1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/zio.h> 40 #include <sys/zap.h> 41 #include <sys/fs/zfs.h> 42 43 /* 44 * Virtual device management. 45 */ 46 47 static vdev_ops_t *vdev_ops_table[] = { 48 &vdev_root_ops, 49 &vdev_raidz_ops, 50 &vdev_mirror_ops, 51 &vdev_replacing_ops, 52 &vdev_disk_ops, 53 &vdev_file_ops, 54 &vdev_missing_ops, 55 NULL 56 }; 57 58 /* 59 * Given a vdev type, return the appropriate ops vector. 60 */ 61 static vdev_ops_t * 62 vdev_getops(const char *type) 63 { 64 vdev_ops_t *ops, **opspp; 65 66 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 67 if (strcmp(ops->vdev_op_type, type) == 0) 68 break; 69 70 return (ops); 71 } 72 73 /* 74 * Default asize function: return the MAX of psize with the asize of 75 * all children. This is what's used by anything other than RAID-Z. 76 */ 77 uint64_t 78 vdev_default_asize(vdev_t *vd, uint64_t psize) 79 { 80 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_ashift); 81 uint64_t csize; 82 uint64_t c; 83 84 for (c = 0; c < vd->vdev_children; c++) { 85 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 86 asize = MAX(asize, csize); 87 } 88 89 return (asize); 90 } 91 92 vdev_t * 93 vdev_lookup_top(spa_t *spa, uint64_t vdev) 94 { 95 vdev_t *rvd = spa->spa_root_vdev; 96 97 if (vdev < rvd->vdev_children) 98 return (rvd->vdev_child[vdev]); 99 100 return (NULL); 101 } 102 103 vdev_t * 104 vdev_lookup_by_path(vdev_t *vd, const char *path) 105 { 106 int c; 107 vdev_t *mvd; 108 109 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 110 return (vd); 111 112 for (c = 0; c < vd->vdev_children; c++) 113 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 114 NULL) 115 return (mvd); 116 117 return (NULL); 118 } 119 120 vdev_t * 121 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 122 { 123 int c; 124 vdev_t *mvd; 125 126 if (vd->vdev_children == 0 && vd->vdev_guid == guid) 127 return (vd); 128 129 for (c = 0; c < vd->vdev_children; c++) 130 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 131 NULL) 132 return (mvd); 133 134 return (NULL); 135 } 136 137 void 138 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 139 { 140 size_t oldsize, newsize; 141 uint64_t id = cvd->vdev_id; 142 vdev_t **newchild; 143 144 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 145 ASSERT(cvd->vdev_parent == NULL); 146 147 cvd->vdev_parent = pvd; 148 149 if (pvd == NULL) 150 return; 151 152 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 153 154 oldsize = pvd->vdev_children * sizeof (vdev_t *); 155 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 156 newsize = pvd->vdev_children * sizeof (vdev_t *); 157 158 newchild = kmem_zalloc(newsize, KM_SLEEP); 159 if (pvd->vdev_child != NULL) { 160 bcopy(pvd->vdev_child, newchild, oldsize); 161 kmem_free(pvd->vdev_child, oldsize); 162 } 163 164 pvd->vdev_child = newchild; 165 pvd->vdev_child[id] = cvd; 166 167 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 168 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 169 170 /* 171 * Walk up all ancestors to update guid sum. 172 */ 173 for (; pvd != NULL; pvd = pvd->vdev_parent) 174 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 175 } 176 177 void 178 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 179 { 180 int c; 181 uint_t id = cvd->vdev_id; 182 183 ASSERT(cvd->vdev_parent == pvd); 184 185 if (pvd == NULL) 186 return; 187 188 ASSERT(id < pvd->vdev_children); 189 ASSERT(pvd->vdev_child[id] == cvd); 190 191 pvd->vdev_child[id] = NULL; 192 cvd->vdev_parent = NULL; 193 194 for (c = 0; c < pvd->vdev_children; c++) 195 if (pvd->vdev_child[c]) 196 break; 197 198 if (c == pvd->vdev_children) { 199 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 200 pvd->vdev_child = NULL; 201 pvd->vdev_children = 0; 202 } 203 204 /* 205 * Walk up all ancestors to update guid sum. 206 */ 207 for (; pvd != NULL; pvd = pvd->vdev_parent) 208 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 209 } 210 211 /* 212 * Remove any holes in the child array. 213 */ 214 void 215 vdev_compact_children(vdev_t *pvd) 216 { 217 vdev_t **newchild, *cvd; 218 int oldc = pvd->vdev_children; 219 int newc, c; 220 221 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 222 223 for (c = newc = 0; c < oldc; c++) 224 if (pvd->vdev_child[c]) 225 newc++; 226 227 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 228 229 for (c = newc = 0; c < oldc; c++) { 230 if ((cvd = pvd->vdev_child[c]) != NULL) { 231 newchild[newc] = cvd; 232 cvd->vdev_id = newc++; 233 } 234 } 235 236 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 237 pvd->vdev_child = newchild; 238 pvd->vdev_children = newc; 239 } 240 241 /* 242 * Allocate and minimally initialize a vdev_t. 243 */ 244 static vdev_t * 245 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 246 { 247 vdev_t *vd; 248 249 while (guid == 0) 250 guid = spa_get_random(-1ULL); 251 252 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 253 254 vd->vdev_spa = spa; 255 vd->vdev_id = id; 256 vd->vdev_guid = guid; 257 vd->vdev_guid_sum = guid; 258 vd->vdev_ops = ops; 259 vd->vdev_state = VDEV_STATE_CLOSED; 260 261 mutex_init(&vd->vdev_io_lock, NULL, MUTEX_DEFAULT, NULL); 262 cv_init(&vd->vdev_io_cv, NULL, CV_DEFAULT, NULL); 263 list_create(&vd->vdev_io_pending, sizeof (zio_t), 264 offsetof(zio_t, io_pending)); 265 mutex_init(&vd->vdev_dirty_lock, NULL, MUTEX_DEFAULT, NULL); 266 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 267 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 268 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 269 txg_list_create(&vd->vdev_ms_list, 270 offsetof(struct metaslab, ms_txg_node)); 271 txg_list_create(&vd->vdev_dtl_list, 272 offsetof(struct vdev, vdev_dtl_node)); 273 vd->vdev_stat.vs_timestamp = gethrtime(); 274 275 return (vd); 276 } 277 278 /* 279 * Free a vdev_t that has been removed from service. 