1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Portions Copyright 2011 Martin Matuska 24 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/txg_impl.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dmu_tx.h> 31 #include <sys/dsl_pool.h> 32 #include <sys/dsl_scan.h> 33 #include <sys/callb.h> 34 35 /* 36 * ZFS Transaction Groups 37 * ---------------------- 38 * 39 * ZFS transaction groups are, as the name implies, groups of transactions 40 * that act on persistent state. ZFS asserts consistency at the granularity of 41 * these transaction groups. Each successive transaction group (txg) is 42 * assigned a 64-bit consecutive identifier. There are three active 43 * transaction group states: open, quiescing, or syncing. At any given time, 44 * there may be an active txg associated with each state; each active txg may 45 * either be processing, or blocked waiting to enter the next state. There may 46 * be up to three active txgs, and there is always a txg in the open state 47 * (though it may be blocked waiting to enter the quiescing state). In broad 48 * strokes, transactions -- operations that change in-memory structures -- are 49 * accepted into the txg in the open state, and are completed while the txg is 50 * in the open or quiescing states. The accumulated changes are written to 51 * disk in the syncing state. 52 * 53 * Open 54 * 55 * When a new txg becomes active, it first enters the open state. New 56 * transactions -- updates to in-memory structures -- are assigned to the 57 * currently open txg. There is always a txg in the open state so that ZFS can 58 * accept new changes (though the txg may refuse new changes if it has hit 59 * some limit). ZFS advances the open txg to the next state for a variety of 60 * reasons such as it hitting a time or size threshold, or the execution of an 61 * administrative action that must be completed in the syncing state. 62 * 63 * Quiescing 64 * 65 * After a txg exits the open state, it enters the quiescing state. The 66 * quiescing state is intended to provide a buffer between accepting new 67 * transactions in the open state and writing them out to stable storage in 68 * the syncing state. While quiescing, transactions can continue their 69 * operation without delaying either of the other states. Typically, a txg is 70 * in the quiescing state very briefly since the operations are bounded by 71 * software latencies rather than, say, slower I/O latencies. After all 72 * transactions complete, the txg is ready to enter the next state. 73 * 74 * Syncing 75 * 76 * In the syncing state, the in-memory state built up during the open and (to 77 * a lesser degree) the quiescing states is written to stable storage. The 78 * process of writing out modified data can, in turn modify more data. For 79 * example when we write new blocks, we need to allocate space for them; those 80 * allocations modify metadata (space maps)... which themselves must be 81 * written to stable storage. During the sync state, ZFS iterates, writing out 82 * data until it converges and all in-memory changes have been written out. 83 * The first such pass is the largest as it encompasses all the modified user 84 * data (as opposed to filesystem metadata). Subsequent passes typically have 85 * far less data to write as they consist exclusively of filesystem metadata. 