vdev labels, but not the cached config. The strict check 1341 * will be performed when the pool is opened again using the mos config. 1342 * 1343 * This function will only return failure if one of the vdevs indicates that it 1344 * has since been destroyed or exported. This is only possible if 1345 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1346 * will be updated but the function will return 0. 1347 */ 1348 int 1349 vdev_validate(vdev_t *vd, boolean_t strict) 1350 { 1351 spa_t *spa = vd->vdev_spa; 1352 nvlist_t *label; 1353 uint64_t guid = 0, top_guid; 1354 uint64_t state; 1355 1356 for (int c = 0; c < vd->vdev_children; c++) 1357 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1358 return (SET_ERROR(EBADF)); 1359 1360 /* 1361 * If the device has already failed, or was marked offline, don't do 1362 * any further validation. Otherwise, label I/O will fail and we will 1363 * overwrite the previous state. 1364 */ 1365 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1366 uint64_t aux_guid = 0; 1367 nvlist_t *nvl; 1368 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1369 spa_last_synced_txg(spa) : -1ULL; 1370 1371 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1372 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1373 VDEV_AUX_BAD_LABEL); 1374 return (0); 1375 } 1376 1377 /* 1378 * Determine if this vdev has been split off into another 1379 * pool. If so, then refuse to open it. 1380 */ 1381 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1382 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1383 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1384 VDEV_AUX_SPLIT_POOL); 1385 nvlist_free(label); 1386 return (0); 1387 } 1388 1389 if (strict && (nvlist_lookup_uint64(label, 1390 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1391 guid != spa_guid(spa))) { 1392 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1393 VDEV_AUX_CORRUPT_DATA); 1394 nvlist_free(label); 1395 return (0); 1396 } 1397 1398 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1399 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1400 &aux_guid) != 0) 1401 aux_guid = 0; 1402 1403 /* 1404 * If this vdev just became a top-level vdev because its 1405 * sibling was detached, it will have adopted the parent's 1406 * vdev guid -- but the label may or may not be on disk yet. 1407 * Fortunately, either version of the label will have the 1408 * same top guid, so if we're a top-level vdev, we can 1409 * safely compare to that instead. 1410 * 1411 * If we split this vdev off instead, then we also check the 1412 * original pool's guid. We don't want to consider the vdev 1413 * corrupt if it is partway through a split operation. 1414 */ 1415 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1416 &guid) != 0 || 1417 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1418 &top_guid) != 0 || 1419 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1420 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1421 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1422 VDEV_AUX_CORRUPT_DATA); 1423 nvlist_free(label); 1424 return (0); 1425 } 1426 1427 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1428 &state) != 0) { 1429 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1430 VDEV_AUX_CORRUPT_DATA); 1431 nvlist_free(label); 1432 return (0); 1433 } 1434 1435 nvlist_free(label); 1436 1437 /* 1438 * If this is a verbatim import, no need to check the 1439 * state of the pool. 1440 */ 1441 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1442 spa_load_state(spa) == SPA_LOAD_OPEN && 1443 state != POOL_STATE_ACTIVE) 1444 return (SET_ERROR(EBADF)); 1445 1446 /* 1447 * If we were able to open and validate a vdev that was 1448 * previously marked permanently unavailable, clear that state 1449 * now. 1450 */ 1451 if (vd->vdev_not_present) 1452 vd->vdev_not_present = 0; 1453 } 1454 1455 return (0); 1456 } 1457 1458 /* 1459 * Close a virtual device. 1460 */ 1461 void 1462 vdev_close(vdev_t *vd) 1463 { 1464 spa_t *spa = vd->vdev_spa; 1465 vdev_t *pvd = vd->vdev_parent; 1466 1467 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1468 1469 /* 1470 * If our parent is reopening, then we are as well, unless we are 1471 * going offline. 1472 */ 1473 if (pvd != NULL && pvd->vdev_reopening) 1474 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1475 1476 vd->vdev_ops->vdev_op_close(vd); 1477 1478 vdev_cache_purge(vd); 1479 1480 /* 1481 * We record the previous state before we close it, so that if we are 1482 * doing a reopen(), we don't generate FMA ereports if we notice that 1483 * it's still faulted. 1484 */ 1485 vd->vdev_prevstate = vd->vdev_state; 1486 1487 if (vd->vdev_offline) 1488 vd->vdev_state = VDEV_STATE_OFFLINE; 1489 else 1490 vd->vdev_state = VDEV_STATE_CLOSED; 1491 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1492 } 1493 1494 void 1495 vdev_hold(vdev_t *vd) 1496 { 1497 spa_t *spa = vd->vdev_spa; 1498 1499 ASSERT(spa_is_root(spa)); 1500 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1501 return; 1502 1503 for (int c = 0; c < vd->vdev_children; c++) 1504 vdev_hold(vd->vdev_child[c]); 1505 1506 if (vd->vdev_ops->vdev_op_leaf) 1507 vd->vdev_ops->vdev_op_hold(vd); 1508 } 1509 1510 void 1511 vdev_rele(vdev_t *vd) 1512 { 1513 spa_t *spa = vd->vdev_spa; 1514 1515 ASSERT(spa_is_root(spa)); 1516 for (int c = 0; c < vd->vdev_children; c++) 1517 vdev_rele(vd->vdev_child[c]); 1518 1519 if (vd->vdev_ops->vdev_op_leaf) 1520 vd->vdev_ops->vdev_op_rele(vd); 1521 } 1522 1523 /* 1524 * Reopen all interior vdevs and any unopened leaves. We don't actually 1525 * reopen leaf vdevs which had previously been opened as they might deadlock 1526 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1527 * If the leaf has never been opened then open it, as usual. 1528 */ 1529 void 1530 vdev_reopen(vdev_t *vd) 1531 { 1532 spa_t *spa = vd->vdev_spa; 1533 1534 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1535 1536 /* set the reopening flag unless we're taking the vdev offline */ 1537 vd->vdev_reopening = !vd->vdev_offline; 1538 vdev_close(vd); 1539 (void) vdev_open(vd); 1540 1541 /* 1542 * Call vdev_validate() here to make sure we have the same device. 1543 * Otherwise, a device with an invalid label could be successfully 1544 * opened in response to vdev_reopen(). 1545 */ 1546 if (vd->vdev_aux) { 1547 (void) vdev_validate_aux(vd); 1548 if (vdev_readable(vd) && vdev_writeable(vd) && 1549 vd->vdev_aux == &spa->spa_l2cache && 1550 !l2arc_vdev_present(vd)) { 1551 /* 1552 * When reopening we can assume persistent L2ARC is 1553 * supported, since we've already opened the device 1554 * in the past and prepended an L2ARC uberblock. 1555 */ 1556 l2arc_add_vdev(spa, vd, B_TRUE); 1557 } 1558 } else { 1559 (void) vdev_validate(vd, B_TRUE); 1560 } 1561 1562 /* 1563 * Reassess parent vdev's health. 1564 */ 1565 vdev_propagate_state(vd); 1566 } 1567 1568 int 1569 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1570 { 1571 int error; 1572 1573 /* 1574 * Normally, partial opens (e.g. of a mirror) are allowed. 1575 * For a create, however, we want to fail the request if 1576 * there are any components we can't open. 1577 */ 1578 error = vdev_open(vd); 1579 1580 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1581 vdev_close(vd); 1582 return (error ? error : ENXIO); 1583 } 1584 1585 /* 1586 * Recursively load DTLs and initialize all labels. 1587 */ 1588 if ((error = vdev_dtl_load(vd)) != 0 || 1589 (error = vdev_label_init(vd, txg, isreplacing ? 