1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/dmu.h> 29 #include <sys/zio.h> 30 #include <sys/space_map.h> 31 32 /* 33 * Space map routines. 34 * NOTE: caller is responsible for all locking. 35 */ 36 static int 37 space_map_seg_compare(const void *x1, const void *x2) 38 { 39 const space_seg_t *s1 = x1; 40 const space_seg_t *s2 = x2; 41 42 if (s1->ss_start < s2->ss_start) { 43 if (s1->ss_end > s2->ss_start) 44 return (0); 45 return (-1); 46 } 47 if (s1->ss_start > s2->ss_start) { 48 if (s1->ss_start < s2->ss_end) 49 return (0); 50 return (1); 51 } 52 return (0); 53 } 54 55 void 56 space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift, 57 kmutex_t *lp) 58 { 59 bzero(sm, sizeof (*sm)); 60 61 cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL); 62 63 avl_create(&sm->sm_root, space_map_seg_compare, 64 sizeof (space_seg_t), offsetof(struct space_seg, ss_node)); 65 66 sm->sm_start = start; 67 sm->sm_size = size; 68 sm->sm_shift = shift; 69 sm->sm_lock = lp; 70 } 71 72 void 73 space_map_destroy(space_map_t *sm) 74 { 75 ASSERT(!sm->sm_loaded && !sm->sm_loading); 76 VERIFY3U(sm->sm_space, ==, 0); 77 avl_destroy(&sm->sm_root); 78 cv_destroy(&sm->sm_load_cv); 79 } 80 81 void 82 space_map_add(space_map_t *sm, uint64_t start, uint64_t size) 83 { 84 avl_index_t where; 85 space_seg_t ssearch, *ss_before, *ss_after, *ss; 86 uint64_t end = start + size; 87 int merge_before, merge_after; 88 89 ASSERT(MUTEX_HELD(sm->sm_lock)); 90 VERIFY(size != 0); 91 VERIFY3U(start, >=, sm->sm_start); 92 VERIFY3U(end, <=, sm->sm_start + sm->sm_size); 93 VERIFY(sm->sm_space + size <= sm->sm_size); 94 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 95 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 96 97 ssearch.ss_start = start; 98 ssearch.ss_end = end; 99 ss = avl_find(&sm->sm_root, &ssearch, &where); 100 101 if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) { 102 zfs_panic_recover("zfs: allocating allocated segment" 103 "(offset=%llu size=%llu)\n", 104 (longlong_t)start, (longlong_t)size); 105 return; 106 } 107 108 /* Make sure we don't overlap with either of our neighbors */ 109 VERIFY(ss == NULL); 110 111 ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE); 112 ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER); 113 114 merge_before = (ss_before != NULL && ss_before->ss_end == start); 115 merge_after = (ss_after != NULL && ss_after->ss_start == end); 116 117 if (merge_before && merge_after) { 118 avl_remove(&sm->sm_root, ss_before); 119 if (sm->sm_pp_root) { 120 avl_remove(sm->sm_pp_root, ss_before); 121 avl_remove(sm->sm_pp_root, ss_after); 122 } 123 ss_after->ss_start = ss_before->ss_start; 124 kmem_free(ss_before, sizeof (*ss_before)); 125 ss = ss_after; 126 } else if (merge_before) { 127 ss_before->ss_end = end; 128 if (sm->sm_pp_root) 129 avl_remove(sm->sm_pp_root, ss_before); 130 ss = ss_before; 131 } else if (merge_after) { 132 ss_after->ss_start = start; 133 if (sm->sm_pp_root) 134 avl_remove(sm->sm_pp_root, ss_after); 135 ss = ss_after; 136 } else { 137 ss = kmem_alloc(sizeof (*ss), KM_SLEEP); 138 ss->ss_start = start; 139 ss->ss_end = end; 140 avl_insert(&sm->sm_root, ss, where); 141 } 142 143 if (sm->sm_pp_root) 144 avl_add(sm->sm_pp_root, ss); 145 146 sm->sm_space += size; 147 } 148 149 void 150 space_map_remove(space_map_t *sm, uint64_t start, uint64_t size) 151 { 152 avl_index_t where; 153 space_seg_t ssearch, *ss, *newseg; 154 uint64_t end = start + size; 155 int left_over, right_over; 156 157 ASSERT(MUTEX_HELD(sm->sm_lock)); 158 VERIFY(size != 0); 159 