86 * 87 * To ensure convergence, after a certain number of passes ZFS begins 88 * overwriting locations on stable storage that had been allocated earlier in 89 * the syncing state (and subsequently freed). ZFS usually allocates new 90 * blocks to optimize for large, continuous, writes. For the syncing state to 91 * converge however it must complete a pass where no new blocks are allocated 92 * since each allocation requires a modification of persistent metadata. 93 * Further, to hasten convergence, after a prescribed number of passes, ZFS 94 * also defers frees, and stops compressing. 95 * 96 * In addition to writing out user data, we must also execute synctasks during 97 * the syncing context. A synctask is the mechanism by which some 98 * administrative activities work such as creating and destroying snapshots or 99 * datasets. Note that when a synctask is initiated it enters the open txg, 100 * and ZFS then pushes that txg as quickly as possible to completion of the 101 * syncing state in order to reduce the latency of the administrative 102 * activity. To complete the syncing state, ZFS writes out a new uberblock, 103 * the root of the tree of blocks that comprise all state stored on the ZFS 104 * pool. Finally, if there is a quiesced txg waiting, we signal that it can 105 * now transition to the syncing state. 106 */ 107 108 static void txg_sync_thread(dsl_pool_t *dp); 109 static void txg_quiesce_thread(dsl_pool_t *dp); 110 111 int zfs_txg_timeout = 5; /* max seconds worth of delta per txg */ 112 113 /* 114 * Prepare the txg subsystem. 115 */ 116 void 117 txg_init(dsl_pool_t *dp, uint64_t txg) 118 { 119 tx_state_t *tx = &dp->dp_tx; 120 int c; 121 bzero(tx, sizeof (tx_state_t)); 122 123 tx->tx_cpu = kmem_zalloc(max_ncpus * sizeof (tx_cpu_t), KM_SLEEP); 124 125 for (c = 0; c < max_ncpus; c++) { 126 int i; 127 128 mutex_init(&tx->tx_cpu[c].tc_lock, NULL, MUTEX_DEFAULT, NULL); 129 mutex_init(&tx->tx_cpu[c].tc_open_lock, NULL, MUTEX_DEFAULT, 130 NULL); 131 for (i = 0; i < TXG_SIZE; i++) { 132 cv_init(&tx->tx_cpu[c].tc_cv[i], NULL, CV_DEFAULT, 133 NULL); 134 list_create(&tx->tx_cpu[c].tc_callbacks[i], 135 sizeof (dmu_tx_callback_t), 136 offsetof(dmu_tx_callback_t, dcb_node)); 137 } 138 } 139 140 mutex_init(&tx->tx_sync_lock, NULL, MUTEX_DEFAULT, NULL); 141 142 cv_init(&tx->tx_sync_more_cv, NULL, CV_DEFAULT, NULL); 143 cv_init(&tx->tx_sync_done_cv, NULL, CV_DEFAULT, NULL); 144 cv_init(&tx->tx_quiesce_more_cv, NULL, CV_DEFAULT, NULL); 145 cv_init(&tx->tx_quiesce_done_cv, NULL, CV_DEFAULT, NULL); 146 cv_init(&tx->tx_exit_cv, NULL, CV_DEFAULT, NULL); 147 148 tx->tx_open_txg = txg; 149 } 150 151 /* 152 * Close down the txg subsystem. 