1590 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1591 vdev_close(vd); 1592 return (error); 1593 } 1594 1595 return (0); 1596 } 1597 1598 void 1599 vdev_metaslab_set_size(vdev_t *vd) 1600 { 1601 /* 1602 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1603 */ 1604 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1605 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1606 } 1607 1608 void 1609 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1610 { 1611 ASSERT(vd == vd->vdev_top); 1612 ASSERT(!vd->vdev_ishole); 1613 ASSERT(ISP2(flags)); 1614 ASSERT(spa_writeable(vd->vdev_spa)); 1615 1616 if (flags & VDD_METASLAB) 1617 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1618 1619 if (flags & VDD_DTL) 1620 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1621 1622 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1623 } 1624 1625 void 1626 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1627 { 1628 for (int c = 0; c < vd->vdev_children; c++) 1629 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1630 1631 if (vd->vdev_ops->vdev_op_leaf) 1632 vdev_dirty(vd->vdev_top, flags, vd, txg); 1633 } 1634 1635 /* 1636 * DTLs. 1637 * 1638 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1639 * the vdev has less than perfect replication. There are four kinds of DTL: 1640 * 1641 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1642 * 1643 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1644 * 1645 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1646 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1647 * txgs that was scrubbed. 1648 * 1649 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1650 * persistent errors or just some device being offline. 1651 * Unlike the other three, the DTL_OUTAGE map is not generally 1652 * maintained; it's only computed when needed, typically to 1653 * determine whether a device can be detached. 1654 * 1655 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1656 * either has the data or it doesn't. 1657 * 1658 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1659 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1660 * if any child is less than fully replicated, then so is its parent. 1661 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1662 * comprising only those txgs which appear in 'maxfaults' or more children; 1663 * those are the txgs we don't have enough replication to read. For example, 1664 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1665 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1666 * two child DTL_MISSING maps. 1667 * 1668 * It should be clear from the above that to compute the DTLs and outage maps 1669 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1670 * Therefore, that is all we keep on disk. When loading the pool, or after 1671 * a configuration change, we generate all other DTLs from first principles. 1672 */ 1673 void 1674 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1675 { 1676 range_tree_t *rt = vd->vdev_dtl[t]; 1677 1678 ASSERT(t < DTL_TYPES); 1679 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1680 ASSERT(spa_writeable(vd->vdev_spa)); 1681 1682 mutex_enter(rt->rt_lock); 1683 if (!range_tree_contains(rt, txg, size)) 1684 range_tree_add(rt, txg, size); 1685 mutex_exit(rt->rt_lock); 1686 } 1687 1688 boolean_t 1689 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1690 { 1691 range_tree_t *rt = vd->vdev_dtl[t]; 1692 boolean_t dirty = B_FALSE; 1693 1694 ASSERT(t < DTL_TYPES); 1695 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1696 1697 mutex_enter(rt->rt_lock); 1698 if (range_tree_space(rt) != 0) 1699 dirty = range_tree_contains(rt, txg, size); 1700 mutex_exit(rt->rt_lock); 1701 1702 return (dirty); 1703 } 1704 1705 boolean_t 1706 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1707 { 1708 range_tree_t *rt = vd->vdev_dtl[t]; 1709 boolean_t empty; 1710 1711 mutex_enter(rt->rt_lock); 1712 empty = (range_tree_space(rt) == 0); 1713 mutex_exit(rt->rt_lock); 1714 1715 return (empty); 1716 } 1717 1718 /* 1719 * Returns the lowest txg in the DTL range. 1720 */ 1721 static uint64_t 1722 vdev_dtl_min(vdev_t *vd) 1723 { 1724 range_seg_t *rs; 1725 1726 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1727 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1728 ASSERT0(vd->vdev_children); 1729 1730 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1731 return (rs->rs_start - 1); 1732 } 1733 1734 /* 1735 * Returns the highest txg in the DTL. 1736 */ 1737 static uint64_t 1738 vdev_dtl_max(vdev_t *vd) 1739 { 1740 range_seg_t *rs; 1741 1742 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1743 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1744 ASSERT0(vd->vdev_children); 1745 1746 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1747 return (rs->rs_end); 1748 } 1749 1750 /* 1751 * Determine if a resilvering vdev should remove any DTL entries from 1752 * its range. If the vdev was resilvering for the entire duration of the 1753 * scan then it should excise that range from its DTLs. Otherwise, this 1754 * vdev is considered partially resilvered and should leave its DTL 1755 * entries intact. The comment in vdev_dtl_reassess() describes how we 1756 * excise the DTLs. 1757 */ 1758 static boolean_t 1759 vdev_dtl_should_excise(vdev_t *vd) 1760 { 1761 spa_t *spa = vd->vdev_spa; 1762 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1763 1764 ASSERT0(scn->scn_phys.scn_errors); 1765 ASSERT0(vd->vdev_children); 1766 1767 if (vd->vdev_resilver_txg == 0 || 1768 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1769 return (B_TRUE); 1770 1771 /* 1772 * When a resilver is initiated the scan will assign the scn_max_txg 1773 * value to the highest txg value that exists in all DTLs. If this 1774 * device's max DTL is not part of this scan (i.e. it is not in 1775 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1776 * for excision. 1777 */ 1778 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1779 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1780 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1781 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1782 return (B_TRUE); 1783 } 1784 return (B_FALSE); 1785 } 1786 1787 /* 1788 * Reassess DTLs after a config change or scrub completion. 1789 */ 1790 void 1791 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1792 { 1793 spa_t *spa = vd->vdev_spa; 1794 avl_tree_t reftree; 1795 int minref; 1796 1797 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1798 1799 for (int c = 0; c < vd->vdev_children; c++) 1800 vdev_dtl_reassess(vd->vdev_child[c], txg, 1801 scrub_txg, scrub_done); 1802 1803 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1804 return; 1805 1806 if (vd->vdev_ops->vdev_op_leaf) { 1807 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1808 1809 mutex_enter(&vd->vdev_dtl_lock); 1810 1811 /* 1812 * If we've completed a scan cleanly then determine 1813 * if this vdev should remove any DTLs. We only want to 1814 * excise regions on vdevs that were available during 1815 * the entire duration of this scan. 1816 */ 1817 if (scrub_txg != 0 && 1818 (spa->spa_scrub_started || 1819 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1820 vdev_dtl_should_excise(vd)) { 1821 /* 1822 * We completed a scrub up to scrub_txg. If we 1823 * did it without rebooting, then the scrub dtl 1824 * will be valid, so excise the old region and 1825 * fold in the scrub dtl. Otherwise, leave the 1826 * dtl as-is if there was an error. 1827 * 1828 * There's little trick here: to excise the beginning 1829 * of the DTL_MISSING map, we put it into a reference 1830 * tree and then add a segment with refcnt -1 that 1831 * covers the range [0, scrub_txg). This means 1832 * that each txg in that range has refcnt -1 or 0. 