280 */ 281 static void 282 vdev_free_common(vdev_t *vd) 283 { 284 if (vd->vdev_path) 285 spa_strfree(vd->vdev_path); 286 if (vd->vdev_devid) 287 spa_strfree(vd->vdev_devid); 288 289 txg_list_destroy(&vd->vdev_ms_list); 290 txg_list_destroy(&vd->vdev_dtl_list); 291 mutex_enter(&vd->vdev_dtl_lock); 292 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 293 space_map_destroy(&vd->vdev_dtl_map); 294 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 295 space_map_destroy(&vd->vdev_dtl_scrub); 296 mutex_exit(&vd->vdev_dtl_lock); 297 mutex_destroy(&vd->vdev_dtl_lock); 298 mutex_destroy(&vd->vdev_dirty_lock); 299 list_destroy(&vd->vdev_io_pending); 300 mutex_destroy(&vd->vdev_io_lock); 301 cv_destroy(&vd->vdev_io_cv); 302 303 kmem_free(vd, sizeof (vdev_t)); 304 } 305 306 /* 307 * Allocate a new vdev. The 'alloctype' is used to control whether we are 308 * creating a new vdev or loading an existing one - the behavior is slightly 309 * different for each case. 310 */ 311 vdev_t * 312 vdev_alloc(spa_t *spa, nvlist_t *nv, vdev_t *parent, uint_t id, int alloctype) 313 { 314 vdev_ops_t *ops; 315 char *type; 316 uint64_t guid = 0; 317 vdev_t *vd; 318 319 ASSERT(spa_config_held(spa, RW_WRITER)); 320 321 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 322 return (NULL); 323 324 if ((ops = vdev_getops(type)) == NULL) 325 return (NULL); 326 327 /* 328 * If this is a load, get the vdev guid from the nvlist. 329 * Otherwise, vdev_alloc_common() will generate one for us. 330 */ 331 if (alloctype == VDEV_ALLOC_LOAD) { 332 uint64_t label_id; 333 334 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 335 label_id != id) 336 return (NULL); 337 338 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 339 return (NULL); 340 } 341 342 vd = vdev_alloc_common(spa, id, guid, ops); 343 344 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 345 vd->vdev_path = spa_strdup(vd->vdev_path); 346 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 347 vd->vdev_devid = spa_strdup(vd->vdev_devid); 348 349 /* 350 * If we're a top-level vdev, try to load the allocation parameters. 351 */ 352 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 353 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 354 &vd->vdev_ms_array); 355 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 356 &vd->vdev_ms_shift); 357 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, 358 &vd->vdev_ashift); 359 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 360 &vd->vdev_asize); 361 } 362 363 /* 364 * If we're a leaf vdev, try to load the DTL object. 365 */ 366 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 367 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 368 &vd->vdev_dtl.smo_object); 369 } 370 371 /* 372 * Add ourselves to the parent's list of children. 373 */ 374 vdev_add_child(parent, vd); 375 376 return (vd); 377 } 378 379 void 380 vdev_free(vdev_t *vd) 381 { 382 int c; 383 384 /* 385 * vdev_free() implies closing the vdev first. This is simpler than 386 * trying to ensure complicated semantics for all callers. 387 */ 388 vdev_close(vd); 389 390 /* 391 * It's possible to free a vdev that's been added to the dirty 392 * list when in the middle of spa_vdev_add(). Handle that case 393 * correctly here. 394 */ 395 if (vd->vdev_is_dirty) 396 vdev_config_clean(vd); 397 398 /* 399 * Free all children. 400 */ 401 for (c = 0; c < vd->vdev_children; c++) 402 vdev_free(vd->vdev_child[c]); 403 404 ASSERT(vd->vdev_child == NULL); 405 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 406 407 /* 408 * Discard allocation state. 409 */ 410 if (vd == vd->vdev_top) 411 vdev_metaslab_fini(vd); 412 413 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 414 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 415 416 /* 417 * Remove this vdev from its parent's child list. 418 */ 419 vdev_remove_child(vd->vdev_parent, vd); 420 421 ASSERT(vd->vdev_parent == NULL); 422 423 vdev_free_common(vd); 424 } 425 426 /* 427 * Transfer top-level vdev state from svd to tvd. 428 */ 429 static void 430 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 431 { 432 spa_t *spa = svd->vdev_spa; 433 metaslab_t *msp; 434 vdev_t *vd; 435 int t; 436 437 ASSERT(tvd == tvd->vdev_top); 438 439 tvd->vdev_ms_array = svd->vdev_ms_array; 440 tvd->vdev_ms_shift = svd->vdev_ms_shift; 441 tvd->vdev_ms_count = svd->vdev_ms_count; 442 443 svd->vdev_ms_array = 0; 444 svd->vdev_ms_shift = 0; 445 svd->vdev_ms_count = 0; 446 447 tvd->vdev_mg = svd->vdev_mg; 448 tvd->vdev_mg->mg_vd = tvd; 449 tvd->vdev_ms = svd->vdev_ms; 450 tvd->vdev_smo = svd->vdev_smo; 451 452 svd->vdev_mg = NULL; 453 svd->vdev_ms = NULL; 454 svd->vdev_smo = NULL; 455 456 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 457 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 458 459 svd->vdev_stat.vs_alloc = 0; 460 svd->vdev_stat.vs_space = 0; 461 462 for (t = 0; t < TXG_SIZE; t++) { 463 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 464 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 465 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 466 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 467 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 468 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 469 tvd->vdev_dirty[t] = svd->vdev_dirty[t]; 470 