153 */ 154 void 155 txg_fini(dsl_pool_t *dp) 156 { 157 tx_state_t *tx = &dp->dp_tx; 158 int c; 159 160 ASSERT(tx->tx_threads == 0); 161 162 mutex_destroy(&tx->tx_sync_lock); 163 164 cv_destroy(&tx->tx_sync_more_cv); 165 cv_destroy(&tx->tx_sync_done_cv); 166 cv_destroy(&tx->tx_quiesce_more_cv); 167 cv_destroy(&tx->tx_quiesce_done_cv); 168 cv_destroy(&tx->tx_exit_cv); 169 170 for (c = 0; c < max_ncpus; c++) { 171 int i; 172 173 mutex_destroy(&tx->tx_cpu[c].tc_open_lock); 174 mutex_destroy(&tx->tx_cpu[c].tc_lock); 175 for (i = 0; i < TXG_SIZE; i++) { 176 cv_destroy(&tx->tx_cpu[c].tc_cv[i]); 177 list_destroy(&tx->tx_cpu[c].tc_callbacks[i]); 178 } 179 } 180 181 if (tx->tx_commit_cb_taskq != NULL) 182 taskq_destroy(tx->tx_commit_cb_taskq); 183 184 kmem_free(tx->tx_cpu, max_ncpus * sizeof (tx_cpu_t)); 185 186 bzero(tx, sizeof (tx_state_t)); 187 } 188 189 /* 190 * Start syncing transaction groups. 191 */ 192 void 193 txg_sync_start(dsl_pool_t *dp) 194 { 195 tx_state_t *tx = &dp->dp_tx; 196 197 mutex_enter(&tx->tx_sync_lock); 198 199 dprintf("pool %p\n", dp); 200 201 ASSERT(tx->tx_threads == 0); 202 203 tx->tx_threads = 2; 204 205 tx->tx_quiesce_thread = thread_create(NULL, 0, txg_quiesce_thread, 206 dp, 0, &p0, TS_RUN, minclsyspri); 207 208 /* 209 * The sync thread can need a larger-than-default stack size on 210 * 32-bit x86. This is due in part to nested pools and 211 * scrub_visitbp() recursion. 212 */ 213 tx->tx_sync_thread = thread_create(NULL, 32<<10, txg_sync_thread, 214 dp, 0, &p0, TS_RUN, minclsyspri); 215 216 mutex_exit(&tx->tx_sync_lock); 217 } 218 219 static void 220 txg_thread_enter(tx_state_t *tx, callb_cpr_t *cpr) 221 { 222 CALLB_CPR_INIT(cpr, &tx->tx_sync_lock, callb_generic_cpr, FTAG); 223 mutex_enter(&tx->tx_sync_lock); 224 } 225 226 static void 227 txg_thread_exit(tx_state_t *tx, callb_cpr_t *cpr, kthread_t **tpp) 228 { 229 ASSERT(*tpp != NULL); 230 *tpp = NULL; 231 tx->tx_threads--; 232 cv_broadcast(&tx->tx_exit_cv); 233 CALLB_CPR_EXIT(cpr); /* drops &tx->tx_sync_lock */ 234 thread_exit(); 235 } 236 237 static void 238 txg_thread_wait(tx_state_t *tx, callb_cpr_t *cpr, kcondvar_t *cv, clock_t time) 239 { 240 CALLB_CPR_SAFE_BEGIN(cpr); 241 242 if (time) 243 (void) cv_timedwait(cv, &tx->tx_sync_lock, 244 ddi_get_lbolt() + time); 245 else 246 cv_wait(cv, &tx->tx_sync_lock); 247 248 CALLB_CPR_SAFE_END(cpr, &tx->tx_sync_lock); 249 } 250 251 /* 252 * Stop syncing transaction groups. 253 */ 254 void 255 txg_sync_stop(dsl_pool_t *dp) 256 { 257 tx_state_t *tx = &dp->dp_tx; 258 259 dprintf("pool %p\n", dp); 260 /* 261 * Finish off any work in progress. 262 */ 263 ASSERT(tx->tx_threads == 2); 264 265 /* 266 * We need to ensure that we've vacated the deferred space_maps. 267 */ 268 txg_wait_synced(dp, tx->tx_open_txg + TXG_DEFER_SIZE); 269 270 /* 271 * Wake all sync threads and wait for them to die. 272 */ 273 mutex_enter(&tx->tx_sync_lock); 274 275 ASSERT(tx->tx_threads == 2); 276 277 tx->tx_exiting = 1; 278 279 cv_broadcast(&tx->tx_quiesce_more_cv); 280 cv_broadcast(&tx->tx_quiesce_done_cv); 281 cv_broadcast(&tx->tx_sync_more_cv); 282 283 while (tx->tx_threads != 0) 284 cv_wait(&tx->tx_exit_cv, &tx->tx_sync_lock); 285 