1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/txg_impl.h> 28 #include <sys/dmu_impl.h> 29 #include <sys/dmu_tx.h> 30 #include <sys/dsl_pool.h> 31 #include <sys/callb.h> 32 33 /* 34 * Pool-wide transaction groups. 35 */ 36 37 static void txg_sync_thread(dsl_pool_t *dp); 38 static void txg_quiesce_thread(dsl_pool_t *dp); 39 40 int zfs_txg_timeout = 30; /* max seconds worth of delta per txg */ 41 42 /* 43 * Prepare the txg subsystem. 44 */ 45 void 46 txg_init(dsl_pool_t *dp, uint64_t txg) 47 { 48 tx_state_t *tx = &dp->dp_tx; 49 int c; 50 bzero(tx, sizeof (tx_state_t)); 51 52 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 53 54 for (c = 0; c < max_ncpus; c++) { 55 int i; 56 57 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 58 for (i = 0; i < TXG_SIZE; i++) { 59 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 60 NULL); 61 list_create(&tx->tx_cpu[c].tc_callbacks[i], 62 sizeof (dmu_tx_callback_t), 63 offsetof(dmu_tx_callback_t, dcb_node)); 64 } 65 } 66 67 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 68 69 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 70 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 71 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 72 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 73 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 74 75 tx->tx_open_txg = txg; 76 } 77 78 /* 79 * Close down the txg subsystem. 80 */ 81 void 82 txg_fini(dsl_pool_t *dp) 83 { 84 tx_state_t *tx = &dp->dp_tx; 85 int c; 86 87 ASSERT(tx->tx_threads == 0); 88 89 mutex_destroy(&tx->tx_sync_lock); 90 91 cv_destroy(&tx->tx_sync_more_cv); 92 cv_destroy(&tx->tx_sync_done_cv); 93 cv_destroy(&tx->tx_quiesce_more_cv); 94 cv_destroy(&tx->tx_quiesce_done_cv); 95 cv_destroy(&tx->tx_exit_cv); 96 97 for (c = 0; c < max_ncpus; c++) { 98 int i; 99 100 mutex_destroy(&tx->tx_cpu[c].tc_lock); 101 for (i = 0; i < TXG_SIZE; i++) { 102 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 103 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 104 } 105 } 106 107 if (tx->tx_commit_cb_taskq != NULL) 108 taskq_destroy(tx->tx_commit_cb_taskq); 109 110 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 111 112 bzero(tx, sizeof (tx_state_t)); 113 } 114 115 /* 116 * Start syncing transaction groups. 117 */ 118 void 119 txg_sync_start(dsl_pool_t *dp) 120 { 121 tx_state_t *tx = &dp->dp_tx; 122 123 mutex_enter(&tx->tx_sync_lock); 124 125 dprintf("pool %p\n", dp); 126 127 ASSERT(tx->tx_threads == 0); 128 129 tx->tx_threads = 2; 130 131 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 132 dp, 0, &p0, TS_RUN, minclsyspri); 133 134 /* 135 * The sync thread can need a larger-than-default stack size on 136 * 32-bit x86. This is due in part to nested pools and 137 * scrub_visitbp() recursion. 138 */ 139 tx->tx_sync_thread = thread_create(NULL, 12<<10, txg_sync_thread, 140 dp, 0, &p0, TS_RUN, minclsyspri); 141 142 mutex_exit(&tx->tx_sync_lock); 143 } 144 145 static void 146 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 147 { 148 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 149 mutex_enter(&tx->tx_sync_lock); 150 } 151 152 static void 153 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 154 { 155 ASSERT(*tpp != NULL); 156 *tpp = NULL; 157 tx->tx_threads--; 158 cv_broadcast(&tx->tx_exit_cv); 159 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 160 thread_exit(); 161 } 162 163 static void 164 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, uint64_t time) 165 { 166 CALLB_CPR_SAFE_BEGIN(cpr); 167 168 if (time) 169 (void) cv_timedwait(cv, &tx->tx_sync_lock, 170 ddi_get_lbolt() + time); 171 else 172 cv_wait(cv, &tx->tx_sync_lock); 173 174 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 175 } 176 177 /* 178 * Stop syncing transaction groups. 