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 160 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 161 162 ssearch.ss_start = start; 163 ssearch.ss_end = end; 164 ss = avl_find(&sm->sm_root, &ssearch, &where); 165 166 /* Make sure we completely overlap with someone */ 167 if (ss == NULL) { 168 zfs_panic_recover("zfs: freeing free segment " 169 "(offset=%llu size=%llu)", 170 (longlong_t)start, (longlong_t)size); 171 return; 172 } 173 VERIFY3U(ss->ss_start, <=, start); 174 VERIFY3U(ss->ss_end, >=, end); 175 VERIFY(sm->sm_space - size <= sm->sm_size); 176 177 left_over = (ss->ss_start != start); 178 right_over = (ss->ss_end != end); 179 180 if (sm->sm_pp_root) 181 avl_remove(sm->sm_pp_root, ss); 182 183 if (left_over && right_over) { 184 newseg = kmem_alloc(sizeof (*newseg), KM_SLEEP); 185 newseg->ss_start = end; 186 newseg->ss_end = ss->ss_end; 187 ss->ss_end = start; 188 avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER); 189 if (sm->sm_pp_root) 190 avl_add(sm->sm_pp_root, newseg); 191 } else if (left_over) { 192 ss->ss_end = start; 193 } else if (right_over) { 194 ss->ss_start = end; 195 } else { 196 avl_remove(&sm->sm_root, ss); 197 kmem_free(ss, sizeof (*ss)); 198 ss = NULL; 199 } 200 201 if (sm->sm_pp_root && ss != NULL) 202 avl_add(sm->sm_pp_root, ss); 203 204 sm->sm_space -= size; 205 } 206 207 boolean_t 208 space_map_contains(space_map_t *sm, uint64_t start, uint64_t size) 209 { 210 avl_index_t where; 211 space_seg_t ssearch, *ss; 212 uint64_t end = start + size; 213 214 ASSERT(MUTEX_HELD(sm->sm_lock)); 215 VERIFY(size != 0); 216 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 217 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 218 219 ssearch.ss_start = start; 220 ssearch.ss_end = end; 221 ss = avl_find(&sm->sm_root, &ssearch, &where); 222 223 return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end); 224 } 225 226 void 227 space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) 228 { 229 space_seg_t *ss; 230 void *cookie = NULL; 231 232 ASSERT(MUTEX_HELD(sm->sm_lock)); 233 234 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { 235 if (func != NULL) 236 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); 237 kmem_free(ss, sizeof (*ss)); 238 } 239 sm->sm_space = 0; 240 } 241 242 void 243 space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) 244 { 245 space_seg_t *ss; 246 247 ASSERT(MUTEX_HELD(sm->sm_lock)); 248 249 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) 250 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); 251 } 252 253 /* 254 * Wait for any in-progress space_map_load() to complete. 255 */ 256 void 257 space_map_load_wait(space_map_t *sm) 258 { 259 ASSERT(MUTEX_HELD(sm->sm_lock)); 260 261 while (sm->sm_loading) 262 cv_wait(&sm->sm_load_cv, sm->sm_lock); 263 } 264 265 /* 266 * Note: space_map_load() will drop sm_lock across dmu_read() calls. 267 * The caller must be OK with this. 268 */ 269 int 270 space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype, 271 space_map_obj_t *smo, objset_t *os) 272 { 273 uint64_t *entry, *entry_map, *entry_map_end; 274 uint64_t bufsize, size, offset, end, space; 275 uint64_t mapstart = sm->sm_start; 276 int error = 0; 277 278 ASSERT(MUTEX_HELD(sm->sm_lock)); 279 280 space_map_load_wait(sm); 281 282 if (sm->sm_loaded) 283 return (0); 284 285 sm->sm_loading = B_TRUE; 286 end = smo->smo_objsize; 287 space = smo->smo_alloc; 288 289 ASSERT(sm->sm_ops == NULL); 290 VERIFY3U(sm->sm_space, ==, 0); 291 292 if (maptype == SM_FREE) { 293 space_map_add(sm, sm->sm_start, sm->sm_size); 