286 tx->tx_exiting = 0; 287 288 mutex_exit(&tx->tx_sync_lock); 289 } 290 291 uint64_t 292 txg_hold_open(dsl_pool_t *dp, txg_handle_t *th) 293 { 294 tx_state_t *tx = &dp->dp_tx; 295 tx_cpu_t *tc = &tx->tx_cpu[CPU_SEQID]; 296 uint64_t txg; 297 298 mutex_enter(&tc->tc_open_lock); 299 txg = tx->tx_open_txg; 300 301 mutex_enter(&tc->tc_lock); 302 tc->tc_count[txg & TXG_MASK]++; 303 mutex_exit(&tc->tc_lock); 304 305 th->th_cpu = tc; 306 th->th_txg = txg; 307 308 return (txg); 309 } 310 311 void 312 txg_rele_to_quiesce(txg_handle_t *th) 313 { 314 tx_cpu_t *tc = th->th_cpu; 315 316 ASSERT(!MUTEX_HELD(&tc->tc_lock)); 317 mutex_exit(&tc->tc_open_lock); 318 } 319 320 void 321 txg_register_callbacks(txg_handle_t *th, list_t *tx_callbacks) 322 { 323 tx_cpu_t *tc = th->th_cpu; 324 int g = th->th_txg & TXG_MASK; 325 326 mutex_enter(&tc->tc_lock); 327 list_move_tail(&tc->tc_callbacks[g], tx_callbacks); 328 mutex_exit(&tc->tc_lock); 329 } 330 331 void 332 txg_rele_to_sync(txg_handle_t *th) 333 { 334 tx_cpu_t *tc = th->th_cpu; 335 int g = th->th_txg & TXG_MASK; 336 337 mutex_enter(&tc->tc_lock); 338 ASSERT(tc->tc_count[g] != 0); 339 if (--tc->tc_count[g] == 0) 340 cv_broadcast(&tc->tc_cv[g]); 341 mutex_exit(&tc->tc_lock); 342 343 th->th_cpu = NULL; /* defensive */ 344 } 345 346 /* 347 * Blocks until all transactions in the group are committed. 348 * 349 * On return, the transaction group has reached a stable state in which it can 350 * then be passed off to the syncing context. 351 */ 352 static void 353 txg_quiesce(dsl_pool_t *dp, uint64_t txg) 354 { 355 tx_state_t *tx = &dp->dp_tx; 356 int g = txg & TXG_MASK; 357 int c; 358 359 /* 360 * Grab all tc_open_locks so nobody else can get into this txg. 361 */ 362 for (c = 0; c < max_ncpus; c++) 363 mutex_enter(&tx->tx_cpu[c].tc_open_lock); 364 365 ASSERT(txg == tx->tx_open_txg); 366 tx->tx_open_txg++; 367 tx->tx_open_time = gethrtime(); 368 369 DTRACE_PROBE2(txg__quiescing, dsl_pool_t *, dp, uint64_t, txg); 370 DTRACE_PROBE2(txg__opened, dsl_pool_t *, dp, uint64_t, tx->tx_open_txg); 371 372 /* 373 * Now that we've incremented tx_open_txg, we can let threads 374 * enter the next transaction group. 375 */ 376 for (c = 0; c < max_ncpus; c++) 377 mutex_exit(&tx->tx_cpu[c].tc_open_lock); 378 379 /* 380 * Quiesce the transaction group by waiting for everyone to txg_exit(). 381 */ 382 for (c = 0; c < max_ncpus; c++) { 383 tx_cpu_t *tc = &tx->tx_cpu[c]; 384 mutex_enter(&tc->tc_lock); 385 while (tc->tc_count[g] != 0) 386 cv_wait(&tc->tc_cv[g], &tc->tc_lock); 387 mutex_exit(&tc->tc_lock); 388 } 389 } 390 391 static void 392 txg_do_callbacks(list_t *cb_list) 393 { 394 dmu_tx_do_callbacks(cb_list, 0); 395 396 list_destroy(cb_list); 397 398 kmem_free(cb_list, sizeof (list_t)); 399 } 400 401 /* 402 * Dispatch the commit callbacks registered on this txg to worker threads. 403 * 404 * If no callbacks are registered for a given TXG, nothing happens. 405 * This function creates a taskq for the associated pool, if needed. 