179 */ 180 void 181 txg_sync_stop(dsl_pool_t *dp) 182 { 183 tx_state_t *tx = &dp->dp_tx; 184 185 dprintf("pool %p\n", dp); 186 /* 187 * Finish off any work in progress. 188 */ 189 ASSERT(tx->tx_threads == 2); 190 191 /* 192 * We need to ensure that we've vacated the deferred space_maps. 193 */ 194 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 195 196 /* 197 * Wake all sync threads and wait for them to die. 198 */ 199 mutex_enter(&tx->tx_sync_lock); 200 201 ASSERT(tx->tx_threads == 2); 202 203 tx->tx_exiting = 1; 204 205 cv_broadcast(&tx->tx_quiesce_more_cv); 206 cv_broadcast(&tx->tx_quiesce_done_cv); 207 cv_broadcast(&tx->tx_sync_more_cv); 208 209 while (tx->tx_threads != 0) 210 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 211 212 tx->tx_exiting = 0; 213 214 mutex_exit(&tx->tx_sync_lock); 215 } 216 217 uint64_t 218 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 219 { 220 tx_state_t *tx = &dp->dp_tx; 221 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 222 uint64_t txg; 223 224 mutex_enter(&tc->tc_lock); 225 226 txg = tx->tx_open_txg; 227 tc->tc_count[txg & TXG_MASK]++; 228 229 th->th_cpu = tc; 230 th->th_txg = txg; 231 232 return (txg); 233 } 234 235 void 236 txg_rele_to_quiesce(txg_handle_t *th) 237 { 238 tx_cpu_t *tc = th->th_cpu; 239 240 mutex_exit(&tc->tc_lock); 241 } 242 243 void 244 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 245 { 246 tx_cpu_t *tc = th->th_cpu; 247 int g = th->th_txg & TXG_MASK; 248 249 mutex_enter(&tc->tc_lock); 250 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 251 mutex_exit(&tc->tc_lock); 252 } 253 254 void 255 txg_rele_to_sync(txg_handle_t *th) 256 { 257 tx_cpu_t *tc = th->th_cpu; 258 int g = th->th_txg & TXG_MASK; 259 260 mutex_enter(&tc->tc_lock); 261 ASSERT(tc->tc_count[g] != 0); 262 if (--tc->tc_count[g] == 0) 263 cv_broadcast(&tc->tc_cv[g]); 264 mutex_exit(&tc->tc_lock); 265 266 th->th_cpu = NULL; /* defensive */ 267 } 268 269 static void 270 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 271 { 272 tx_state_t *tx = &dp->dp_tx; 273 int g = txg & TXG_MASK; 274 int c; 275 276 /* 277 * Grab all tx_cpu locks so nobody else can get into this txg. 278 */ 279 for (c = 0; c < max_ncpus; c++) 280 mutex_enter(&tx->tx_cpu[c].tc_lock); 281 282 ASSERT(txg == tx->tx_open_txg); 283 tx->tx_open_txg++; 284 285 /* 286 * Now that we've incremented tx_open_txg, we can let threads 287 * enter the next transaction group. 288 */ 289 for (c = 0; c < max_ncpus; c++) 290 mutex_exit(&tx->tx_cpu[c].tc_lock); 291 292 /* 293 * Quiesce the transaction group by waiting for everyone to txg_exit(). 294 */ 295 for (c = 0; c < max_ncpus; c++) { 296 tx_cpu_t *tc = &tx->tx_cpu[c]; 297 mutex_enter(&tc->tc_lock); 298 while (tc->tc_count[g] != 0) 299 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 300 mutex_exit(&tc->tc_lock); 301 } 302 } 303 304 static void 305 txg_do_callbacks(list_t *cb_list) 306 { 307 dmu_tx_do_callbacks(cb_list, 0); 308 309 list_destroy(cb_list); 310 311 kmem_free(cb_list, sizeof (list_t)); 312 } 313 314 /* 315 * Dispatch the commit callbacks registered on this txg to worker threads. 