svd->vdev_dirty[t] = 0; 471 } 472 473 if (svd->vdev_is_dirty) { 474 vdev_config_clean(svd); 475 vdev_config_dirty(tvd); 476 } 477 478 ASSERT(svd->vdev_io_retry == NULL); 479 ASSERT(list_is_empty(&svd->vdev_io_pending)); 480 } 481 482 static void 483 vdev_top_update(vdev_t *tvd, vdev_t *vd) 484 { 485 int c; 486 487 if (vd == NULL) 488 return; 489 490 vd->vdev_top = tvd; 491 492 for (c = 0; c < vd->vdev_children; c++) 493 vdev_top_update(tvd, vd->vdev_child[c]); 494 } 495 496 /* 497 * Add a mirror/replacing vdev above an existing vdev. 498 */ 499 vdev_t * 500 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 501 { 502 spa_t *spa = cvd->vdev_spa; 503 vdev_t *pvd = cvd->vdev_parent; 504 vdev_t *mvd; 505 506 ASSERT(spa_config_held(spa, RW_WRITER)); 507 508 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 509 vdev_remove_child(pvd, cvd); 510 vdev_add_child(pvd, mvd); 511 cvd->vdev_id = mvd->vdev_children; 512 vdev_add_child(mvd, cvd); 513 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 514 515 mvd->vdev_asize = cvd->vdev_asize; 516 mvd->vdev_ashift = cvd->vdev_ashift; 517 mvd->vdev_state = cvd->vdev_state; 518 519 if (mvd == mvd->vdev_top) 520 vdev_top_transfer(cvd, mvd); 521 522 return (mvd); 523 } 524 525 /* 526 * Remove a 1-way mirror/replacing vdev from the tree. 527 */ 528 void 529 vdev_remove_parent(vdev_t *cvd) 530 { 531 vdev_t *mvd = cvd->vdev_parent; 532 vdev_t *pvd = mvd->vdev_parent; 533 534 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 535 536 ASSERT(mvd->vdev_children == 1); 537 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 538 mvd->vdev_ops == &vdev_replacing_ops); 539 540 vdev_remove_child(mvd, cvd); 541 vdev_remove_child(pvd, mvd); 542 cvd->vdev_id = mvd->vdev_id; 543 vdev_add_child(pvd, cvd); 544 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 545 546 if (cvd == cvd->vdev_top) 547 vdev_top_transfer(mvd, cvd); 548 549 ASSERT(mvd->vdev_children == 0); 550 vdev_free(mvd); 551 } 552 553 void 554 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 555 { 556 spa_t *spa = vd->vdev_spa; 557 metaslab_class_t *mc = spa_metaslab_class_select(spa); 558 uint64_t c; 559 uint64_t oldc = vd->vdev_ms_count; 560 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 561 space_map_obj_t *smo = vd->vdev_smo; 562 metaslab_t **mspp = vd->vdev_ms; 563 564 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 565 566 ASSERT(oldc <= newc); 567 568 vd->vdev_smo = kmem_zalloc(newc * sizeof (*smo), KM_SLEEP); 569 vd->vdev_ms = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 570 vd->vdev_ms_count = newc; 571 572 if (vd->vdev_mg == NULL) { 573 if (txg == 0) { 574 dmu_buf_t *db; 575 uint64_t *ms_array; 576 577 ms_array = kmem_zalloc(newc * sizeof (uint64_t), 578 KM_SLEEP); 579 580 dmu_read(spa->spa_meta_objset, vd->vdev_ms_array, 581 0, newc * sizeof (uint64_t), ms_array); 582 583 for (c = 0; c < newc; c++) { 584 if (ms_array[c] == 0) 585 continue; 586 db = dmu_bonus_hold(spa->spa_meta_objset, 587 ms_array[c]); 588 dmu_buf_read(db); 589 ASSERT3U(db->db_size, ==, sizeof (*smo)); 590 bcopy(db->db_data, &vd->vdev_smo[c], 591 db->db_size); 592 ASSERT3U(vd->vdev_smo[c].smo_object, ==, 593 ms_array[c]); 594 dmu_buf_rele(db); 595 } 596 kmem_free(ms_array, newc * sizeof (uint64_t)); 597 } 598 vd->vdev_mg = metaslab_group_create(mc, vd); 599 } 600 601 for (c = 0; c < oldc; c++) { 602 vd->vdev_smo[c] = smo[c]; 603 vd->vdev_ms[c] = mspp[c]; 604 mspp[c]->ms_smo = &vd->vdev_smo[c]; 605 } 606 607 for (c = oldc; c < newc; c++) 608 metaslab_init(vd->vdev_mg, &vd->vdev_smo[c], &vd->vdev_ms[c], 609 c << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 610 611 if (oldc != 0) { 612 kmem_free(smo, oldc * sizeof (*smo)); 613 kmem_free(mspp, oldc * sizeof (*mspp)); 614 } 615 616 } 617 618 void 619 vdev_metaslab_fini(vdev_t *vd) 620 { 621 uint64_t m; 622 uint64_t count = vd->vdev_ms_count; 623 624 if (vd->vdev_ms != NULL) { 625 for (m = 0; m < count; m++) 626 metaslab_fini(vd->vdev_ms[m]); 627 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 628 vd->vdev_ms = NULL; 629 } 630 631 if (vd->vdev_smo != NULL) { 632 kmem_free(vd->vdev_smo, count * sizeof (space_map_obj_t)); 633 vd->vdev_smo = NULL; 634 } 635 } 636 637 /* 638 * Prepare a virtual device for access. 639 */ 640 int 641 vdev_open(vdev_t *vd) 642 { 643 int error; 644 vdev_knob_t *vk; 645 int c; 646 uint64_t osize = 0; 647 uint64_t asize, psize; 648 uint64_t ashift = -1ULL; 649 650 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 651 vd->vdev_state == VDEV_STATE_CANT_OPEN || 652 vd->vdev_state == VDEV_STATE_OFFLINE); 653 654 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 655 vd->vdev_fault_arg >>= 1; 656 else 657 vd->vdev_fault_mode = VDEV_FAULT_NONE; 658 659 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 660 661 for (vk = vdev_knob_next(NULL); vk != NULL; vk = vdev_knob_next(vk)) { 662 uint64_t *valp = (uint64_t *)((char *)vd + vk->vk_offset); 663 664 *valp = vk->vk_default; 665 *valp = MAX(*valp, vk->vk_min); 666 *valp = MIN(*valp, vk->vk_max); 667 } 668 669 if (vd->vdev_ops->vdev_op_leaf) { 670 vdev_cache_init(vd); 671 vdev_queue_init(vd); 672 vd->vdev_cache_active = B_TRUE; 673 } 674 675 if (vd->vdev_offline) { 676 ASSERT(vd->vdev_children == 0); 677 dprintf("OFFLINE: %s = ENXIO\n", vdev_description(vd)); 678 vd->vdev_state = VDEV_STATE_OFFLINE; 679 return (ENXIO); 680 } 681 682 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 683 684 dprintf("%s = %d, osize %llu, state = %d\n", 685 vdev_description(vd), error, osize, vd->vdev_state); 686 687 if (error) { 688 dprintf("%s in %s