1833 * We then add DTL_SCRUB with a refcnt of 2, so that 1834 * entries in the range [0, scrub_txg) will have a 1835 * positive refcnt -- either 1 or 2. We then convert 1836 * the reference tree into the new DTL_MISSING map. 1837 */ 1838 space_reftree_create(&reftree); 1839 space_reftree_add_map(&reftree, 1840 vd->vdev_dtl[DTL_MISSING], 1); 1841 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1842 space_reftree_add_map(&reftree, 1843 vd->vdev_dtl[DTL_SCRUB], 2); 1844 space_reftree_generate_map(&reftree, 1845 vd->vdev_dtl[DTL_MISSING], 1); 1846 space_reftree_destroy(&reftree); 1847 } 1848 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1849 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1850 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1851 if (scrub_done) 1852 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1853 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1854 if (!vdev_readable(vd)) 1855 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1856 else 1857 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1858 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1859 1860 /* 1861 * If the vdev was resilvering and no longer has any 1862 * DTLs then reset its resilvering flag. 1863 */ 1864 if (vd->vdev_resilver_txg != 0 && 1865 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1866 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1867 vd->vdev_resilver_txg = 0; 1868 1869 mutex_exit(&vd->vdev_dtl_lock); 1870 1871 if (txg != 0) 1872 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1873 return; 1874 } 1875 1876 mutex_enter(&vd->vdev_dtl_lock); 1877 for (int t = 0; t < DTL_TYPES; t++) { 1878 /* account for child's outage in parent's missing map */ 1879 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1880 if (t == DTL_SCRUB) 1881 continue; /* leaf vdevs only */ 1882 if (t == DTL_PARTIAL) 1883 minref = 1; /* i.e. non-zero */ 1884 else if (vd->vdev_nparity != 0) 1885 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1886 else 1887 minref = vd->vdev_children; /* any kind of mirror */ 1888 space_reftree_create(&reftree); 1889 for (int c = 0; c < vd->vdev_children; c++) { 1890 vdev_t *cvd = vd->vdev_child[c]; 1891 mutex_enter(&cvd->vdev_dtl_lock); 1892 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1893 mutex_exit(&cvd->vdev_dtl_lock); 1894 } 1895 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1896 space_reftree_destroy(&reftree); 1897 } 1898 mutex_exit(&vd->vdev_dtl_lock); 1899 } 1900 1901 int 1902 vdev_dtl_load(vdev_t *vd) 1903 { 1904 spa_t *spa = vd->vdev_spa; 1905 objset_t *mos = spa->spa_meta_objset; 1906 int error = 0; 1907 1908 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1909 ASSERT(!vd->vdev_ishole); 1910 1911 error = space_map_open(&vd->vdev_dtl_sm, mos, 1912 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1913 if (error) 1914 return (error); 1915 ASSERT(vd->vdev_dtl_sm != NULL); 1916 1917 mutex_enter(&vd->vdev_dtl_lock); 1918 1919 /* 1920 * Now that we've opened the space_map we need to update 1921 * the in-core DTL. 1922 */ 1923 space_map_update(vd->vdev_dtl_sm); 1924 1925 error = space_map_load(vd->vdev_dtl_sm, 1926 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1927 mutex_exit(&vd->vdev_dtl_lock); 1928 1929 return (error); 1930 } 1931 1932 for (int c = 0; c < vd->vdev_children; c++) { 1933 error = vdev_dtl_load(vd->vdev_child[c]); 1934 if (error != 0) 1935 break; 1936 } 1937 1938 return (error); 1939 } 1940 1941 void 1942 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1943 { 1944 spa_t *spa = vd->vdev_spa; 1945 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1946 objset_t *mos = spa->spa_meta_objset; 1947 range_tree_t *rtsync; 1948 kmutex_t rtlock; 1949 dmu_tx_t *tx; 1950 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1951 1952 ASSERT(!vd->vdev_ishole); 1953 ASSERT(vd->vdev_ops->vdev_op_leaf); 1954 1955 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1956 1957 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1958 mutex_enter(&vd->vdev_dtl_lock); 1959 space_map_free(vd->vdev_dtl_sm, tx); 1960 space_map_close(vd->vdev_dtl_sm); 1961 vd->vdev_dtl_sm = NULL; 1962 mutex_exit(&vd->vdev_dtl_lock); 1963 dmu_tx_commit(tx); 1964 return; 1965 } 1966 1967 if (vd->vdev_dtl_sm == NULL) { 1968 uint64_t new_object; 1969 1970 new_object = space_map_alloc(mos, tx); 1971 VERIFY3U(new_object, !=, 0); 1972 1973 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1974 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1975 ASSERT(vd->vdev_dtl_sm != NULL); 1976 } 1977 1978 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1979 1980 rtsync = range_tree_create(NULL, NULL, &rtlock); 1981 1982 mutex_enter(&rtlock); 1983 1984 mutex_enter(&vd->vdev_dtl_lock); 1985 range_tree_walk(rt, range_tree_add, rtsync); 1986 mutex_exit(&vd->vdev_dtl_lock); 1987 1988 space_map_truncate(vd->vdev_dtl_sm, tx); 1989 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1990 range_tree_vacate(rtsync, NULL, NULL); 1991 1992 range_tree_destroy(rtsync); 1993 1994 mutex_exit(&rtlock); 1995 mutex_destroy(&rtlock); 1996 1997 /* 1998 * If the object for the space map has changed then dirty 1999 * the top level so that we update the config. 2000 */ 2001 if (object != space_map_object(vd->vdev_dtl_sm)) { 2002 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2003 "new object %llu", txg, spa_name(spa), object, 2004 space_map_object(vd->vdev_dtl_sm)); 2005 vdev_config_dirty(vd->vdev_top); 2006 } 2007 2008 dmu_tx_commit(tx); 2009 2010 mutex_enter(&vd->vdev_dtl_lock); 2011 space_map_update(vd->vdev_dtl_sm); 2012 mutex_exit(&vd->vdev_dtl_lock); 2013 } 2014 2015 /* 2016 * Determine whether the specified vdev can be offlined/detached/removed 2017 * without losing data. 2018 */ 2019 boolean_t 2020 vdev_dtl_required(vdev_t *vd) 2021 { 2022 spa_t *spa = vd->vdev_spa; 2023 vdev_t *tvd = vd->vdev_top; 2024 uint8_t cant_read = vd->vdev_cant_read; 2025 boolean_t required; 2026 2027 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2028 2029 if (vd == spa->spa_root_vdev || vd == tvd) 2030 return (B_TRUE); 2031 2032 /* 2033 * Temporarily mark the device as unreadable, and then determine 2034 * whether this results in any DTL outages in the top-level vdev. 2035 * If not, we can safely offline/detach/remove the device. 2036 */ 2037 vd->vdev_cant_read = B_TRUE; 2038 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2039 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2040 vd->vdev_cant_read = cant_read; 2041 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2042 2043 if (!required && zio_injection_enabled) 2044 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2045 2046 return (required); 2047 } 2048 2049 /* 2050 * Determine if resilver is needed, and if so the txg range. 2051 */ 2052 boolean_t 2053 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2054 { 2055 boolean_t needed = B_FALSE; 2056 uint64_t thismin = UINT64_MAX; 2057 uint64_t thismax = 0; 2058 2059 if (vd->vdev_children == 0) { 2060 mutex_enter(&vd->vdev_dtl_lock); 2061 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2062 vdev_writeable(vd)) { 2063 2064 thismin = vdev_dtl_min(vd); 2065 thismax = vdev_dtl_max(vd); 2066 needed = B_TRUE; 2067 } 2068 mutex_exit(&vd->vdev_dtl_lock); 2069 } else { 2070 for (int c = 0; c < vd->vdev_children; c++) { 2071 vdev_t *cvd = vd->vdev_child[c]; 2072 uint64_t cmin, cmax; 2073 2074 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2075 thismin = MIN(thismin, cmin); 2076 thismax = MAX(thismax, cmax); 2077 needed = B_TRUE; 2078 } 2079 } 2080 } 2081 2082 if (needed && minp) { 2083 *minp = thismin; 2084 *maxp = thismax; 2085 } 2086 return (needed); 2087 } 2088 2089 void 2090 vdev_load(vdev_t *vd) 2091 { 2092 /* 2093 * Recursively load all children. 2094 */ 2095 for (int c = 0; c < vd->vdev_children; c++) 2096 vdev_load(vd->vdev_child[c]); 2097 2098 /* 2099 * If this is a top-level vdev, initialize its metaslabs. 