316 */ 317 static void 318 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 319 { 320 int c; 321 tx_state_t *tx = &dp->dp_tx; 322 list_t *cb_list; 323 324 for (c = 0; c < max_ncpus; c++) { 325 tx_cpu_t *tc = &tx->tx_cpu[c]; 326 /* No need to lock tx_cpu_t at this point */ 327 328 int g = txg & TXG_MASK; 329 330 if (list_is_empty(&tc->tc_callbacks[g])) 331 continue; 332 333 if (tx->tx_commit_cb_taskq == NULL) { 334 /* 335 * Commit callback taskq hasn't been created yet. 336 */ 337 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 338 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 339 TASKQ_PREPOPULATE); 340 } 341 342 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 343 list_create(cb_list, sizeof (dmu_tx_callback_t), 344 offsetof(dmu_tx_callback_t, dcb_node)); 345 346 list_move_tail(&tc->tc_callbacks[g], cb_list); 347 348 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 349 txg_do_callbacks, cb_list, TQ_SLEEP); 350 } 351 } 352 353 static void 354 txg_sync_thread(dsl_pool_t *dp) 355 { 356 spa_t *spa = dp->dp_spa; 357 tx_state_t *tx = &dp->dp_tx; 358 callb_cpr_t cpr; 359 uint64_t start, delta; 360 361 txg_thread_enter(tx, &cpr); 362 363 start = delta = 0; 364 for (;;) { 365 uint64_t timer, timeout = zfs_txg_timeout * hz; 366 uint64_t txg; 367 368 /* 369 * We sync when we're scrubbing, there's someone waiting 370 * on us, or the quiesce thread has handed off a txg to 371 * us, or we have reached our timeout. 372 */ 373 timer = (delta >= timeout ? 0 : timeout - delta); 374 while ((dp->dp_scrub_func == SCRUB_FUNC_NONE || 375 spa_load_state(spa) != SPA_LOAD_NONE || 376 spa_shutting_down(spa)) && 377 !tx->tx_exiting && timer > 0 && 378 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 379 tx->tx_quiesced_txg == 0) { 380 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 381 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 382 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 383 delta = ddi_get_lbolt() - start; 384 timer = (delta > timeout ? 0 : timeout - delta); 385 } 386 387 /* 388 * Wait until the quiesce thread hands off a txg to us, 389 * prompting it to do so if necessary. 390 */ 391 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 392 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 393 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 394 cv_broadcast(&tx->tx_quiesce_more_cv); 395 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 396 } 397 398 if (tx->tx_exiting) 399 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 400 401 /* 402 * Consume the quiesced txg which has been handed off to 403 * us. This may cause the quiescing thread to now be 404 * able to quiesce another txg, so we must signal it. 405 */ 406 txg = tx->tx_quiesced_txg; 407 tx->tx_quiesced_txg = 0; 408 tx->tx_syncing_txg = txg; 409 cv_broadcast(&tx->tx_quiesce_more_cv); 410 411 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 412 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 413 mutex_exit(&tx->tx_sync_lock); 414 415 start = ddi_get_lbolt(); 416 spa_sync(spa, txg); 417 delta = ddi_get_lbolt() - start; 418 419 mutex_enter(&tx->tx_sync_lock); 420 tx->tx_synced_txg = txg; 421 tx->tx_syncing_txg = 0; 422 cv_broadcast(&tx->tx_sync_done_cv); 423 424 /* 425 * Dispatch commit callbacks to worker threads. 