failed to open, error %d, aux %d\n", 689 vdev_description(vd), 690 vdev_description(vd->vdev_parent), 691 error, 692 vd->vdev_stat.vs_aux); 693 694 vd->vdev_state = VDEV_STATE_CANT_OPEN; 695 return (error); 696 } 697 698 vd->vdev_state = VDEV_STATE_HEALTHY; 699 700 for (c = 0; c < vd->vdev_children; c++) 701 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) 702 vd->vdev_state = VDEV_STATE_DEGRADED; 703 704 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 705 706 if (vd->vdev_children == 0) { 707 if (osize < SPA_MINDEVSIZE) { 708 vd->vdev_state = VDEV_STATE_CANT_OPEN; 709 vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL; 710 return (EOVERFLOW); 711 } 712 psize = osize; 713 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 714 } else { 715 if (osize < SPA_MINDEVSIZE - 716 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 717 vd->vdev_state = VDEV_STATE_CANT_OPEN; 718 vd->vdev_stat.vs_aux = VDEV_AUX_TOO_SMALL; 719 return (EOVERFLOW); 720 } 721 psize = 0; 722 asize = osize; 723 } 724 725 vd->vdev_psize = psize; 726 727 if (vd->vdev_asize == 0) { 728 /* 729 * This is the first-ever open, so use the computed values. 730 */ 731 vd->vdev_asize = asize; 732 vd->vdev_ashift = ashift; 733 } else { 734 /* 735 * Make sure the alignment requirement hasn't increased. 736 */ 737 if (ashift > vd->vdev_ashift) { 738 dprintf("%s: ashift grew\n", vdev_description(vd)); 739 vd->vdev_state = VDEV_STATE_CANT_OPEN; 740 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 741 return (EINVAL); 742 } 743 744 /* 745 * Make sure the device hasn't shrunk. 746 */ 747 if (asize < vd->vdev_asize) { 748 dprintf("%s: device shrank\n", vdev_description(vd)); 749 vd->vdev_state = VDEV_STATE_CANT_OPEN; 750 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 751 return (EINVAL); 752 } 753 754 /* 755 * If all children are healthy and the asize has increased, 756 * then we've experienced dynamic LUN growth. 757 */ 758 if (vd->vdev_state == VDEV_STATE_HEALTHY && 759 asize > vd->vdev_asize) { 760 dprintf("%s: device grew\n", vdev_description(vd)); 761 vd->vdev_asize = asize; 762 } 763 } 764 765 return (0); 766 } 767 768 /* 769 * Close a virtual device. 770 */ 771 void 772 vdev_close(vdev_t *vd) 773 { 774 ASSERT3P(list_head(&vd->vdev_io_pending), ==, NULL); 775 776 vd->vdev_ops->vdev_op_close(vd); 777 778 if (vd->vdev_cache_active) { 779 vdev_cache_fini(vd); 780 vdev_queue_fini(vd); 781 vd->vdev_cache_active = B_FALSE; 782 } 783 784 if (vd->vdev_offline) 785 vd->vdev_state = VDEV_STATE_OFFLINE; 786 else 787 vd->vdev_state = VDEV_STATE_CLOSED; 788 } 789 790 void 791 vdev_reopen(vdev_t *vd, zio_t **rq) 792 { 793 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 794 int c; 795 796 if (vd == rvd) { 797 ASSERT(rq == NULL); 798 for (c = 0; c < rvd->vdev_children; c++) 799 vdev_reopen(rvd->vdev_child[c], NULL); 800 return; 801 } 802 803 /* only valid for top-level vdevs */ 804 ASSERT3P(vd, ==, vd->vdev_top); 805 806 /* 807 * vdev_state can change when spa_config_lock is held as writer, 808 * or when it's held as reader and we're doing a vdev_reopen(). 809 * To handle the latter case, we grab rvd's io_lock to serialize 810 * reopens. This ensures that there's never more than one vdev 811 * state changer active at a time. 812 */ 813 mutex_enter(&rvd->vdev_io_lock); 814 815 mutex_enter(&vd->vdev_io_lock); 816 while (list_head(&vd->vdev_io_pending) != NULL) 817 cv_wait(&vd->vdev_io_cv, &vd->vdev_io_lock); 818 vdev_close(vd); 819 (void) vdev_open(vd); 820 if (rq != NULL) { 821 *rq = vd->vdev_io_retry; 822 vd->vdev_io_retry = NULL; 823 } 824 mutex_exit(&vd->vdev_io_lock); 825 826 /* 827 * Reassess root vdev's health. 828 */ 829 rvd->vdev_state = VDEV_STATE_HEALTHY; 830 for (c = 0; c < rvd->vdev_children; c++) { 831 uint64_t state = rvd->vdev_child[c]->vdev_state; 832 rvd->vdev_state = MIN(rvd->vdev_state, state); 833 } 834 835 mutex_exit(&rvd->vdev_io_lock); 836 } 837 838 int 839 vdev_create(vdev_t *vd, uint64_t txg) 840 { 841 int error; 842 843 /* 844 * Normally, partial opens (e.g. of a mirror) are allowed. 845 * For a create, however, we want to fail the request if 846 * there are any components we can't open. 847 */ 848 error = vdev_open(vd); 849 850 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 851 vdev_close(vd); 852 return (error ? error : ENXIO); 853 } 854 855 /* 856 * Recursively initialize all labels. 857 */ 858 if ((error = vdev_label_init(vd, txg)) != 0) { 859 vdev_close(vd); 860 return (error); 861 } 862 863 return (0); 864 } 865 866 /* 867 * The is the latter half of vdev_create(). It is distinct because it 868 * involves initiating transactions in order to do metaslab creation. 869 * For creation, we want to try to create all vdevs at once and then undo it 870 * if anything fails; this is much harder if we have pending transactions. 871 */ 872 void 873 vdev_init(vdev_t *vd, uint64_t txg) 874 { 875 /* 876 * Aim for roughly 200 metaslabs per vdev. 877 */ 878 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 879 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 880 881 /* 882 * Initialize the vdev's metaslabs. 883 */ 884 vdev_metaslab_init(vd, txg); 885 } 886 887 void 888 vdev_dirty(vdev_t *vd, uint8_t flags, uint64_t txg) 889 { 890 vdev_t *tvd = vd->vdev_top; 891 892 mutex_enter(&tvd->vdev_dirty_lock); 893 if ((tvd->vdev_dirty[txg & TXG_MASK] & flags) != flags) { 894 tvd->vdev_dirty[txg & TXG_MASK] |= flags; 895 (void) txg_list_add(&tvd->vdev_spa->spa_vdev_txg_list, 896 tvd, txg); 897 } 898 mutex_exit(&tvd->vdev_dirty_lock); 899 } 900 901 void 902 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 903 { 904 mutex_enter(sm->sm_lock); 905 if (!space_map_contains(sm, txg, size)) 906 space_map_add(sm, txg, size); 907 mutex_exit(sm->sm_lock); 908 } 909 910 int 911 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 912 { 913 int dirty; 914 915 /* 916 * Quick test without the lock -- covers the common case that 917 * there are no dirty time segments. 