1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #ifndef _SYS_ZAP_H 26 #define _SYS_ZAP_H 27 28 /* 29 * ZAP - ZFS Attribute Processor 30 * 31 * The ZAP is a module which sits on top of the DMU (Data Management 32 * Unit) and implements a higher-level storage primitive using DMU 33 * objects. Its primary consumer is the ZPL (ZFS Posix Layer). 34 * 35 * A "zapobj" is a DMU object which the ZAP uses to stores attributes. 36 * Users should use only zap routines to access a zapobj - they should 37 * not access the DMU object directly using DMU routines. 38 * 39 * The attributes stored in a zapobj are name-value pairs. The name is 40 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including 41 * terminating NULL). The value is an array of integers, which may be 42 * 1, 2, 4, or 8 bytes long. The total space used by the array (number 43 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes. 44 * Note that an 8-byte integer value can be used to store the location 45 * (object number) of another dmu object (which may be itself a zapobj). 46 * Note that you can use a zero-length attribute to store a single bit 47 * of information - the attribute is present or not. 48 * 49 * The ZAP routines are thread-safe. However, you must observe the 50 * DMU's restriction that a transaction may not be operated on 51 * concurrently. 52 * 53 * Any of the routines that return an int may return an I/O error (EIO 54 * or ECHECKSUM). 55 * 56 * 57 * Implementation / Performance Notes: 58 * 59 * The ZAP is intended to operate most efficiently on attributes with 60 * short (49 bytes or less) names and single 8-byte values, for which 61 * the microzap will be used. The ZAP should be efficient enough so 62 * that the user does not need to cache these attributes. 63 * 64 * The ZAP's locking scheme makes its routines thread-safe. Operations 65 * on different zapobjs will be processed concurrently. Operations on 66 * the same zapobj which only read data will be processed concurrently. 67 * Operations on the same zapobj which modify data will be processed 68 * concurrently when there are many attributes in the zapobj (because 69 * the ZAP uses per-block locking - more than 128 * (number of cpus) 70 * small attributes will suffice). 71 */ 72 73 /* 74 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C 75 * strings) for the names of attributes, rather than a byte string 76 * bounded by an explicit length. If some day we want to support names 77 * in character sets which have embedded zeros (eg. UTF-16, UTF-32), 78 * we'll have to add routines for using length-bounded strings. 79 */ 80 81 #include <sys/dmu.h> 82 83 #ifdef __cplusplus 84 extern "C" { 85 #endif 86 87 /* 88 * The matchtype specifies which entry will be accessed. 89 * MT_EXACT: only find an exact match (non-normalized) 90 * MT_FIRST: find the "first" normalized (case and Unicode 91 * form) match; the designated "first" match will not change as long 92 * as the set of entries with this normalization doesn't change 93 * MT_BEST: if there is an exact match, find that, otherwise find the 94 * first normalized match 95 */ 96 typedef enum matchtype 97 { 98 MT_EXACT, 99 MT_BEST, 100 MT_FIRST 101 } matchtype_t; 102 103 typedef enum zap_flags { 104 /* Use 64-bit hash value (serialized cursors will always use 64-bits) */ 105 ZAP_FLAG_HASH64 = 1 << 0, 106 /* Key is binary, not string (zap_add_uint64() can be used) */ 107 ZAP_FLAG_UINT64_KEY = 1 << 1, 108 /* 109 * First word of key (which must be an array of uint64) is 110 * already randomly distributed. 111 */ 112 ZAP_FLAG_PRE_HASHED_KEY = 1 << 2, 113 } zap_flags_t; 114 115 /* 116 * Create a new zapobj with no attributes and return its object number. 117 * MT_EXACT will cause the zap object to only support MT_EXACT lookups, 118 * otherwise any matchtype can be used for lookups. 119 * 120 * normflags specifies what normalization will be done. values are: 121 * 0: no normalization (legacy on-disk format, supports MT_EXACT matching 122 * only) 123 * U8_TEXTPREP_TOLOWER: case normalization will be performed. 124 * MT_FIRST/MT_BEST matching will find entries that match without 125 * regard to case (eg. looking for "foo" can find an entry "Foo"). 