426 */ 427 txg_dispatch_callbacks(dp, txg); 428 } 429 } 430 431 static void 432 txg_quiesce_thread(dsl_pool_t *dp) 433 { 434 tx_state_t *tx = &dp->dp_tx; 435 callb_cpr_t cpr; 436 437 txg_thread_enter(tx, &cpr); 438 439 for (;;) { 440 uint64_t txg; 441 442 /* 443 * We quiesce when there's someone waiting on us. 444 * However, we can only have one txg in "quiescing" or 445 * "quiesced, waiting to sync" state. So we wait until 446 * the "quiesced, waiting to sync" txg has been consumed 447 * by the sync thread. 448 */ 449 while (!tx->tx_exiting && 450 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 451 tx->tx_quiesced_txg != 0)) 452 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 453 454 if (tx->tx_exiting) 455 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 456 457 txg = tx->tx_open_txg; 458 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 459 txg, tx->tx_quiesce_txg_waiting, 460 tx->tx_sync_txg_waiting); 461 mutex_exit(&tx->tx_sync_lock); 462 txg_quiesce(dp, txg); 463 mutex_enter(&tx->tx_sync_lock); 464 465 /* 466 * Hand this txg off to the sync thread. 467 */ 468 dprintf("quiesce done, handing off txg %llu\n", txg); 469 tx->tx_quiesced_txg = txg; 470 cv_broadcast(&tx->tx_sync_more_cv); 471 cv_broadcast(&tx->tx_quiesce_done_cv); 472 } 473 } 474 475 /* 476 * Delay this thread by 'ticks' if we are still in the open transaction 477 * group and there is already a waiting txg quiesing or quiesced. Abort 478 * the delay if this txg stalls or enters the quiesing state. 479 */ 480 void 481 txg_delay(dsl_pool_t *dp, uint64_t txg, int ticks) 482 { 483 tx_state_t *tx = &dp->dp_tx; 484 int timeout = ddi_get_lbolt() + ticks; 485 486 /* don't delay if this txg could transition to quiesing immediately */ 487 if (tx->tx_open_txg > txg || 488 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 489 return; 490 491 mutex_enter(&tx->tx_sync_lock); 492 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 493 mutex_exit(&tx->tx_sync_lock); 494 return; 495 } 496 497 while (ddi_get_lbolt() < timeout && 498 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) 499 (void) cv_timedwait(&tx->tx_quiesce_more_cv, &tx->tx_sync_lock, 500 timeout); 501 502 mutex_exit(&tx->tx_sync_lock); 503 } 504 505 void 506 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 507 { 508 tx_state_t *tx = &dp->dp_tx; 509 510 mutex_enter(&tx->tx_sync_lock); 511 ASSERT(tx->tx_threads == 2); 512 if (txg == 0) 513 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 514 if (tx->tx_sync_txg_waiting < txg) 515 tx->tx_sync_txg_waiting = txg; 516 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 517 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 518 while (tx->tx_synced_txg < txg) { 519 dprintf("broadcasting sync more " 520 "tx_synced=%llu waiting=%llu dp=%p\n", 521 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 522 cv_broadcast(&tx->tx_sync_more_cv); 523 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 524 } 525 mutex_exit(&tx->tx_sync_lock); 526 } 527 528 void 529 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 530 { 531 tx_state_t *tx = &dp->dp_tx; 532 533 mutex_enter(&tx->tx_sync_lock); 534 ASSERT(tx->tx_threads == 2); 535 if (txg == 0) 536 txg = tx->tx_open_txg + 1; 537 if (tx->tx_quiesce_txg_waiting < txg) 538 tx->tx_quiesce_txg_waiting = txg; 539 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 540 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 541 while (tx->tx_open_txg < txg) { 542 