918 */ 919 if (sm->sm_space == 0) 920 return (0); 921 922 mutex_enter(sm->sm_lock); 923 dirty = space_map_contains(sm, txg, size); 924 mutex_exit(sm->sm_lock); 925 926 return (dirty); 927 } 928 929 /* 930 * Reassess DTLs after a config change or scrub completion. 931 */ 932 void 933 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 934 { 935 int c; 936 937 ASSERT(spa_config_held(vd->vdev_spa, RW_WRITER)); 938 939 if (vd->vdev_children == 0) { 940 mutex_enter(&vd->vdev_dtl_lock); 941 /* 942 * We're successfully scrubbed everything up to scrub_txg. 943 * Therefore, excise all old DTLs up to that point, then 944 * fold in the DTLs for everything we couldn't scrub. 945 */ 946 if (scrub_txg != 0) { 947 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 948 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 949 } 950 if (scrub_done) 951 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 952 mutex_exit(&vd->vdev_dtl_lock); 953 if (txg != 0) { 954 vdev_t *tvd = vd->vdev_top; 955 vdev_dirty(tvd, VDD_DTL, txg); 956 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 957 } 958 return; 959 } 960 961 mutex_enter(&vd->vdev_dtl_lock); 962 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 963 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 964 mutex_exit(&vd->vdev_dtl_lock); 965 966 for (c = 0; c < vd->vdev_children; c++) { 967 vdev_t *cvd = vd->vdev_child[c]; 968 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 969 mutex_enter(&vd->vdev_dtl_lock); 970 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 971 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 972 mutex_exit(&vd->vdev_dtl_lock); 973 } 974 } 975 976 static int 977 vdev_dtl_load(vdev_t *vd) 978 { 979 spa_t *spa = vd->vdev_spa; 980 space_map_obj_t *smo = &vd->vdev_dtl; 981 dmu_buf_t *db; 982 int error; 983 984 ASSERT(vd->vdev_children == 0); 985 986 if (smo->smo_object == 0) 987 return (0); 988 989 db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object); 990 dmu_buf_read(db); 991 ASSERT3U(db->db_size, ==, sizeof (*smo)); 992 bcopy(db->db_data, smo, db->db_size); 993 dmu_buf_rele(db); 994 995 mutex_enter(&vd->vdev_dtl_lock); 996 error = space_map_load(&vd->vdev_dtl_map, smo, SM_ALLOC, 997 spa->spa_meta_objset, smo->smo_objsize, smo->smo_alloc); 998 mutex_exit(&vd->vdev_dtl_lock); 999 1000 return (error); 1001 } 1002 1003 void 1004 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1005 { 1006 spa_t *spa = vd->vdev_spa; 1007 space_map_obj_t *smo = &vd->vdev_dtl; 1008 space_map_t *sm = &vd->vdev_dtl_map; 1009 space_map_t smsync; 1010 kmutex_t smlock; 1011 avl_tree_t *t = &sm->sm_root; 1012 space_seg_t *ss; 1013 dmu_buf_t *db; 1014 dmu_tx_t *tx; 1015 1016 dprintf("%s in txg %llu pass %d\n", 1017 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1018 1019 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1020 1021 if (vd->vdev_detached) { 1022 if (smo->smo_object != 0) { 1023 int err = dmu_object_free(spa->spa_meta_objset, 1024 smo->smo_object, tx); 1025 ASSERT3U(err, ==, 0); 1026 smo->smo_object = 0; 1027 } 1028 dmu_tx_commit(tx); 1029 return; 1030 } 1031 1032 if (smo->smo_object == 0) { 1033 ASSERT(smo->smo_objsize == 0); 1034 ASSERT(smo->smo_alloc == 0); 1035 smo->smo_object = dmu_object_alloc(spa->spa_meta_objset, 1036 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1037 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1038 ASSERT(smo->smo_object != 0); 1039 vdev_config_dirty(vd->vdev_top); 1040 } 1041 1042 dmu_free_range(spa->spa_meta_objset, smo->smo_object, 1043 0, smo->smo_objsize, tx); 1044 1045 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1046 1047 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1048 &smlock); 1049 1050 mutex_enter(&smlock); 1051 1052 mutex_enter(&vd->vdev_dtl_lock); 1053 for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) 1054 space_map_add(&smsync, ss->ss_start, ss->ss_end - ss->ss_start); 1055 mutex_exit(&vd->vdev_dtl_lock); 1056 1057 smo->smo_objsize = 0; 1058 smo->smo_alloc = smsync.sm_space; 1059 1060 space_map_sync(&smsync, NULL, smo, SM_ALLOC, spa->spa_meta_objset, tx); 1061 space_map_destroy(&smsync); 1062 1063 mutex_exit(&smlock); 1064 mutex_destroy(&smlock); 1065 1066 db = dmu_bonus_hold(spa->spa_meta_objset, smo->smo_object); 1067 dmu_buf_will_dirty(db, tx); 1068 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1069 bcopy(smo, db->db_data, db->db_size); 1070 dmu_buf_rele(db); 1071 1072 dmu_tx_commit(tx); 1073 } 1074 1075 int 1076 vdev_load(vdev_t *vd, int import) 1077 { 1078 spa_t *spa = vd->vdev_spa; 1079 int c, error; 1080 nvlist_t *label; 1081 uint64_t guid, state; 1082 1083 dprintf("loading %s\n", vdev_description(vd)); 1084 1085 /* 1086 * Recursively load all children. 1087 */ 1088 for (c = 0; c < vd->vdev_children; c++) 1089 if ((error = vdev_load(vd->vdev_child[c], import)) != 0) 1090 return (error); 1091 1092 /* 1093 * If this is a leaf vdev, make sure its agrees with its disk labels. 