2100 */ 2101 if (vd == vd->vdev_top && !vd->vdev_ishole && 2102 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2103 vdev_metaslab_init(vd, 0) != 0)) 2104 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2105 VDEV_AUX_CORRUPT_DATA); 2106 2107 /* 2108 * If this is a leaf vdev, load its DTL. 2109 */ 2110 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2111 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2112 VDEV_AUX_CORRUPT_DATA); 2113 } 2114 2115 /* 2116 * The special vdev case is used for hot spares and l2cache devices. Its 2117 * sole purpose it to set the vdev state for the associated vdev. To do this, 2118 * we make sure that we can open the underlying device, then try to read the 2119 * label, and make sure that the label is sane and that it hasn't been 2120 * repurposed to another pool. 2121 */ 2122 int 2123 vdev_validate_aux(vdev_t *vd) 2124 { 2125 nvlist_t *label; 2126 uint64_t guid, version; 2127 uint64_t state; 2128 2129 if (!vdev_readable(vd)) 2130 return (0); 2131 2132 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2133 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2134 VDEV_AUX_CORRUPT_DATA); 2135 return (-1); 2136 } 2137 2138 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2139 !SPA_VERSION_IS_SUPPORTED(version) || 2140 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2141 guid != vd->vdev_guid || 2142 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2143 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2144 VDEV_AUX_CORRUPT_DATA); 2145 nvlist_free(label); 2146 return (-1); 2147 } 2148 2149 /* 2150 * We don't actually check the pool state here. If it's in fact in 2151 * use by another pool, we update this fact on the fly when requested. 2152 */ 2153 nvlist_free(label); 2154 return (0); 2155 } 2156 2157 void 2158 vdev_remove(vdev_t *vd, uint64_t txg) 2159 { 2160 spa_t *spa = vd->vdev_spa; 2161 objset_t *mos = spa->spa_meta_objset; 2162 dmu_tx_t *tx; 2163 2164 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2165 2166 if (vd->vdev_ms != NULL) { 2167 metaslab_group_t *mg = vd->vdev_mg; 2168 2169 metaslab_group_histogram_verify(mg); 2170 metaslab_class_histogram_verify(mg->mg_class); 2171 2172 for (int m = 0; m < vd->vdev_ms_count; m++) { 2173 metaslab_t *msp = vd->vdev_ms[m]; 2174 2175 if (msp == NULL || msp->ms_sm == NULL) 2176 continue; 2177 2178 mutex_enter(&msp->ms_lock); 2179 /* 2180 * If the metaslab was not loaded when the vdev 2181 * was removed then the histogram accounting may 2182 * not be accurate. Update the histogram information 2183 * here so that we ensure that the metaslab group 2184 * and metaslab class are up-to-date. 2185 */ 2186 metaslab_group_histogram_remove(mg, msp); 2187 2188 VERIFY0(space_map_allocated(msp->ms_sm)); 2189 space_map_free(msp->ms_sm, tx); 2190 space_map_close(msp->ms_sm); 2191 msp->ms_sm = NULL; 2192 mutex_exit(&msp->ms_lock); 2193 } 2194 2195 metaslab_group_histogram_verify(mg); 2196 metaslab_class_histogram_verify(mg->mg_class); 2197 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2198 ASSERT0(mg->mg_histogram[i]); 2199 2200 } 2201 2202 if (vd->vdev_ms_array) { 2203 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2204 vd->vdev_ms_array = 0; 2205 } 2206 dmu_tx_commit(tx); 2207 } 2208 2209 void 2210 vdev_sync_done(vdev_t *vd, uint64_t txg) 2211 { 2212 metaslab_t *msp; 2213 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2214 2215 ASSERT(!vd->vdev_ishole); 2216 2217 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2218 metaslab_sync_done(msp, txg); 2219 2220 if (reassess) 2221 metaslab_sync_reassess(vd->vdev_mg); 2222 } 2223 2224 void 2225 vdev_sync(vdev_t *vd, uint64_t txg) 2226 { 2227 spa_t *spa = vd->vdev_spa; 2228 vdev_t *lvd; 2229 metaslab_t *msp; 2230 dmu_tx_t *tx; 2231 2232 ASSERT(!vd->vdev_ishole); 2233 2234 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2235 ASSERT(vd == vd->vdev_top); 2236 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2237 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2238 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2239 ASSERT(vd->vdev_ms_array != 0); 2240 vdev_config_dirty(vd); 2241 dmu_tx_commit(tx); 2242 } 2243 2244 /* 2245 * Remove the metadata associated with this vdev once it's empty. 2246 */ 2247 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2248 vdev_remove(vd, txg); 2249 2250 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2251 metaslab_sync(msp, txg); 2252 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2253 } 2254 2255 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2256 vdev_dtl_sync(lvd, txg); 2257 2258 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2259 } 2260 2261 uint64_t 2262 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2263 { 2264 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2265 } 2266 2267 /* 2268 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2269 * not be opened, and no I/O is attempted. 2270 */ 2271 int 2272 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2273 { 2274 vdev_t *vd, *tvd; 2275 2276 spa_vdev_state_enter(spa, SCL_NONE); 2277 2278 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2279 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2280 2281 if (!vd->vdev_ops->vdev_op_leaf) 2282 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2283 2284 tvd = vd->vdev_top; 2285 2286 /* 2287 * We don't directly use the aux state here, but if we do a 2288 * vdev_reopen(), we need this value to be present to remember why we 2289 * were faulted. 2290 */ 2291 vd->vdev_label_aux = aux; 2292 2293 /* 2294 * Faulted state takes precedence over degraded. 2295 */ 2296 vd->vdev_delayed_close = B_FALSE; 2297 vd->vdev_faulted = 1ULL; 2298 vd->vdev_degraded = 0ULL; 2299 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2300 2301 /* 2302 * If this device has the only valid copy of the data, then 2303 * back off and simply mark the vdev as degraded instead. 2304 */ 2305 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2306 vd->vdev_degraded = 1ULL; 2307 vd->vdev_faulted = 0ULL; 2308 2309 /* 2310 * If we reopen the device and it's not dead, only then do we 2311 * mark it degraded. 2312 */ 2313 vdev_reopen(tvd); 2314 2315 if (vdev_readable(vd)) 2316 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2317 } 2318 2319 return (spa_vdev_state_exit(spa, vd, 0)); 2320 } 2321 2322 /* 2323 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2324 * user that something is wrong. The vdev continues to operate as normal as far 2325 * as I/O is concerned. 2326 */ 2327 int 2328 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2329 { 2330 vdev_t *vd; 2331 2332 spa_vdev_state_enter(spa, SCL_NONE); 2333 2334 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2335 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2336 2337 if (!vd->vdev_ops->vdev_op_leaf) 2338 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2339 2340 /* 2341 * If the vdev is already faulted, then don't do anything. 2342 */ 2343 if (vd->vdev_faulted || vd->vdev_degraded) 2344 return (spa_vdev_state_exit(spa, NULL, 0)); 2345 2346 vd->vdev_degraded = 1ULL; 2347 if (!vdev_is_dead(vd)) 2348 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2349 aux); 2350 2351 return (spa_vdev_state_exit(spa, vd, 0)); 2352 } 2353 2354 /* 2355 * Online the given vdev. 2356 * 2357 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2358 * spare device should be detached when the device finishes resilvering. 