126 * Eventually, other flags will permit unicode normalization as well. 127 */ 128 uint64_t zap_create(objset_t *ds, dmu_object_type_t ot, 129 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 130 uint64_t zap_create_norm(objset_t *ds, int normflags, dmu_object_type_t ot, 131 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 132 uint64_t zap_create_flags(objset_t *os, int normflags, zap_flags_t flags, 133 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift, 134 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 135 136 /* 137 * Create a new zapobj with no attributes from the given (unallocated) 138 * object number. 139 */ 140 int zap_create_claim(objset_t *ds, uint64_t obj, dmu_object_type_t ot, 141 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 142 int zap_create_claim_norm(objset_t *ds, uint64_t obj, 143 int normflags, dmu_object_type_t ot, 144 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx); 145 146 /* 147 * The zapobj passed in must be a valid ZAP object for all of the 148 * following routines. 149 */ 150 151 /* 152 * Destroy this zapobj and all its attributes. 153 * 154 * Frees the object number using dmu_object_free. 155 */ 156 int zap_destroy(objset_t *ds, uint64_t zapobj, dmu_tx_t *tx); 157 158 /* 159 * Manipulate attributes. 160 * 161 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8. 162 */ 163 164 /* 165 * Retrieve the contents of the attribute with the given name. 166 * 167 * If the requested attribute does not exist, the call will fail and 168 * return ENOENT. 169 * 170 * If 'integer_size' is smaller than the attribute's integer size, the 171 * call will fail and return EINVAL. 172 * 173 * If 'integer_size' is equal to or larger than the attribute's integer 174 * size, the call will succeed and return 0. * When converting to a 175 * larger integer size, the integers will be treated as unsigned (ie. no 176 * sign-extension will be performed). 177 * 178 * 'num_integers' is the length (in integers) of 'buf'. 179 * 180 * If the attribute is longer than the buffer, as many integers as will 181 * fit will be transferred to 'buf'. If the entire attribute was not 182 * transferred, the call will return EOVERFLOW. 183 * 184 * If rn_len is nonzero, realname will be set to the name of the found 185 * entry (which may be different from the requested name if matchtype is 186 * not MT_EXACT). 187 * 188 * If normalization_conflictp is not NULL, it will be set if there is 189 * another name with the same case/unicode normalized form. 190 */ 191 int zap_lookup(objset_t *ds, uint64_t zapobj, const char *name, 192 uint64_t integer_size, uint64_t num_integers, void *buf); 193 int zap_lookup_norm(objset_t *ds, uint64_t zapobj, const char *name, 194 uint64_t integer_size, uint64_t num_integers, void *buf, 195 matchtype_t mt, char *realname, int rn_len, 196 boolean_t *normalization_conflictp); 197 int zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 198 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf); 199 int zap_contains(objset_t *ds, uint64_t zapobj, const char *name); 200 201 int zap_count_write(objset_t *os, uint64_t zapobj, const char *name, 202 int add, uint64_t *towrite, uint64_t *tooverwrite); 203 204 /* 205 * Create an attribute with the given name and value. 206 * 207 * If an attribute with the given name already exists, the call will 208 * fail and return EEXIST. 209 */ 210 int zap_add(objset_t *ds, uint64_t zapobj, const char *key, 211 int integer_size, uint64_t num_integers, 212 const void *val, dmu_tx_t *tx); 213 int zap_add_uint64(objset_t *ds, uint64_t zapobj, const uint64_t *key, 214 int key_numints, int integer_size, uint64_t num_integers, 215 const void *val, dmu_tx_t *tx); 216 217 /* 218 * Set the attribute with the given name to the given value. If an 219 * attribute with the given name does not exist, it will be created. If 220 * an attribute with the given name already exists, the previous value 221 * will be overwritten. The integer_size may be different from the 222 * existing attribute's integer size, in which case the attribute's 223 * integer size will be updated to the new value. 224 */ 225 int zap_update(objset_t *ds, uint64_t zapobj, const char *name, 226 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 227 int zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 228 int key_numints, 229 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx); 230 231 /* 232 * Get the length (in integers) and the integer size of the specified 233 * attribute. 234 * 235 * If the requested attribute does not exist, the call will fail and 236 * return ENOENT. 