1094 */ 1095 if (vd->vdev_ops->vdev_op_leaf) { 1096 1097 if (vdev_is_dead(vd)) 1098 return (0); 1099 1100 /* 1101 * XXX state transitions don't propagate to parent here. 1102 * Also, merely setting the state isn't sufficient because 1103 * it's not persistent; a vdev_reopen() would make us 1104 * forget all about it. 1105 */ 1106 if ((label = vdev_label_read_config(vd)) == NULL) { 1107 dprintf("can't load label config\n"); 1108 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1109 VDEV_AUX_CORRUPT_DATA); 1110 return (0); 1111 } 1112 1113 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1114 &guid) != 0 || guid != spa_guid(spa)) { 1115 dprintf("bad or missing pool GUID (%llu)\n", guid); 1116 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1117 VDEV_AUX_CORRUPT_DATA); 1118 nvlist_free(label); 1119 return (0); 1120 } 1121 1122 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) || 1123 guid != vd->vdev_guid) { 1124 dprintf("bad or missing vdev guid (%llu != %llu)\n", 1125 guid, vd->vdev_guid); 1126 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1127 VDEV_AUX_CORRUPT_DATA); 1128 nvlist_free(label); 1129 return (0); 1130 } 1131 1132 /* 1133 * If we find a vdev with a matching pool guid and vdev guid, 1134 * but the pool state is not active, it indicates that the user 1135 * exported or destroyed the pool without affecting the config 1136 * cache (if / was mounted readonly, for example). In this 1137 * case, immediately return EBADF so the caller can remove it 1138 * from the config. 1139 */ 1140 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1141 &state)) { 1142 dprintf("missing pool state\n"); 1143 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1144 VDEV_AUX_CORRUPT_DATA); 1145 nvlist_free(label); 1146 return (0); 1147 } 1148 1149 if (state != POOL_STATE_ACTIVE && 1150 (!import || state != POOL_STATE_EXPORTED)) { 1151 dprintf("pool state not active (%llu)\n", state); 1152 nvlist_free(label); 1153 return (EBADF); 1154 } 1155 1156 nvlist_free(label); 1157 } 1158 1159 /* 1160 * If this is a top-level vdev, make sure its allocation parameters 1161 * exist and initialize its metaslabs. 1162 */ 1163 if (vd == vd->vdev_top) { 1164 1165 if (vd->vdev_ms_array == 0 || 1166 vd->vdev_ms_shift == 0 || 1167 vd->vdev_ashift == 0 || 1168 vd->vdev_asize == 0) { 1169 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1170 VDEV_AUX_CORRUPT_DATA); 1171 return (0); 1172 } 1173 1174 vdev_metaslab_init(vd, 0); 1175 } 1176 1177 /* 1178 * If this is a leaf vdev, load its DTL. 1179 */ 1180 if (vd->vdev_ops->vdev_op_leaf) { 1181 error = vdev_dtl_load(vd); 1182 if (error) { 1183 dprintf("can't load DTL for %s, error %d\n", 1184 vdev_description(vd), error); 1185 vdev_set_state(vd, VDEV_STATE_CANT_OPEN, 1186 VDEV_AUX_CORRUPT_DATA); 1187 return (0); 1188 } 1189 } 1190 1191 return (0); 1192 } 1193 1194 void 1195 vdev_sync_done(vdev_t *vd, uint64_t txg) 1196 { 1197 metaslab_t *msp; 1198 1199 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1200 1201 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1202 metaslab_sync_done(msp, txg); 1203 } 1204 1205 void 1206 vdev_add_sync(vdev_t *vd, uint64_t txg) 1207 { 1208 spa_t *spa = vd->vdev_spa; 1209 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1210 1211 ASSERT(vd == vd->vdev_top); 1212 1213 if (vd->vdev_ms_array == 0) 1214 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1215 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1216 1217 ASSERT(vd->vdev_ms_array != 0); 1218 1219 vdev_config_dirty(vd); 1220 1221 dmu_tx_commit(tx); 1222 } 1223 1224 void 1225 vdev_sync(vdev_t *vd, uint64_t txg) 1226 { 1227 spa_t *spa = vd->vdev_spa; 1228 vdev_t *lvd; 1229 metaslab_t *msp; 1230 uint8_t *dirtyp = &vd->vdev_dirty[txg & TXG_MASK]; 1231 uint8_t dirty = *dirtyp; 1232 1233 mutex_enter(&vd->vdev_dirty_lock); 1234 *dirtyp &= ~(VDD_ALLOC | VDD_FREE | VDD_ADD | VDD_DTL); 1235 mutex_exit(&vd->vdev_dirty_lock); 1236 1237 dprintf("%s txg %llu pass %d\n", 1238 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1239 1240 if (dirty & VDD_ADD) 1241 vdev_add_sync(vd, txg); 1242 1243 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) 1244 metaslab_sync(msp, txg); 1245 1246 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1247 vdev_dtl_sync(lvd, txg); 1248 1249 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1250 } 1251 1252 uint64_t 1253 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1254 { 1255 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1256 } 1257 1258 void 1259 vdev_io_start(zio_t *zio) 1260 { 1261 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1262 } 1263 1264 void 1265 vdev_io_done(zio_t *zio) 1266 { 1267 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1268 } 1269 1270 const char * 1271 vdev_description(vdev_t *vd) 1272 { 1273 if (vd == NULL || vd->vdev_ops == NULL) 1274 return ("<unknown>"); 1275 1276 if (vd->vdev_path != NULL) 1277 return (vd->vdev_path); 1278 1279 if (vd->vdev_parent == NULL) 1280 return (spa_name(vd->vdev_spa)); 1281 1282 return (vd->vdev_ops->vdev_op_type); 1283 } 1284 1285 int 1286 vdev_online(spa_t *spa, const char *path) 1287 { 1288 vdev_t *vd; 1289 1290 spa_config_enter(spa, RW_WRITER); 1291 1292 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1293 spa_config_exit(spa); 1294 return (ENODEV); 1295 } 1296 1297 dprintf("ONLINE: %s\n", vdev_description(vd)); 1298 1299 vd->vdev_offline = B_FALSE; 1300 1301 /* 1302 * Clear the error counts. The idea is that you expect to see all 1303 * zeroes when everything is working, so if you've just onlined a 1304 * device, you don't want to keep hearing about errors from before. 