2359 * Second, the online should be treated like a 'test' online case, so no FMA 2360 * events are generated if the device fails to open. 2361 */ 2362 int 2363 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2364 { 2365 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2366 2367 spa_vdev_state_enter(spa, SCL_NONE); 2368 2369 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2370 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2371 2372 if (!vd->vdev_ops->vdev_op_leaf) 2373 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2374 2375 tvd = vd->vdev_top; 2376 vd->vdev_offline = B_FALSE; 2377 vd->vdev_tmpoffline = B_FALSE; 2378 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2379 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2380 2381 /* XXX - L2ARC 1.0 does not support expansion */ 2382 if (!vd->vdev_aux) { 2383 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2384 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2385 } 2386 2387 vdev_reopen(tvd); 2388 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2389 2390 if (!vd->vdev_aux) { 2391 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2392 pvd->vdev_expanding = B_FALSE; 2393 } 2394 2395 if (newstate) 2396 *newstate = vd->vdev_state; 2397 if ((flags & ZFS_ONLINE_UNSPARE) && 2398 !vdev_is_dead(vd) && vd->vdev_parent && 2399 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2400 vd->vdev_parent->vdev_child[0] == vd) 2401 vd->vdev_unspare = B_TRUE; 2402 2403 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2404 2405 /* XXX - L2ARC 1.0 does not support expansion */ 2406 if (vd->vdev_aux) 2407 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2408 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2409 } 2410 return (spa_vdev_state_exit(spa, vd, 0)); 2411 } 2412 2413 static int 2414 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2415 { 2416 vdev_t *vd, *tvd; 2417 int error = 0; 2418 uint64_t generation; 2419 metaslab_group_t *mg; 2420 2421 top: 2422 spa_vdev_state_enter(spa, SCL_ALLOC); 2423 2424 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2425 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2426 2427 if (!vd->vdev_ops->vdev_op_leaf) 2428 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2429 2430 tvd = vd->vdev_top; 2431 mg = tvd->vdev_mg; 2432 generation = spa->spa_config_generation + 1; 2433 2434 /* 2435 * If the device isn't already offline, try to offline it. 2436 */ 2437 if (!vd->vdev_offline) { 2438 /* 2439 * If this device has the only valid copy of some data, 2440 * don't allow it to be offlined. Log devices are always 2441 * expendable. 2442 */ 2443 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2444 vdev_dtl_required(vd)) 2445 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2446 2447 /* 2448 * If the top-level is a slog and it has had allocations 2449 * then proceed. We check that the vdev's metaslab group 2450 * is not NULL since it's possible that we may have just 2451 * added this vdev but not yet initialized its metaslabs. 2452 */ 2453 if (tvd->vdev_islog && mg != NULL) { 2454 /* 2455 * Prevent any future allocations. 2456 */ 2457 metaslab_group_passivate(mg); 2458 (void) spa_vdev_state_exit(spa, vd, 0); 2459 2460 error = spa_offline_log(spa); 2461 2462 spa_vdev_state_enter(spa, SCL_ALLOC); 2463 2464 /* 2465 * Check to see if the config has changed. 2466 */ 2467 if (error || generation != spa->spa_config_generation) { 2468 metaslab_group_activate(mg); 2469 if (error) 2470 return (spa_vdev_state_exit(spa, 2471 vd, error)); 2472 (void) spa_vdev_state_exit(spa, vd, 0); 2473 goto top; 2474 } 2475 ASSERT0(tvd->vdev_stat.vs_alloc); 2476 } 2477 2478 /* 2479 * Offline this device and reopen its top-level vdev. 2480 * If the top-level vdev is a log device then just offline 2481 * it. Otherwise, if this action results in the top-level 2482 * vdev becoming unusable, undo it and fail the request. 2483 */ 2484 vd->vdev_offline = B_TRUE; 2485 vdev_reopen(tvd); 2486 2487 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2488 vdev_is_dead(tvd)) { 2489 vd->vdev_offline = B_FALSE; 2490 vdev_reopen(tvd); 2491 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2492 } 2493 2494 /* 2495 * Add the device back into the metaslab rotor so that 2496 * once we online the device it's open for business. 2497 */ 2498 if (tvd->vdev_islog && mg != NULL) 2499 metaslab_group_activate(mg); 2500 } 2501 2502 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2503 2504 return (spa_vdev_state_exit(spa, vd, 0)); 2505 } 2506 2507 int 2508 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2509 { 2510 int error; 2511 2512 mutex_enter(&spa->spa_vdev_top_lock); 2513 error = vdev_offline_locked(spa, guid, flags); 2514 mutex_exit(&spa->spa_vdev_top_lock); 2515 2516 return (error); 2517 } 2518 2519 /* 2520 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2521 * vdev_offline(), we assume the spa config is locked. We also clear all 2522 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2523 */ 2524 void 2525 vdev_clear(spa_t *spa, vdev_t *vd) 2526 { 2527 vdev_t *rvd = spa->spa_root_vdev; 2528 2529 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2530 2531 if (vd == NULL) 2532 vd = rvd; 2533 2534 vd->vdev_stat.vs_read_errors = 0; 2535 vd->vdev_stat.vs_write_errors = 0; 2536 vd->vdev_stat.vs_checksum_errors = 0; 2537 2538 for (int c = 0; c < vd->vdev_children; c++) 2539 vdev_clear(spa, vd->vdev_child[c]); 2540 2541 /* 2542 * If we're in the FAULTED state or have experienced failed I/O, then 2543 * clear the persistent state and attempt to reopen the device. We 2544 * also mark the vdev config dirty, so that the new faulted state is 2545 * written out to disk. 2546 */ 2547 if (vd->vdev_faulted || vd->vdev_degraded || 2548 !vdev_readable(vd) || !vdev_writeable(vd)) { 2549 2550 /* 2551 * When reopening in reponse to a clear event, it may be due to 2552 * a fmadm repair request. In this case, if the device is 2553 * still broken, we want to still post the ereport again. 2554 */ 2555 vd->vdev_forcefault = B_TRUE; 2556 2557 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2558 vd->vdev_cant_read = B_FALSE; 2559 vd->vdev_cant_write = B_FALSE; 2560 2561 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2562 2563 vd->vdev_forcefault = B_FALSE; 2564 2565 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2566 vdev_state_dirty(vd->vdev_top); 2567 2568 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2569 spa_async_request(spa, SPA_ASYNC_RESILVER); 2570 2571 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2572 } 2573 2574 /* 2575 * When clearing a FMA-diagnosed fault, we always want to 2576 * unspare the device, as we assume that the original spare was 2577 * done in response to the FMA fault. 2578 */ 2579 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2580 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2581 vd->vdev_parent->vdev_child[0] == vd) 2582 vd->vdev_unspare = B_TRUE; 2583 } 2584 2585 boolean_t 2586 vdev_is_dead(vdev_t *vd) 2587 { 2588 /* 2589 * Holes and missing devices are always considered "dead". 2590 * This simplifies the code since we don't have to check for 2591 * these types of devices in the various code paths. 2592 * Instead we rely on the fact that we skip over dead devices 2593 * before issuing I/O to them. 2594 */ 2595 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2596 vd->vdev_ops == &vdev_missing_ops); 2597 } 2598 2599 boolean_t 2600 vdev_readable(vdev_t *vd) 2601 { 2602 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2603 } 2604 2605 boolean_t 2606 vdev_writeable(vdev_t *vd) 2607 { 2608 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2609 } 2610 2611 boolean_t 2612 vdev_allocatable(vdev_t *vd) 2613 { 2614 uint64_t state = vd->vdev_state; 2615 2616 /* 2617 * We currently allow allocations from vdevs which may be in the 2618 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2619 * fails to reopen then we'll catch it later when we're holding 2620 * the proper locks. Note that we have to get the vdev state 2621 * in a local variable because although it changes atomically, 2622 * we're asking two separate questions about it. 2623 */ 2624 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2625 !vd->vdev_cant_write && !vd->vdev_ishole); 2626 } 2627 2628 boolean_t 2629 vdev_accessible(vdev_t *vd, zio_t *zio) 2630 { 2631 ASSERT(zio->io_vd == vd); 2632 2633 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2634 return (B_FALSE); 2635 2636 if (zio->io_type == ZIO_TYPE_READ) 2637 return (!vd->vdev_cant_read); 2638 2639 if (zio->io_type == ZIO_TYPE_WRITE) 2640 return (!vd->vdev_cant_write); 2641 2642 return (B_TRUE); 2643 } 2644 2645 /* 2646 * Get statistics for the given vdev. 2647 */ 2648 void 2649 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2650 { 2651 spa_t *spa = vd->vdev_spa; 2652 vdev_t *rvd = spa->spa_root_vdev; 2653 2654 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2655 2656 mutex_enter(&vd->vdev_stat_lock); 2657 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2658 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2659 vs->vs_state = vd->vdev_state; 2660 vs->vs_rsize = vdev_get_min_asize(vd); 2661 if (vd->vdev_ops->vdev_op_leaf) 2662 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2663 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2664 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2665 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2666 } 2667 2668 /* 2669 * If we're getting stats on the root vdev, aggregate the I/O counts 2670 * over all top-level vdevs (i.e. the direct children of the root). 