406 */ 407 static void 408 txg_dispatch_callbacks(dsl_pool_t *dp, uint64_t txg) 409 { 410 int c; 411 tx_state_t *tx = &dp->dp_tx; 412 list_t *cb_list; 413 414 for (c = 0; c < max_ncpus; c++) { 415 tx_cpu_t *tc = &tx->tx_cpu[c]; 416 /* 417 * No need to lock tx_cpu_t at this point, since this can 418 * only be called once a txg has been synced. 419 */ 420 421 int g = txg & TXG_MASK; 422 423 if (list_is_empty(&tc->tc_callbacks[g])) 424 continue; 425 426 if (tx->tx_commit_cb_taskq == NULL) { 427 /* 428 * Commit callback taskq hasn't been created yet. 429 */ 430 tx->tx_commit_cb_taskq = taskq_create("tx_commit_cb", 431 max_ncpus, minclsyspri, max_ncpus, max_ncpus * 2, 432 TASKQ_PREPOPULATE); 433 } 434 435 cb_list = kmem_alloc(sizeof (list_t), KM_SLEEP); 436 list_create(cb_list, sizeof (dmu_tx_callback_t), 437 offsetof(dmu_tx_callback_t, dcb_node)); 438 439 list_move_tail(cb_list, &tc->tc_callbacks[g]); 440 441 (void) taskq_dispatch(tx->tx_commit_cb_taskq, (task_func_t *) 442 txg_do_callbacks, cb_list, TQ_SLEEP); 443 } 444 } 445 446 static void 447 txg_sync_thread(dsl_pool_t *dp) 448 { 449 spa_t *spa = dp->dp_spa; 450 tx_state_t *tx = &dp->dp_tx; 451 callb_cpr_t cpr; 452 uint64_t start, delta; 453 454 txg_thread_enter(tx, &cpr); 455 456 start = delta = 0; 457 for (;;) { 458 uint64_t timeout = zfs_txg_timeout * hz; 459 uint64_t timer; 460 uint64_t txg; 461 462 /* 463 * We sync when we're scanning, there's someone waiting 464 * on us, or the quiesce thread has handed off a txg to 465 * us, or we have reached our timeout. 466 */ 467 timer = (delta >= timeout ? 0 : timeout - delta); 468 while (!dsl_scan_active(dp->dp_scan) && 469 !tx->tx_exiting && timer > 0 && 470 tx->tx_synced_txg >= tx->tx_sync_txg_waiting && 471 tx->tx_quiesced_txg == 0 && 472 dp->dp_dirty_total < zfs_dirty_data_sync) { 473 dprintf("waiting; tx_synced=%llu waiting=%llu dp=%p\n", 474 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 475 txg_thread_wait(tx, &cpr, &tx->tx_sync_more_cv, timer); 476 delta = ddi_get_lbolt() - start; 477 timer = (delta > timeout ? 0 : timeout - delta); 478 } 479 480 /* 481 * Wait until the quiesce thread hands off a txg to us, 482 * prompting it to do so if necessary. 483 */ 484 while (!tx->tx_exiting && tx->tx_quiesced_txg == 0) { 485 if (tx->tx_quiesce_txg_waiting < tx->tx_open_txg+1) 486 tx->tx_quiesce_txg_waiting = tx->tx_open_txg+1; 487 cv_broadcast(&tx->tx_quiesce_more_cv); 488 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_done_cv, 0); 489 } 490 491 if (tx->tx_exiting) 492 txg_thread_exit(tx, &cpr, &tx->tx_sync_thread); 493 494 /* 495 * Consume the quiesced txg which has been handed off to 496 * us. This may cause the quiescing thread to now be 497 * able to quiesce another txg, so we must signal it. 498 */ 499 txg = tx->tx_quiesced_txg; 500 tx->tx_quiesced_txg = 0; 501 tx->tx_syncing_txg = txg; 502 DTRACE_PROBE2(txg__syncing, dsl_pool_t *, dp, uint64_t, txg); 503 cv_broadcast(&tx->tx_quiesce_more_cv); 504 505 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 506 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 507 mutex_exit(&tx->tx_sync_lock); 508 509 start = ddi_get_lbolt(); 510 spa_sync(spa, txg); 511 delta = ddi_get_lbolt() - start; 512 513 mutex_enter(&tx->tx_sync_lock); 514 tx->tx_synced_txg = txg; 515 tx->tx_syncing_txg = 0; 516 DTRACE_PROBE2(txg__synced, dsl_pool_t *, dp, uint64_t, txg); 517 cv_broadcast(&tx->tx_sync_done_cv); 518 519 /* 520 * Dispatch commit callbacks to worker threads. 