1305 */ 1306 vd->vdev_stat.vs_read_errors = 0; 1307 vd->vdev_stat.vs_write_errors = 0; 1308 vd->vdev_stat.vs_checksum_errors = 0; 1309 1310 vdev_reopen(vd->vdev_top, NULL); 1311 1312 spa_config_exit(spa); 1313 1314 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1315 1316 return (0); 1317 } 1318 1319 int 1320 vdev_offline(spa_t *spa, const char *path) 1321 { 1322 vdev_t *vd; 1323 1324 spa_config_enter(spa, RW_WRITER); 1325 1326 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1327 spa_config_exit(spa); 1328 return (ENODEV); 1329 } 1330 1331 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1332 1333 /* 1334 * If this device's top-level vdev has a non-empty DTL, 1335 * don't allow the device to be offlined. 1336 * 1337 * XXX -- we should make this more precise by allowing the offline 1338 * as long as the remaining devices don't have any DTL holes. 1339 */ 1340 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) { 1341 spa_config_exit(spa); 1342 return (EBUSY); 1343 } 1344 1345 /* 1346 * Set this device to offline state and reopen its top-level vdev. 1347 * If this action results in the top-level vdev becoming unusable, 1348 * undo it and fail the request. 1349 */ 1350 vd->vdev_offline = B_TRUE; 1351 vdev_reopen(vd->vdev_top, NULL); 1352 if (vdev_is_dead(vd->vdev_top)) { 1353 vd->vdev_offline = B_FALSE; 1354 vdev_reopen(vd->vdev_top, NULL); 1355 spa_config_exit(spa); 1356 return (EBUSY); 1357 } 1358 1359 spa_config_exit(spa); 1360 1361 return (0); 1362 } 1363 1364 int 1365 vdev_error_setup(spa_t *spa, const char *path, int mode, int mask, uint64_t arg) 1366 { 1367 vdev_t *vd; 1368 1369 spa_config_enter(spa, RW_WRITER); 1370 1371 if ((vd = vdev_lookup_by_path(spa->spa_root_vdev, path)) == NULL) { 1372 spa_config_exit(spa); 1373 return (ENODEV); 1374 } 1375 1376 vd->vdev_fault_mode = mode; 1377 vd->vdev_fault_mask = mask; 1378 vd->vdev_fault_arg = arg; 1379 1380 spa_config_exit(spa); 1381 1382 return (0); 1383 } 1384 1385 int 1386 vdev_is_dead(vdev_t *vd) 1387 { 1388 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1389 } 1390 1391 int 1392 vdev_error_inject(vdev_t *vd, zio_t *zio) 1393 { 1394 int error = 0; 1395 1396 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1397 return (0); 1398 1399 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1400 return (0); 1401 1402 switch (vd->vdev_fault_mode) { 1403 case VDEV_FAULT_RANDOM: 1404 if (spa_get_random(vd->vdev_fault_arg) == 0) 1405 error = EIO; 1406 break; 1407 1408 case VDEV_FAULT_COUNT: 1409 if ((int64_t)--vd->vdev_fault_arg <= 0) 1410 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1411 error = EIO; 1412 break; 1413 } 1414 1415 if (error != 0) { 1416 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1417 error, zio->io_type, vdev_description(vd), 1418 vd->vdev_state, zio->io_offset); 1419 } 1420 1421 return (error); 1422 } 1423 1424 /* 1425 * Get statistics for the given vdev. 1426 */ 1427 void 1428 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1429 { 1430 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1431 int c, t; 1432 1433 mutex_enter(&vd->vdev_stat_lock); 1434 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1435 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1436 vs->vs_state = vd->vdev_state; 1437 mutex_exit(&vd->vdev_stat_lock); 1438 1439 /* 1440 * If we're getting stats on the root vdev, aggregate the I/O counts 1441 * over all top-level vdevs (i.e. the direct children of the root). 1442 */ 1443 if (vd == rvd) { 1444 for (c = 0; c < rvd->vdev_children; c++) { 1445 vdev_t *cvd = rvd->vdev_child[c]; 1446 vdev_stat_t *cvs = &cvd->vdev_stat; 1447 1448 mutex_enter(&vd->vdev_stat_lock); 1449 for (t = 0; t < ZIO_TYPES; t++) { 1450 vs->vs_ops[t] += cvs->vs_ops[t]; 1451 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1452 } 1453 vs->vs_read_errors += cvs->vs_read_errors; 1454 vs->vs_write_errors += cvs->vs_write_errors; 1455 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1456 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1457 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1458 mutex_exit(&vd->vdev_stat_lock); 1459 } 1460 } 1461 } 1462 1463 void 1464 vdev_stat_update(zio_t *zio) 1465 { 1466 vdev_t *vd = zio->io_vd; 1467 vdev_t *pvd; 1468 uint64_t txg = zio->io_txg; 1469 vdev_stat_t *vs = &vd->vdev_stat; 1470 zio_type_t type = zio->io_type; 1471 int flags = zio->io_flags; 1472 1473 if (zio->io_error == 0) { 1474 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1475 mutex_enter(&vd->vdev_stat_lock); 1476 vs->vs_ops[type]++; 1477 vs->vs_bytes[type] += zio->io_size; 1478 mutex_exit(&vd->vdev_stat_lock); 1479 } 1480 if ((flags & ZIO_FLAG_IO_REPAIR) && 1481 zio->io_delegate_list == NULL) { 1482 mutex_enter(&vd->vdev_stat_lock); 1483 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) 1484 vs->vs_scrub_repaired += zio->io_size; 1485 else 1486 vs->vs_self_healed += zio->io_size; 1487 mutex_exit(&vd->vdev_stat_lock); 1488 } 1489 return; 1490 } 1491 1492 if (flags & ZIO_FLAG_SPECULATIVE) 1493 return; 1494 1495 if (!vdev_is_dead(vd)) { 1496 mutex_enter(&vd->vdev_stat_lock); 1497 if (type == ZIO_TYPE_READ) { 1498 if (zio->io_error == ECKSUM) 1499 vs->vs_checksum_errors++; 1500 else 1501 vs->vs_read_errors++; 1502 } 1503 if (type == ZIO_TYPE_WRITE) 1504 vs->vs_write_errors++; 1505 mutex_exit(&vd->vdev_stat_lock); 1506 } 1507 1508 if (type == ZIO_TYPE_WRITE) { 1509 if (txg == 0 || vd->vdev_children != 0) 1510 return; 1511 if (flags & (ZIO_FLAG_SCRUB | ZIO_FLAG_RESILVER)) { 1512 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1513 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1514 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1515 } 1516 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1517 vdev_t *tvd = vd->vdev_top; 1518 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1519 return; 1520 vdev_dirty(tvd, VDD_DTL, txg); 1521 (void) txg_list_add(&tvd->vdev_dtl_list, vd, txg); 1522 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1523 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1524 } 1525 } 1526 } 1527 1528 void 1529 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1530 { 1531 int c; 1532 vdev_stat_t *vs = &vd->vdev_stat; 1533 1534 for (c = 0; c < vd->vdev_children; c++) 1535 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1536 1537 mutex_enter(&vd->vdev_stat_lock); 1538 1539 if (type == POOL_SCRUB_NONE) { 1540 /* 1541 * Update completion and end time. Leave everything else alone 1542 * so we can report what happened during the previous scrub. 