2671 */ 2672 if (vd == rvd) { 2673 for (int c = 0; c < rvd->vdev_children; c++) { 2674 vdev_t *cvd = rvd->vdev_child[c]; 2675 vdev_stat_t *cvs = &cvd->vdev_stat; 2676 2677 for (int t = 0; t < ZIO_TYPES; t++) { 2678 vs->vs_ops[t] += cvs->vs_ops[t]; 2679 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2680 } 2681 cvs->vs_scan_removing = cvd->vdev_removing; 2682 } 2683 } 2684 mutex_exit(&vd->vdev_stat_lock); 2685 } 2686 2687 void 2688 vdev_clear_stats(vdev_t *vd) 2689 { 2690 mutex_enter(&vd->vdev_stat_lock); 2691 vd->vdev_stat.vs_space = 0; 2692 vd->vdev_stat.vs_dspace = 0; 2693 vd->vdev_stat.vs_alloc = 0; 2694 mutex_exit(&vd->vdev_stat_lock); 2695 } 2696 2697 void 2698 vdev_scan_stat_init(vdev_t *vd) 2699 { 2700 vdev_stat_t *vs = &vd->vdev_stat; 2701 2702 for (int c = 0; c < vd->vdev_children; c++) 2703 vdev_scan_stat_init(vd->vdev_child[c]); 2704 2705 mutex_enter(&vd->vdev_stat_lock); 2706 vs->vs_scan_processed = 0; 2707 mutex_exit(&vd->vdev_stat_lock); 2708 } 2709 2710 void 2711 vdev_stat_update(zio_t *zio, uint64_t psize) 2712 { 2713 spa_t *spa = zio->io_spa; 2714 vdev_t *rvd = spa->spa_root_vdev; 2715 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2716 vdev_t *pvd; 2717 uint64_t txg = zio->io_txg; 2718 vdev_stat_t *vs = &vd->vdev_stat; 2719 zio_type_t type = zio->io_type; 2720 int flags = zio->io_flags; 2721 2722 /* 2723 * If this i/o is a gang leader, it didn't do any actual work. 2724 */ 2725 if (zio->io_gang_tree) 2726 return; 2727 2728 if (zio->io_error == 0) { 2729 /* 2730 * If this is a root i/o, don't count it -- we've already 2731 * counted the top-level vdevs, and vdev_get_stats() will 2732 * aggregate them when asked. This reduces contention on 2733 * the root vdev_stat_lock and implicitly handles blocks 2734 * that compress away to holes, for which there is no i/o. 2735 * (Holes never create vdev children, so all the counters 2736 * remain zero, which is what we want.) 2737 * 2738 * Note: this only applies to successful i/o (io_error == 0) 2739 * because unlike i/o counts, errors are not additive. 2740 * When reading a ditto block, for example, failure of 2741 * one top-level vdev does not imply a root-level error. 2742 */ 2743 if (vd == rvd) 2744 return; 2745 2746 ASSERT(vd == zio->io_vd); 2747 2748 if (flags & ZIO_FLAG_IO_BYPASS) 2749 return; 2750 2751 mutex_enter(&vd->vdev_stat_lock); 2752 2753 if (flags & ZIO_FLAG_IO_REPAIR) { 2754 if (flags & ZIO_FLAG_SCAN_THREAD) { 2755 dsl_scan_phys_t *scn_phys = 2756 &spa->spa_dsl_pool->dp_scan->scn_phys; 2757 uint64_t *processed = &scn_phys->scn_processed; 2758 2759 /* XXX cleanup? */ 2760 if (vd->vdev_ops->vdev_op_leaf) 2761 atomic_add_64(processed, psize); 2762 vs->vs_scan_processed += psize; 2763 } 2764 2765 if (flags & ZIO_FLAG_SELF_HEAL) 2766 vs->vs_self_healed += psize; 2767 } 2768 2769 vs->vs_ops[type]++; 2770 vs->vs_bytes[type] += psize; 2771 2772 mutex_exit(&vd->vdev_stat_lock); 2773 return; 2774 } 2775 2776 if (flags & ZIO_FLAG_SPECULATIVE) 2777 return; 2778 2779 /* 2780 * If this is an I/O error that is going to be retried, then ignore the 2781 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2782 * hard errors, when in reality they can happen for any number of 2783 * innocuous reasons (bus resets, MPxIO link failure, etc). 2784 */ 2785 if (zio->io_error == EIO && 2786 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2787 return; 2788 2789 /* 2790 * Intent logs writes won't propagate their error to the root 2791 * I/O so don't mark these types of failures as pool-level 2792 * errors. 2793 */ 2794 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2795 return; 2796 2797 mutex_enter(&vd->vdev_stat_lock); 2798 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2799 if (zio->io_error == ECKSUM) 2800 vs->vs_checksum_errors++; 2801 else 2802 vs->vs_read_errors++; 2803 } 2804 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2805 vs->vs_write_errors++; 2806 mutex_exit(&vd->vdev_stat_lock); 2807 2808 if (type == ZIO_TYPE_WRITE && txg != 0 && 2809 (!(flags & ZIO_FLAG_IO_REPAIR) || 2810 (flags & ZIO_FLAG_SCAN_THREAD) || 2811 spa->spa_claiming)) { 2812 /* 2813 * This is either a normal write (not a repair), or it's 2814 * a repair induced by the scrub thread, or it's a repair 2815 * made by zil_claim() during spa_load() in the first txg. 2816 * In the normal case, we commit the DTL change in the same 2817 * txg as the block was born. In the scrub-induced repair 2818 * case, we know that scrubs run in first-pass syncing context, 2819 * so we commit the DTL change in spa_syncing_txg(spa). 2820 * In the zil_claim() case, we commit in spa_first_txg(spa). 2821 * 2822 * We currently do not make DTL entries for failed spontaneous 2823 * self-healing writes triggered by normal (non-scrubbing) 2824 * reads, because we have no transactional context in which to 2825 * do so -- and it's not clear that it'd be desirable anyway. 2826 */ 2827 if (vd->vdev_ops->vdev_op_leaf) { 2828 uint64_t commit_txg = txg; 2829 if (flags & ZIO_FLAG_SCAN_THREAD) { 2830 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2831 ASSERT(spa_sync_pass(spa) == 1); 2832 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2833 commit_txg = spa_syncing_txg(spa); 2834 } else if (spa->spa_claiming) { 2835 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2836 commit_txg = spa_first_txg(spa); 2837 } 2838 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2839 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2840 return; 2841 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2842 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2843 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2844 } 2845 if (vd != rvd) 2846 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2847 } 2848 } 2849 2850 /* 2851 * Update the in-core space usage stats for this vdev, its metaslab class, 2852 * and the root vdev. 2853 */ 2854 void 2855 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2856 int64_t space_delta) 2857 { 2858 int64_t dspace_delta = space_delta; 2859 spa_t *spa = vd->vdev_spa; 2860 vdev_t *rvd = spa->spa_root_vdev; 2861 metaslab_group_t *mg = vd->vdev_mg; 2862 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2863 2864 ASSERT(vd == vd->vdev_top); 2865 2866 /* 2867 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2868 * factor. We must calculate this here and not at the root vdev 2869 * because the root vdev's psize-to-asize is simply the max of its 2870 * childrens', thus not accurate enough for us. 2871 */ 2872 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2873 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2874 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2875 vd->vdev_deflate_ratio; 2876 2877 mutex_enter(&vd->vdev_stat_lock); 2878 vd->vdev_stat.vs_alloc += alloc_delta; 2879 vd->vdev_stat.vs_space += space_delta; 2880 vd->vdev_stat.vs_dspace += dspace_delta; 2881 mutex_exit(&vd->vdev_stat_lock); 2882 2883 if (mc == spa_normal_class(spa)) { 2884 mutex_enter(&rvd->vdev_stat_lock); 2885 rvd->vdev_stat.vs_alloc += alloc_delta; 2886 rvd->vdev_stat.vs_space += space_delta; 2887 rvd->vdev_stat.vs_dspace += dspace_delta; 2888 mutex_exit(&rvd->vdev_stat_lock); 2889 } 2890 2891 if (mc != NULL) { 2892 ASSERT(rvd == vd->vdev_parent); 2893 ASSERT(vd->vdev_ms_count != 0); 2894 2895 metaslab_class_space_update(mc, 2896 alloc_delta, defer_delta, space_delta, dspace_delta); 2897 } 2898 } 2899 2900 /* 2901 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2902 * so that it will be written out next time the vdev configuration is synced. 