521 */ 522 txg_dispatch_callbacks(dp, txg); 523 } 524 } 525 526 static void 527 txg_quiesce_thread(dsl_pool_t *dp) 528 { 529 tx_state_t *tx = &dp->dp_tx; 530 callb_cpr_t cpr; 531 532 txg_thread_enter(tx, &cpr); 533 534 for (;;) { 535 uint64_t txg; 536 537 /* 538 * We quiesce when there's someone waiting on us. 539 * However, we can only have one txg in "quiescing" or 540 * "quiesced, waiting to sync" state. So we wait until 541 * the "quiesced, waiting to sync" txg has been consumed 542 * by the sync thread. 543 */ 544 while (!tx->tx_exiting && 545 (tx->tx_open_txg >= tx->tx_quiesce_txg_waiting || 546 tx->tx_quiesced_txg != 0)) 547 txg_thread_wait(tx, &cpr, &tx->tx_quiesce_more_cv, 0); 548 549 if (tx->tx_exiting) 550 txg_thread_exit(tx, &cpr, &tx->tx_quiesce_thread); 551 552 txg = tx->tx_open_txg; 553 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 554 txg, tx->tx_quiesce_txg_waiting, 555 tx->tx_sync_txg_waiting); 556 mutex_exit(&tx->tx_sync_lock); 557 txg_quiesce(dp, txg); 558 mutex_enter(&tx->tx_sync_lock); 559 560 /* 561 * Hand this txg off to the sync thread. 562 */ 563 dprintf("quiesce done, handing off txg %llu\n", txg); 564 tx->tx_quiesced_txg = txg; 565 DTRACE_PROBE2(txg__quiesced, dsl_pool_t *, dp, uint64_t, txg); 566 cv_broadcast(&tx->tx_sync_more_cv); 567 cv_broadcast(&tx->tx_quiesce_done_cv); 568 } 569 } 570 571 /* 572 * Delay this thread by delay nanoseconds if we are still in the open 573 * transaction group and there is already a waiting txg quiescing or quiesced. 574 * Abort the delay if this txg stalls or enters the quiescing state. 575 */ 576 void 577 txg_delay(dsl_pool_t *dp, uint64_t txg, hrtime_t delay, hrtime_t resolution) 578 { 579 tx_state_t *tx = &dp->dp_tx; 580 hrtime_t start = gethrtime(); 581 582 /* don't delay if this txg could transition to quiescing immediately */ 583 if (tx->tx_open_txg > txg || 584 tx->tx_syncing_txg == txg-1 || tx->tx_synced_txg == txg-1) 585 return; 586 587 mutex_enter(&tx->tx_sync_lock); 588 if (tx->tx_open_txg > txg || tx->tx_synced_txg == txg-1) { 589 mutex_exit(&tx->tx_sync_lock); 590 return; 591 } 592 593 while (gethrtime() - start < delay && 594 tx->tx_syncing_txg < txg-1 && !txg_stalled(dp)) { 595 (void) cv_timedwait_hires(&tx->tx_quiesce_more_cv, 596 &tx->tx_sync_lock, delay, resolution, 0); 597 } 598 599 mutex_exit(&tx->tx_sync_lock); 600 } 601 602 void 603 txg_wait_synced(dsl_pool_t *dp, uint64_t txg) 604 { 605 tx_state_t *tx = &dp->dp_tx; 606 607 ASSERT(!dsl_pool_config_held(dp)); 608 609 mutex_enter(&tx->tx_sync_lock); 610 ASSERT(tx->tx_threads == 2); 611 if (txg == 0) 612 txg = tx->tx_open_txg + TXG_DEFER_SIZE; 613 if (tx->tx_sync_txg_waiting < txg) 614 tx->tx_sync_txg_waiting = txg; 615 