237 */ 238 int zap_length(objset_t *ds, uint64_t zapobj, const char *name, 239 uint64_t *integer_size, uint64_t *num_integers); 240 int zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 241 int key_numints, uint64_t *integer_size, uint64_t *num_integers); 242 243 /* 244 * Remove the specified attribute. 245 * 246 * If the specified attribute does not exist, the call will fail and 247 * return ENOENT. 248 */ 249 int zap_remove(objset_t *ds, uint64_t zapobj, const char *name, dmu_tx_t *tx); 250 int zap_remove_norm(objset_t *ds, uint64_t zapobj, const char *name, 251 matchtype_t mt, dmu_tx_t *tx); 252 int zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key, 253 int key_numints, dmu_tx_t *tx); 254 255 /* 256 * Returns (in *count) the number of attributes in the specified zap 257 * object. 258 */ 259 int zap_count(objset_t *ds, uint64_t zapobj, uint64_t *count); 260 261 /* 262 * Returns (in name) the name of the entry whose (value & mask) 263 * (za_first_integer) is value, or ENOENT if not found. The string 264 * pointed to by name must be at least 256 bytes long. If mask==0, the 265 * match must be exact (ie, same as mask=-1ULL). 266 */ 267 int zap_value_search(objset_t *os, uint64_t zapobj, 268 uint64_t value, uint64_t mask, char *name); 269 270 /* 271 * Transfer all the entries from fromobj into intoobj. Only works on 272 * int_size=8 num_integers=1 values. Fails if there are any duplicated 273 * entries. 274 */ 275 int zap_join(objset_t *os, uint64_t fromobj, uint64_t intoobj, dmu_tx_t *tx); 276 277 /* Same as zap_join, but set the values to 'value'. */ 278 int zap_join_key(objset_t *os, uint64_t fromobj, uint64_t intoobj, 279 uint64_t value, dmu_tx_t *tx); 280 281 /* Same as zap_join, but add together any duplicated entries. */ 282 int zap_join_increment(objset_t *os, uint64_t fromobj, uint64_t intoobj, 283 dmu_tx_t *tx); 284 285 /* 286 * Manipulate entries where the name + value are the "same" (the name is 287 * a stringified version of the value). 288 */ 289 int zap_add_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 290 int zap_remove_int(objset_t *os, uint64_t obj, uint64_t value, dmu_tx_t *tx); 291 int zap_lookup_int(objset_t *os, uint64_t obj, uint64_t value); 292 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 293 dmu_tx_t *tx); 294 295 /* Here the key is an int and the value is a different int. */ 296 int zap_add_int_key(objset_t *os, uint64_t obj, 297 uint64_t key, uint64_t value, dmu_tx_t *tx); 298 int zap_lookup_int_key(objset_t *os, uint64_t obj, 299 uint64_t key, uint64_t *valuep); 300 301 /* 302 * They name is a stringified version of key; increment its value by 303 * delta. Zero values will be zap_remove()-ed. 304 */ 305 int zap_increment_int(objset_t *os, uint64_t obj, uint64_t key, int64_t delta, 306 dmu_tx_t *tx); 307 int zap_increment(objset_t *os, uint64_t obj, const char *name, int64_t delta, 308 dmu_tx_t *tx); 309 310 struct zap; 311 struct zap_leaf; 312 typedef struct zap_cursor { 313 /* This structure is opaque! */ 314 objset_t *zc_objset; 315 struct zap *zc_zap; 316 struct zap_leaf *zc_leaf; 317 uint64_t zc_zapobj; 318 uint64_t zc_serialized; 319 uint64_t zc_hash; 320 uint32_t zc_cd; 321 } zap_cursor_t; 322 323 typedef struct { 324 int za_integer_length; 325 /* 326 * za_normalization_conflict will be set if there are additional 327 * entries with this normalized form (eg, "foo" and "Foo"). 328 */ 329 boolean_t za_normalization_conflict; 330 uint64_t za_num_integers; 331 uint64_t za_first_integer; /* no sign extension for <8byte ints */ 332 char za_name[MAXNAMELEN]; 333 } zap_attribute_t; 334 335 /* 336 * The interface for listing all the attributes of a zapobj can be 337 * thought of as cursor moving down a list of the attributes one by 338 * one. The cookie returned by the zap_cursor_serialize routine is 339 * persistent across system calls (and across reboot, even). 340 */ 341 342 /* 343 * Initialize a zap cursor, pointing to the "first" attribute of the 344 * zapobj. You must _fini the cursor when you are done with it. 345 */ 346 void zap_cursor_init(zap_cursor_t *zc, objset_t *ds, uint64_t zapobj); 347 void zap_cursor_fini(zap_cursor_t *zc); 348 349 /* 350 * Get the attribute currently pointed to by the cursor. Returns 351 * ENOENT if at the end of the attributes. 352 */ 353 int zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za); 354 355 /* 356 * Advance the cursor to the next attribute. 