cv_broadcast(&tx->tx_quiesce_more_cv); 543 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 544 } 545 mutex_exit(&tx->tx_sync_lock); 546 } 547 548 boolean_t 549 txg_stalled(dsl_pool_t *dp) 550 { 551 tx_state_t *tx = &dp->dp_tx; 552 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 553 } 554 555 boolean_t 556 txg_sync_waiting(dsl_pool_t *dp) 557 { 558 tx_state_t *tx = &dp->dp_tx; 559 560 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 561 tx->tx_quiesced_txg != 0); 562 } 563 564 /* 565 * Per-txg object lists. 566 */ 567 void 568 txg_list_create(txg_list_t *tl, size_t offset) 569 { 570 int t; 571 572 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 573 574 tl->tl_offset = offset; 575 576 for (t = 0; t < TXG_SIZE; t++) 577 tl->tl_head[t] = NULL; 578 } 579 580 void 581 txg_list_destroy(txg_list_t *tl) 582 { 583 int t; 584 585 for (t = 0; t < TXG_SIZE; t++) 586 ASSERT(txg_list_empty(tl, t)); 587 588 mutex_destroy(&tl->tl_lock); 589 } 590 591 int 592 txg_list_empty(txg_list_t *tl, uint64_t txg) 593 { 594 return (tl->tl_head[txg & TXG_MASK] == NULL); 595 } 596 597 /* 598 * Add an entry to the list. 599 * Returns 0 if it's a new entry, 1 if it's already there. 600 */ 601 int 602 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 603 { 604 int t = txg & TXG_MASK; 605 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 606 int already_on_list; 607 608 mutex_enter(&tl->tl_lock); 609 already_on_list = tn->tn_member[t]; 610 if (!already_on_list) { 611 tn->tn_member[t] = 1; 612 tn->tn_next[t] = tl->tl_head[t]; 613 tl->tl_head[t] = tn; 614 } 615 mutex_exit(&tl->tl_lock); 616 617 return (already_on_list); 618 } 619 620 /* 621 * Remove the head of the list and return it. 622 */ 623 void * 624 txg_list_remove(txg_list_t *tl, uint64_t txg) 625 { 626 int t = txg & TXG_MASK; 627 txg_node_t *tn; 628 void *p = NULL; 629 630 mutex_enter(&tl->tl_lock); 631 if ((tn = tl->tl_head[t]) != NULL) { 632 p = (char *)tn - tl->tl_offset; 633 tl->tl_head[t] = tn->tn_next[t]; 634 tn->tn_next[t] = NULL; 635 tn->tn_member[t] = 0; 636 } 637 mutex_exit(&tl->tl_lock); 638 639 return (p); 640 } 641 642 /* 643 * Remove a specific item from the list and return it. 644 */ 645 void * 646 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 647 { 648 int t = txg & TXG_MASK; 649 txg_node_t *tn, **tp; 650 651 mutex_enter(&tl->tl_lock); 652 653 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 654 if ((char *)tn - tl->tl_offset == p) { 655 *tp = tn->tn_next[t]; 656 tn->tn_next[t] = NULL; 657 tn->tn_member[t] = 0; 658 mutex_exit(&tl->tl_lock); 659 return (p); 660 } 661 } 662 663 mutex_exit(&tl->tl_lock); 664 665 return (NULL); 666 } 667 668 int 669 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 670 { 671 int t = txg & TXG_MASK; 672 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 673 674 return (tn->tn_member[t]); 675 } 676 677 /* 678 * Walk a txg list -- only safe if you know it's not changing. 679 */ 680 void * 681 txg_list_head(txg_list_t *tl, uint64_t txg) 682 { 683 int t = txg & TXG_MASK; 684 txg_node_t *tn = tl->tl_head[t]; 685 686 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 687 } 688 689 void * 690 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 691 { 692 int t = txg & TXG_MASK; 693 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 694 695 tn = tn->tn_next[t]; 696 697 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 698 } 699