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 616 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 617 while (tx->tx_synced_txg < txg) { 618 dprintf("broadcasting sync more " 619 "tx_synced=%llu waiting=%llu dp=%p\n", 620 tx->tx_synced_txg, tx->tx_sync_txg_waiting, dp); 621 cv_broadcast(&tx->tx_sync_more_cv); 622 cv_wait(&tx->tx_sync_done_cv, &tx->tx_sync_lock); 623 } 624 mutex_exit(&tx->tx_sync_lock); 625 } 626 627 void 628 txg_wait_open(dsl_pool_t *dp, uint64_t txg) 629 { 630 tx_state_t *tx = &dp->dp_tx; 631 632 ASSERT(!dsl_pool_config_held(dp)); 633 634 mutex_enter(&tx->tx_sync_lock); 635 ASSERT(tx->tx_threads == 2); 636 if (txg == 0) 637 txg = tx->tx_open_txg + 1; 638 if (tx->tx_quiesce_txg_waiting < txg) 639 tx->tx_quiesce_txg_waiting = txg; 640 dprintf("txg=%llu quiesce_txg=%llu sync_txg=%llu\n", 641 txg, tx->tx_quiesce_txg_waiting, tx->tx_sync_txg_waiting); 642 while (tx->tx_open_txg < txg) { 643 cv_broadcast(&tx->tx_quiesce_more_cv); 644 cv_wait(&tx->tx_quiesce_done_cv, &tx->tx_sync_lock); 645 } 646 mutex_exit(&tx->tx_sync_lock); 647 } 648 649 /* 650 * If there isn't a txg syncing or in the pipeline, push another txg through 651 * the pipeline by queiscing the open txg. 652 */ 653 void 654 txg_kick(dsl_pool_t *dp) 655 { 656 tx_state_t *tx = &dp->dp_tx; 657 658 ASSERT(!dsl_pool_config_held(dp)); 659 660 mutex_enter(&tx->tx_sync_lock); 661 if (tx->tx_syncing_txg == 0 && 662 tx->tx_quiesce_txg_waiting <= tx->tx_open_txg && 663 tx->tx_sync_txg_waiting <= tx->tx_synced_txg && 664 tx->tx_quiesced_txg <= tx->tx_synced_txg) { 665 tx->tx_quiesce_txg_waiting = tx->tx_open_txg + 1; 666 cv_broadcast(&tx->tx_quiesce_more_cv); 667 } 668 mutex_exit(&tx->tx_sync_lock); 669 } 670 671 boolean_t 672 txg_stalled(dsl_pool_t *dp) 673 { 674 tx_state_t *tx = &dp->dp_tx; 675 return (tx->tx_quiesce_txg_waiting > tx->tx_open_txg); 676 } 677 678 boolean_t 679 txg_sync_waiting(dsl_pool_t *dp) 680 { 681 tx_state_t *tx = &dp->dp_tx; 682 683 return (tx->tx_syncing_txg <= tx->tx_sync_txg_waiting || 684 tx->tx_quiesced_txg != 0); 685 } 686 687 /* 688 * Per-txg object lists. 689 */ 690 void 691 txg_list_create(txg_list_t *tl, size_t offset) 692 { 693 int t; 694 695 mutex_init(&tl->tl_lock, NULL, MUTEX_DEFAULT, NULL); 696 697 tl->tl_offset = offset; 698 699 for (t = 0; t < TXG_SIZE; t++) 700 tl->tl_head[t] = NULL; 701 } 702 703 void 704 txg_list_destroy(txg_list_t *tl) 705 { 706 int t; 707 708 for (t = 0; t < TXG_SIZE; t++) 709 ASSERT(txg_list_empty(tl, t)); 710 711 mutex_destroy(&tl->tl_lock); 712 } 713 714 boolean_t 715 txg_list_empty(txg_list_t *tl, uint64_t txg) 716 { 717 return (tl->tl_head[txg & TXG_MASK] == NULL); 718 } 719 720 /* 721 * Returns true if all txg lists are empty. 722 * 723 * Warning: this is inherently racy (an item could be added immediately after this 724 * function returns). We don't bother with the lock because it wouldn't change the 725 * semantics. 726 */ 727 boolean_t 728 txg_all_lists_empty(txg_list_t *tl) 729 { 730 for (int i = 0; i < TXG_SIZE; i++) { 731 if (!txg_list_empty(tl, i)) { 732 return (B_FALSE); 733 } 734 } 735 return (B_TRUE); 736 } 737 738 /* 739 * Add an entry to the list (unless it's already on the list). 