357 */ 358 void zap_cursor_advance(zap_cursor_t *zc); 359 360 /* 361 * Get a persistent cookie pointing to the current position of the zap 362 * cursor. The low 4 bits in the cookie are always zero, and thus can 363 * be used as to differentiate a serialized cookie from a different type 364 * of value. The cookie will be less than 2^32 as long as there are 365 * fewer than 2^22 (4.2 million) entries in the zap object. 366 */ 367 uint64_t zap_cursor_serialize(zap_cursor_t *zc); 368 369 /* 370 * Advance the cursor to the attribute having the given key. 371 */ 372 int zap_cursor_move_to_key(zap_cursor_t *zc, const char *name, matchtype_t mt); 373 374 /* 375 * Initialize a zap cursor pointing to the position recorded by 376 * zap_cursor_serialize (in the "serialized" argument). You can also 377 * use a "serialized" argument of 0 to start at the beginning of the 378 * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to 379 * zap_cursor_init(...).) 380 */ 381 void zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *ds, 382 uint64_t zapobj, uint64_t serialized); 383 384 385 #define ZAP_HISTOGRAM_SIZE 10 386 387 typedef struct zap_stats { 388 /* 389 * Size of the pointer table (in number of entries). 390 * This is always a power of 2, or zero if it's a microzap. 391 * In general, it should be considerably greater than zs_num_leafs. 392 */ 393 uint64_t zs_ptrtbl_len; 394 395 uint64_t zs_blocksize; /* size of zap blocks */ 396 397 /* 398 * The number of blocks used. Note that some blocks may be 399 * wasted because old ptrtbl's and large name/value blocks are 400 * not reused. (Although their space is reclaimed, we don't 401 * reuse those offsets in the object.) 402 */ 403 uint64_t zs_num_blocks; 404 405 /* 406 * Pointer table values from zap_ptrtbl in the zap_phys_t 407 */ 408 uint64_t zs_ptrtbl_nextblk; /* next (larger) copy start block */ 409 uint64_t zs_ptrtbl_blks_copied; /* number source blocks copied */ 410 uint64_t zs_ptrtbl_zt_blk; /* starting block number */ 411 uint64_t zs_ptrtbl_zt_numblks; /* number of blocks */ 412 uint64_t zs_ptrtbl_zt_shift; /* bits to index it */ 413 414 /* 415 * Values of the other members of the zap_phys_t 416 */ 417 uint64_t zs_block_type; /* ZBT_HEADER */ 418 uint64_t zs_magic; /* ZAP_MAGIC */ 419 uint64_t zs_num_leafs; /* The number of leaf blocks */ 420 uint64_t zs_num_entries; /* The number of zap entries */ 421 uint64_t zs_salt; /* salt to stir into hash function */ 422 423 /* 424 * Histograms. For all histograms, the last index 425 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater 426 * than what can be represented. For example 427 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number 428 * of leafs with more than 45 entries. 429 */ 430 431 /* 432 * zs_leafs_with_n_pointers[n] is the number of leafs with 433 * 2^n pointers to it. 434 */ 435 uint64_t zs_leafs_with_2n_pointers[ZAP_HISTOGRAM_SIZE]; 436 437 /* 438 * zs_leafs_with_n_entries[n] is the number of leafs with 439 * [n*5, (n+1)*5) entries. In the current implementation, there 440 * can be at most 55 entries in any block, but there may be 441 * fewer if the name or value is large, or the block is not 442 * completely full. 443 */ 444 uint64_t zs_blocks_with_n5_entries[ZAP_HISTOGRAM_SIZE]; 445 446 /* 447 * zs_leafs_n_tenths_full[n] is the number of leafs whose 448 * fullness is in the range [n/10, (n+1)/10). 449 */ 450 uint64_t zs_blocks_n_tenths_full[ZAP_HISTOGRAM_SIZE]; 451 452 /* 453 * zs_entries_using_n_chunks[n] is the number of entries which 454 * consume n 24-byte chunks. (Note, large names/values only use 455 * one chunk, but contribute to zs_num_blocks_large.) 456 */ 457 uint64_t zs_entries_using_n_chunks[ZAP_HISTOGRAM_SIZE]; 458 459 /* 460 * zs_buckets_with_n_entries[n] is the number of buckets (each 461 * leaf has 64 buckets) with n entries. 462 * zs_buckets_with_n_entries[1] should be very close to 463 * zs_num_entries. 464 */ 465 uint64_t zs_buckets_with_n_entries[ZAP_HISTOGRAM_SIZE]; 466 } zap_stats_t; 467 468 /* 469 * Get statistics about a ZAP object. Note: you need to be aware of the 470 * internal implementation of the ZAP to correctly interpret some of the 471 * statistics. This interface shouldn't be relied on unless you really 472 * know what you're doing. 473 */ 474 int zap_get_stats(objset_t *ds, uint64_t zapobj, zap_stats_t *zs); 475 476 #ifdef __cplusplus 477 } 478 #endif 479 480 #endif /* _SYS_ZAP_H */ 481