1543 */ 1544 vs->vs_scrub_complete = complete; 1545 vs->vs_scrub_end = gethrestime_sec(); 1546 } else { 1547 vs->vs_scrub_type = type; 1548 vs->vs_scrub_complete = 0; 1549 vs->vs_scrub_examined = 0; 1550 vs->vs_scrub_repaired = 0; 1551 vs->vs_scrub_errors = 0; 1552 vs->vs_scrub_start = gethrestime_sec(); 1553 vs->vs_scrub_end = 0; 1554 } 1555 1556 mutex_exit(&vd->vdev_stat_lock); 1557 } 1558 1559 /* 1560 * Report checksum errors that a vdev that didn't realize it made. 1561 * This can happen, for example, when RAID-Z combinatorial reconstruction 1562 * infers that one of its components returned bad data. 1563 */ 1564 void 1565 vdev_checksum_error(zio_t *zio, vdev_t *vd) 1566 { 1567 dprintf_bp(zio->io_bp, "imputed checksum error on %s: ", 1568 vdev_description(vd)); 1569 1570 if (!(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 1571 mutex_enter(&vd->vdev_stat_lock); 1572 vd->vdev_stat.vs_checksum_errors++; 1573 mutex_exit(&vd->vdev_stat_lock); 1574 } 1575 } 1576 1577 /* 1578 * Update the in-core space usage stats for this vdev and the root vdev. 1579 */ 1580 void 1581 vdev_space_update(vdev_t *vd, uint64_t space_delta, uint64_t alloc_delta) 1582 { 1583 ASSERT(vd == vd->vdev_top); 1584 1585 do { 1586 mutex_enter(&vd->vdev_stat_lock); 1587 vd->vdev_stat.vs_space += space_delta; 1588 vd->vdev_stat.vs_alloc += alloc_delta; 1589 mutex_exit(&vd->vdev_stat_lock); 1590 } while ((vd = vd->vdev_parent) != NULL); 1591 } 1592 1593 /* 1594 * Various knobs to tune a vdev. 1595 */ 1596 static vdev_knob_t vdev_knob[] = { 1597 { 1598 "cache_size", 1599 "size of the read-ahead cache", 1600 0, 1601 1ULL << 30, 1602 10ULL << 20, 1603 offsetof(struct vdev, vdev_cache.vc_size) 1604 }, 1605 { 1606 "cache_bshift", 1607 "log2 of cache blocksize", 1608 SPA_MINBLOCKSHIFT, 1609 SPA_MAXBLOCKSHIFT, 1610 16, 1611 offsetof(struct vdev, vdev_cache.vc_bshift) 1612 }, 1613 { 1614 "cache_max", 1615 "largest block size to cache", 1616 0, 1617 SPA_MAXBLOCKSIZE, 1618 1ULL << 14, 1619 offsetof(struct vdev, vdev_cache.vc_max) 1620 }, 1621 { 1622 "min_pending", 1623 "minimum pending I/Os to the disk", 1624 1, 1625 10000, 1626 2, 1627 offsetof(struct vdev, vdev_queue.vq_min_pending) 1628 }, 1629 { 1630 "max_pending", 1631 "maximum pending I/Os to the disk", 1632 1, 1633 10000, 1634 35, 1635 offsetof(struct vdev, vdev_queue.vq_max_pending) 1636 }, 1637 { 1638 "agg_limit", 1639 "maximum size of aggregated I/Os", 1640 0, 1641 SPA_MAXBLOCKSIZE, 1642 SPA_MAXBLOCKSIZE, 1643 offsetof(struct vdev, vdev_queue.vq_agg_limit) 1644 }, 1645 { 1646 "time_shift", 1647 "deadline = pri + (lbolt >> time_shift)", 1648 0, 1649 63, 1650 4, 1651 offsetof(struct vdev, vdev_queue.vq_time_shift) 1652 }, 1653 { 1654 "ramp_rate", 1655 "exponential I/O issue ramp-up rate", 1656 1, 1657 10000, 1658 2, 1659 offsetof(struct vdev, vdev_queue.vq_ramp_rate) 1660 }, 1661 }; 1662 1663 vdev_knob_t * 1664 vdev_knob_next(vdev_knob_t *vk) 1665 { 1666 if (vk == NULL) 1667 return (vdev_knob); 1668 1669 if (++vk == vdev_knob + sizeof (vdev_knob) / sizeof (vdev_knob_t)) 1670 return (NULL); 1671 1672 return (vk); 1673 } 1674 1675 /* 1676 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1677 * so that it will be written out next time the vdev configuration is synced. 1678 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1679 */ 1680 void 1681 vdev_config_dirty(vdev_t *vd) 1682 { 1683 spa_t *spa = vd->vdev_spa; 1684 vdev_t *rvd = spa->spa_root_vdev; 1685 int c; 1686 1687 if (vd == rvd) { 1688 for (c = 0; c < rvd->vdev_children; c++) 1689 vdev_config_dirty(rvd->vdev_child[c]); 1690 } else { 1691 ASSERT(vd == vd->vdev_top); 1692 1693 if (!vd->vdev_is_dirty) { 1694 list_insert_head(&spa->spa_dirty_list, vd); 1695 vd->vdev_is_dirty = B_TRUE; 1696 } 1697 } 1698 } 1699 1700 void 1701 vdev_config_clean(vdev_t *vd) 1702 { 1703 ASSERT(vd->vdev_is_dirty); 1704 1705 list_remove(&vd->vdev_spa->spa_dirty_list, vd); 1706 vd->vdev_is_dirty = B_FALSE; 1707 } 1708 1709 /* 1710 * Set a vdev's state, updating any parent's state as well. 1711 */ 1712 void 1713 vdev_set_state(vdev_t *vd, vdev_state_t state, vdev_aux_t aux) 1714 { 1715 if (state == vd->vdev_state) 1716 return; 1717 1718 vd->vdev_state = state; 1719 vd->vdev_stat.vs_aux = aux; 1720 1721 if (vd->vdev_parent != NULL) { 1722 int c; 1723 int degraded = 0, faulted = 0; 1724 vdev_t *parent, *child; 1725 1726 parent = vd->vdev_parent; 1727 for (c = 0; c < parent->vdev_children; c++) { 1728 child = parent->vdev_child[c]; 1729 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1730 faulted++; 1731 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1732 degraded++; 1733 } 1734 1735 vd->vdev_parent->vdev_ops->vdev_op_state_change( 1736 vd->vdev_parent, faulted, degraded); 1737 } 1738 } 1739