740 * Returns B_TRUE if it was actually added. 741 */ 742 boolean_t 743 txg_list_add(txg_list_t *tl, void *p, uint64_t txg) 744 { 745 int t = txg & TXG_MASK; 746 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 747 boolean_t add; 748 749 mutex_enter(&tl->tl_lock); 750 add = (tn->tn_member[t] == 0); 751 if (add) { 752 tn->tn_member[t] = 1; 753 tn->tn_next[t] = tl->tl_head[t]; 754 tl->tl_head[t] = tn; 755 } 756 mutex_exit(&tl->tl_lock); 757 758 return (add); 759 } 760 761 /* 762 * Add an entry to the end of the list, unless it's already on the list. 763 * (walks list to find end) 764 * Returns B_TRUE if it was actually added. 765 */ 766 boolean_t 767 txg_list_add_tail(txg_list_t *tl, void *p, uint64_t txg) 768 { 769 int t = txg & TXG_MASK; 770 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 771 boolean_t add; 772 773 mutex_enter(&tl->tl_lock); 774 add = (tn->tn_member[t] == 0); 775 if (add) { 776 txg_node_t **tp; 777 778 for (tp = &tl->tl_head[t]; *tp != NULL; tp = &(*tp)->tn_next[t]) 779 continue; 780 781 tn->tn_member[t] = 1; 782 tn->tn_next[t] = NULL; 783 *tp = tn; 784 } 785 mutex_exit(&tl->tl_lock); 786 787 return (add); 788 } 789 790 /* 791 * Remove the head of the list and return it. 792 */ 793 void * 794 txg_list_remove(txg_list_t *tl, uint64_t txg) 795 { 796 int t = txg & TXG_MASK; 797 txg_node_t *tn; 798 void *p = NULL; 799 800 mutex_enter(&tl->tl_lock); 801 if ((tn = tl->tl_head[t]) != NULL) { 802 p = (char *)tn - tl->tl_offset; 803 tl->tl_head[t] = tn->tn_next[t]; 804 tn->tn_next[t] = NULL; 805 tn->tn_member[t] = 0; 806 } 807 mutex_exit(&tl->tl_lock); 808 809 return (p); 810 } 811 812 /* 813 * Remove a specific item from the list and return it. 814 */ 815 void * 816 txg_list_remove_this(txg_list_t *tl, void *p, uint64_t txg) 817 { 818 int t = txg & TXG_MASK; 819 txg_node_t *tn, **tp; 820 821 mutex_enter(&tl->tl_lock); 822 823 for (tp = &tl->tl_head[t]; (tn = *tp) != NULL; tp = &tn->tn_next[t]) { 824 if ((char *)tn - tl->tl_offset == p) { 825 *tp = tn->tn_next[t]; 826 tn->tn_next[t] = NULL; 827 tn->tn_member[t] = 0; 828 mutex_exit(&tl->tl_lock); 829 return (p); 830 } 831 } 832 833 mutex_exit(&tl->tl_lock); 834 835 return (NULL); 836 } 837 838 boolean_t 839 txg_list_member(txg_list_t *tl, void *p, uint64_t txg) 840 { 841 int t = txg & TXG_MASK; 842 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 843 844 return (tn->tn_member[t] != 0); 845 } 846 847 /* 848 * Walk a txg list -- only safe if you know it's not changing. 849 */ 850 void * 851 txg_list_head(txg_list_t *tl, uint64_t txg) 852 { 853 int t = txg & TXG_MASK; 854 txg_node_t *tn = tl->tl_head[t]; 855 856 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 857 } 858 859 void * 860 txg_list_next(txg_list_t *tl, void *p, uint64_t txg) 861 { 862 int t = txg & TXG_MASK; 863 txg_node_t *tn = (txg_node_t *)((char *)p + tl->tl_offset); 864 865 tn = tn->tn_next[t]; 866 867 return (tn == NULL ? NULL : (char *)tn - tl->tl_offset); 868 } 869