2903 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2904 */ 2905 void 2906 vdev_config_dirty(vdev_t *vd) 2907 { 2908 spa_t *spa = vd->vdev_spa; 2909 vdev_t *rvd = spa->spa_root_vdev; 2910 int c; 2911 2912 ASSERT(spa_writeable(spa)); 2913 2914 /* 2915 * If this is an aux vdev (as with l2cache and spare devices), then we 2916 * update the vdev config manually and set the sync flag. 2917 */ 2918 if (vd->vdev_aux != NULL) { 2919 spa_aux_vdev_t *sav = vd->vdev_aux; 2920 nvlist_t **aux; 2921 uint_t naux; 2922 2923 for (c = 0; c < sav->sav_count; c++) { 2924 if (sav->sav_vdevs[c] == vd) 2925 break; 2926 } 2927 2928 if (c == sav->sav_count) { 2929 /* 2930 * We're being removed. There's nothing more to do. 2931 */ 2932 ASSERT(sav->sav_sync == B_TRUE); 2933 return; 2934 } 2935 2936 sav->sav_sync = B_TRUE; 2937 2938 if (nvlist_lookup_nvlist_array(sav->sav_config, 2939 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2940 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2941 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2942 } 2943 2944 ASSERT(c < naux); 2945 2946 /* 2947 * Setting the nvlist in the middle if the array is a little 2948 * sketchy, but it will work. 2949 */ 2950 nvlist_free(aux[c]); 2951 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2952 2953 return; 2954 } 2955 2956 /* 2957 * The dirty list is protected by the SCL_CONFIG lock. The caller 2958 * must either hold SCL_CONFIG as writer, or must be the sync thread 2959 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2960 * so this is sufficient to ensure mutual exclusion. 2961 */ 2962 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2963 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2964 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2965 2966 if (vd == rvd) { 2967 for (c = 0; c < rvd->vdev_children; c++) 2968 vdev_config_dirty(rvd->vdev_child[c]); 2969 } else { 2970 ASSERT(vd == vd->vdev_top); 2971 2972 if (!list_link_active(&vd->vdev_config_dirty_node) && 2973 !vd->vdev_ishole) 2974 list_insert_head(&spa->spa_config_dirty_list, vd); 2975 } 2976 } 2977 2978 void 2979 vdev_config_clean(vdev_t *vd) 2980 { 2981 spa_t *spa = vd->vdev_spa; 2982 2983 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2984 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2985 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2986 2987 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2988 list_remove(&spa->spa_config_dirty_list, vd); 2989 } 2990 2991 /* 2992 * Mark a top-level vdev's state as dirty, so that the next pass of 2993 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2994 * the state changes from larger config changes because they require 2995 * much less locking, and are often needed for administrative actions. 2996 */ 2997 void 2998 vdev_state_dirty(vdev_t *vd) 2999 { 3000 spa_t *spa = vd->vdev_spa; 3001 3002 ASSERT(spa_writeable(spa)); 3003 ASSERT(vd == vd->vdev_top); 3004 3005 /* 3006 * The state list is protected by the SCL_STATE lock. The caller 3007 * must either hold SCL_STATE as writer, or must be the sync thread 3008 * (which holds SCL_STATE as reader). There's only one sync thread, 3009 * so this is sufficient to ensure mutual exclusion. 3010 */ 3011 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3012 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3013 spa_config_held(spa, SCL_STATE, RW_READER))); 3014 3015 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3016 list_insert_head(&spa->spa_state_dirty_list, vd); 3017 } 3018 3019 void 3020 vdev_state_clean(vdev_t *vd) 3021 { 3022 spa_t *spa = vd->vdev_spa; 3023 3024 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3025 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3026 spa_config_held(spa, SCL_STATE, RW_READER))); 3027 3028 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3029 list_remove(&spa->spa_state_dirty_list, vd); 3030 } 3031 3032 /* 3033 * Propagate vdev state up from children to parent. 3034 */ 3035 void 3036 vdev_propagate_state(vdev_t *vd) 3037 { 3038 spa_t *spa = vd->vdev_spa; 3039 vdev_t *rvd = spa->spa_root_vdev; 3040 int degraded = 0, faulted = 0; 3041 int corrupted = 0; 3042 vdev_t *child; 3043 3044 if (vd->vdev_children > 0) { 3045 for (int c = 0; c < vd->vdev_children; c++) { 3046 child = vd->vdev_child[c]; 3047 3048 /* 3049 * Don't factor holes into the decision. 3050 */ 3051 if (child->vdev_ishole) 3052 continue; 3053 3054 if (!vdev_readable(child) || 3055 (!vdev_writeable(child) && spa_writeable(spa))) { 3056 /* 3057 * Root special: if there is a top-level log 3058 * device, treat the root vdev as if it were 3059 * degraded. 3060 */ 3061 if (child->vdev_islog && vd == rvd) 3062 degraded++; 3063 else 3064 faulted++; 3065 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3066 degraded++; 3067 } 3068 3069 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3070 corrupted++; 3071 } 3072 3073 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3074 3075 /* 3076 * Root special: if there is a top-level vdev that cannot be 3077 * opened due to corrupted metadata, then propagate the root 3078 * vdev's aux state as 'corrupt' rather than 'insufficient 3079 * replicas'. 3080 */ 3081 if (corrupted && vd == rvd && 3082 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3083 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3084 VDEV_AUX_CORRUPT_DATA); 3085 } 3086 3087 if (vd->vdev_parent) 3088 vdev_propagate_state(vd->vdev_parent); 3089 } 3090 3091 /* 3092 * Set a vdev's state. If this is during an open, we don't update the parent 3093 * state, because we're in the process of opening children depth-first. 3094 * Otherwise, we propagate the change to the parent. 3095 * 3096 * If this routine places a device in a faulted state, an appropriate ereport is 3097 * generated. 3098 */ 3099 void 3100 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3101 { 3102 uint64_t save_state; 3103 spa_t *spa = vd->vdev_spa; 3104 3105 if (state == vd->vdev_state) { 3106 vd->vdev_stat.vs_aux = aux; 3107 return; 3108 } 3109 3110 save_state = vd->vdev_state; 3111 3112 vd->vdev_state = state; 3113 vd->vdev_stat.vs_aux = aux; 3114 3115 /* 3116 * If we are setting the vdev state to anything but an open state, then 3117 * always close the underlying device unless the device has requested 3118 * a delayed close (i.e. we're about to remove or fault the device). 3119 * Otherwise, we keep accessible but invalid devices open forever. 3120 * We don't call vdev_close() itself, because that implies some extra 3121 * checks (offline, etc) that we don't want here. This is limited to 3122 * leaf devices, because otherwise closing the device will affect other 3123 * children. 3124 */ 3125 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3126 vd->vdev_ops->vdev_op_leaf) 3127 vd->vdev_ops->vdev_op_close(vd); 3128 3129 /* 3130 * If we have brought this vdev back into service, we need 3131 * to notify fmd so that it can gracefully repair any outstanding 3132 * cases due to a missing device. We do this in all cases, even those 3133 * that probably don't correlate to a repaired fault. This is sure to 3134 * catch all cases, and we let the zfs-retire agent sort it out. If 3135 * this is a transient state it's OK, as the retire agent will 3136 * double-check the state of the vdev before repairing it. 3137 */ 3138 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3139 vd->vdev_prevstate != state) 3140 zfs_post_state_change(spa, vd); 3141 3142 if (vd->vdev_removed && 3143 state == VDEV_STATE_CANT_OPEN && 3144 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3145 /* 3146 * If the previous state is set to VDEV_STATE_REMOVED, then this 3147 * device was previously marked removed and someone attempted to 3148 * reopen it. If this failed due to a nonexistent device, then 3149 * keep the device in the REMOVED state. We also let this be if 3150 * it is one of our special test online cases, which is only 3151 * attempting to online the device and shouldn't generate an FMA 3152 * fault. 3153 */ 3154 vd->vdev_state = VDEV_STATE_REMOVED; 3155 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3156 } else if (state == VDEV_STATE_REMOVED) { 3157 vd->vdev_removed = B_TRUE; 3158 } else if (state == VDEV_STATE_CANT_OPEN) { 3159 /* 3160 * If we fail to open a vdev during an import or recovery, we 3161 * mark it as "not available", which signifies that it was 3162 * never there to begin with. Failure to open such a device 3163 * is not considered an error. 3164 */ 3165 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3166 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3167 vd->vdev_ops->vdev_op_leaf) 3168 vd->vdev_not_present = 1; 3169 3170 /* 3171 * Post the appropriate ereport. If the 'prevstate' field is 3172 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3173 * that this is part of a vdev_reopen(). In this case, we don't 3174 * want to post the ereport if the device was already in the 3175 * CANT_OPEN state beforehand. 3176 * 3177 * If the 'checkremove' flag is set, then this is an attempt to 3178 * online the device in response to an insertion event. If we 3179 * hit this case, then we have detected an insertion event for a 3180 * faulted or offline device that wasn't in the removed state. 3181 * In this scenario, we don't post an ereport because we are 3182 * about to replace the device, or attempt an online with 3183 * vdev_forcefault, which will generate the fault for us. 3184 */ 3185 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3186 !vd->vdev_not_present && !vd->vdev_checkremove && 3187 vd != spa->spa_root_vdev) { 3188 const char *class; 3189 3190 switch (aux) { 3191 case VDEV_AUX_OPEN_FAILED: 3192 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3193 break; 3194 case VDEV_AUX_CORRUPT_DATA: 3195 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3196 break; 3197 case VDEV_AUX_NO_REPLICAS: 3198 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3199 break; 3200 case VDEV_AUX_BAD_GUID_SUM: 3201 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3202 break; 3203 case VDEV_AUX_TOO_SMALL: 3204 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3205 break; 3206 case VDEV_AUX_BAD_LABEL: 3207 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3208 break; 3209 default: 3210 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3211 } 3212 3213 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3214 } 3215 3216 /* Erase any notion of persistent removed state */ 3217 vd->vdev_removed = B_FALSE; 3218 } else { 3219 vd->vdev_removed = B_FALSE; 3220 } 3221 3222 if (!isopen && vd->vdev_parent) 3223 vdev_propagate_state(vd->vdev_parent); 3224 } 3225 3226 /* 3227 * Check the vdev configuration to ensure that it's capable of supporting 3228 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3229 * In addition, only a single top-level vdev is allowed and none of the leaves 3230 * can be wholedisks. 3231 */ 3232 boolean_t 3233 vdev_is_bootable(vdev_t *vd) 3234 { 3235 if (!vd->vdev_ops->vdev_op_leaf) { 3236 char *vdev_type = vd->vdev_ops->vdev_op_type; 3237 3238 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3239 vd->vdev_children > 1) { 3240 return (B_FALSE); 3241 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3242 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3243 return (B_FALSE); 3244 } 3245 } 3246 3247 for (int c = 0; c < vd->vdev_children; c++) { 3248 if (!vdev_is_bootable(vd->vdev_child[c])) 3249 return (B_FALSE); 3250 } 3251 return (B_TRUE); 3252 } 3253 3254 /* 3255 * Load the state from the original vdev tree (ovd) which 3256 * we've retrieved from the MOS config object. If the original 3257 * vdev was offline or faulted then we transfer that state to the 3258 * device in the current vdev tree (nvd). 3259 */ 3260 void 3261 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3262 { 3263 spa_t *spa = nvd->vdev_spa; 3264 3265 ASSERT(nvd->vdev_top->vdev_islog); 3266 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3267 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3268 3269 for (int c = 0; c < nvd->vdev_children; c++) 3270 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3271 3272 if (nvd->vdev_ops->vdev_op_leaf) { 3273 /* 3274 * Restore the persistent vdev state 3275 */ 3276 nvd->vdev_offline = ovd->vdev_offline; 3277 nvd->vdev_faulted = ovd->vdev_faulted; 3278 nvd->vdev_degraded = ovd->vdev_degraded; 3279 nvd->vdev_removed = ovd->vdev_removed; 3280 } 3281 } 3282 3283 /* 3284 * Determine if a log device has valid content. If the vdev was 3285 * removed or faulted in the MOS config then we know that 3286 * the content on the log device has already been written to the pool. 3287 */ 3288 boolean_t 3289 vdev_log_state_valid(vdev_t *vd) 3290 { 3291 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3292 !vd->vdev_removed) 3293 return (B_TRUE); 3294 3295 for (int c = 0; c < vd->vdev_children; c++) 3296 if (vdev_log_state_valid(vd->vdev_child[c])) 3297 return (B_TRUE); 3298 3299 return (B_FALSE); 3300 } 3301 3302 /* 3303 * Expand a vdev if possible. 3304 */ 3305 void 3306 vdev_expand(vdev_t *vd, uint64_t txg) 3307 { 3308 ASSERT(vd->vdev_top == vd); 3309 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3310 3311 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3312 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3313 vdev_config_dirty(vd); 3314 } 3315 } 3316 3317 /* 3318 * Split a vdev. 3319 */ 3320 void 3321 vdev_split(vdev_t *vd) 3322 { 3323 vdev_t *cvd, *pvd = vd->vdev_parent; 3324 3325 vdev_remove_child(pvd, vd); 3326 vdev_compact_children(pvd); 3327 3328 cvd = pvd->vdev_child[0]; 3329 if (pvd->vdev_children == 1) { 3330 vdev_remove_parent(cvd); 3331 cvd->vdev_splitting = B_TRUE; 3332 } 3333 vdev_propagate_state(cvd); 3334 } 3335 3336 void 3337 vdev_deadman(vdev_t *vd) 3338 { 3339 for (int c = 0; c < vd->vdev_children; c++) { 3340 vdev_t *cvd = vd->vdev_child[c]; 3341 3342 vdev_deadman(cvd); 3343 } 3344 3345 if (vd->vdev_ops->vdev_op_leaf) { 3346 vdev_queue_t *vq = &vd->vdev_queue; 3347 3348 mutex_enter(&vq->vq_lock); 3349 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3350 spa_t *spa = vd->vdev_spa; 3351 zio_t *fio; 3352 uint64_t delta; 3353 3354 /* 3355 * Look at the head of all the pending queues, 3356 * if any I/O has been outstanding for longer than 3357 * the spa_deadman_synctime we panic the system. 3358 */ 3359 fio = avl_first(&vq->vq_active_tree); 3360 delta = gethrtime() - fio->io_timestamp; 3361 if (delta > spa_deadman_synctime(spa)) { 3362 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3363 "delta %lluns, last io %lluns", 3364 fio->io_timestamp, delta, 3365 vq->vq_io_complete_ts); 3366 fm_panic("I/O to pool '%s' appears to be " 3367 "hung.", spa_name(spa)); 3368 } 3369 } 3370 mutex_exit(&vq->vq_lock); 3371 } 3372 } 3373