294 space = sm->sm_size - space; 295 } 296 297 bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT; 298 entry_map = zio_buf_alloc(bufsize); 299 300 mutex_exit(sm->sm_lock); 301 if (end > bufsize) 302 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize); 303 mutex_enter(sm->sm_lock); 304 305 for (offset = 0; offset < end; offset += bufsize) { 306 size = MIN(end - offset, bufsize); 307 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); 308 VERIFY(size != 0); 309 310 dprintf("object=%llu offset=%llx size=%llx\n", 311 smo->smo_object, offset, size); 312 313 mutex_exit(sm->sm_lock); 314 error = dmu_read(os, smo->smo_object, offset, size, entry_map, 315 DMU_READ_PREFETCH); 316 mutex_enter(sm->sm_lock); 317 if (error != 0) 318 break; 319 320 entry_map_end = entry_map + (size / sizeof (uint64_t)); 321 for (entry = entry_map; entry < entry_map_end; entry++) { 322 uint64_t e = *entry; 323 324 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ 325 continue; 326 327 (SM_TYPE_DECODE(e) == maptype ? 328 space_map_add : space_map_remove)(sm, 329 (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart, 330 SM_RUN_DECODE(e) << sm->sm_shift); 331 } 332 } 333 334 if (error == 0) { 335 VERIFY3U(sm->sm_space, ==, space); 336 337 sm->sm_loaded = B_TRUE; 338 sm->sm_ops = ops; 339 if (ops != NULL) 340 ops->smop_load(sm); 341 } else { 342 space_map_vacate(sm, NULL, NULL); 343 } 344 345 zio_buf_free(entry_map, bufsize); 346 347 sm->sm_loading = B_FALSE; 348 349 cv_broadcast(&sm->sm_load_cv); 350 351 return (error); 352 } 353 354 void 355 space_map_unload(space_map_t *sm) 356 { 357 ASSERT(MUTEX_HELD(sm->sm_lock)); 358 359 if (sm->sm_loaded && sm->sm_ops != NULL) 360 sm->sm_ops->smop_unload(sm); 361 362 sm->sm_loaded = B_FALSE; 363 sm->sm_ops = NULL; 364 365 space_map_vacate(sm, NULL, NULL); 366 } 367 368 uint64_t 369 space_map_maxsize(space_map_t *sm) 370 { 371 if (sm->sm_loaded && sm->sm_ops != NULL) 372 return (sm->sm_ops->smop_max(sm)); 373 else 374 return (-1ULL); 375 } 376 377 uint64_t 378 space_map_alloc(space_map_t *sm, uint64_t size) 379 { 380 uint64_t start; 381 382 start = sm->sm_ops->smop_alloc(sm, size); 383 if (start != -1ULL) 384 space_map_remove(sm, start, size); 385 return (start); 386 } 387 388 void 389 space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) 390 { 391 sm->sm_ops->smop_claim(sm, start, size); 392 space_map_remove(sm, start, size); 393 } 394 395 void 396 space_map_free(space_map_t *sm, uint64_t start, uint64_t size) 397 { 398 space_map_add(sm, start, size); 399 sm->sm_ops->smop_free(sm, start, size); 400 } 401 402 /* 403 * Note: space_map_sync() will drop sm_lock across dmu_write() calls. 404 */ 405 void 406 space_map_sync(space_map_t *sm, uint8_t maptype, 407 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) 408 { 409 spa_t *spa = dmu_objset_spa(os); 410 void *cookie = NULL; 411 space_seg_t *ss; 412 uint64_t bufsize, start, size, run_len; 413 uint64_t *entry, *entry_map, *entry_map_end; 414 415 ASSERT(MUTEX_HELD(sm->sm_lock)); 416 417 if (sm->sm_space == 0) 418 return; 419 420 dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n", 421 smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa), 422 maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root), 423 sm->sm_space); 424 425 if (maptype == SM_ALLOC) 426 smo->smo_alloc += sm->sm_space; 427 else 428 smo->smo_alloc -= sm->sm_space; 429 430 bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t); 431 bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT); 432 entry_map = zio_buf_alloc(bufsize); 433 entry_map_end = entry_map + (bufsize / sizeof (uint64_t)); 434 entry = entry_map; 435 436 *entry++ = SM_DEBUG_ENCODE(1) | 437 SM_DEBUG_ACTION_ENCODE(maptype) | 438 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | 439 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); 440 441 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { 442 size = ss->ss_end - ss->ss_start; 443 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift; 444 445 sm->sm_space -= size; 446 size >>= sm->sm_shift; 447 448 while (size) { 449 run_len = MIN(size, SM_RUN_MAX); 450 451 if (entry == entry_map_end) { 452 mutex_exit(sm->sm_lock); 453 dmu_write(os, smo->smo_object, smo->smo_objsize, 454 bufsize, entry_map, tx); 455 mutex_enter(sm->sm_lock); 456 smo->smo_objsize += bufsize; 457 entry = entry_map; 458 } 459 460 *entry++ = SM_OFFSET_ENCODE(start) | 461 SM_TYPE_ENCODE(maptype) | 462 SM_RUN_ENCODE(run_len); 463 464 start += run_len; 465 size -= run_len; 466 } 467 kmem_free(ss, sizeof (*ss)); 468 } 469 470 if (entry != entry_map) { 471 size = (entry - entry_map) * sizeof (uint64_t); 472 mutex_exit(sm->sm_lock); 473 dmu_write(os, smo->smo_object, smo->smo_objsize, 474 size, entry_map, tx); 475 mutex_enter(sm->sm_lock); 476 smo->smo_objsize += size; 477 } 478 479 zio_buf_free(entry_map, bufsize); 480 481 VERIFY3U(sm->sm_space, ==, 0); 482 } 483 484 void 485 space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) 486 { 487 VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0); 488 489 smo->smo_objsize = 0; 490 smo->smo_alloc = 0; 491 } 492 493 /* 494 * Space map reference trees. 495 * 496 * A space map is a collection of integers. Every integer is either 497 * in the map, or it's not. A space map reference tree generalizes 498 * the idea: it allows its members to have arbitrary reference counts, 499 * as opposed to the implicit reference count of 0 or 1 in a space map. 500 * This representation comes in handy when computing the union or 501 * intersection of multiple space maps. For example, the union of 502 * N space maps is the subset of the reference tree with refcnt >= 1. 503 * The intersection of N space maps is the subset with refcnt >= N. 504 * 505 * [It's very much like a Fourier transform. Unions and intersections 506 * are hard to perform in the 'space map domain', so we convert the maps 507 * into the 'reference count domain', where it's trivial, then invert.] 508 * 509 * vdev_dtl_reassess() uses computations of this form to determine 510 * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev 511 * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev 512 * has an outage wherever refcnt >= vdev_children. 513 */ 514 static int 515 space_map_ref_compare(const void *x1, const void *x2) 516 { 517 const space_ref_t *sr1 = x1; 518 const space_ref_t *sr2 = x2; 519 520 if (sr1->sr_offset < sr2->sr_offset) 521 return (-1); 522 if (sr1->sr_offset > sr2->sr_offset) 523 return (1); 524 525 if (sr1 < sr2) 526 return (-1); 527 if (sr1 > sr2) 528 return (1); 529 530 return (0); 531 } 532 533 void 534 space_map_ref_create(avl_tree_t *t) 535 { 536 avl_create(t, space_map_ref_compare, 537 sizeof (space_ref_t), offsetof(space_ref_t, sr_node)); 538 } 539 540 void 541 space_map_ref_destroy(avl_tree_t *t) 542 { 543 space_ref_t *sr; 544 void *cookie = NULL; 545 546 while ((sr = avl_destroy_nodes(t, &cookie)) != NULL) 547 kmem_free(sr, sizeof (*sr)); 548 549 avl_destroy(t); 550 } 551 552 static void 553 space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt) 554 { 555 space_ref_t *sr; 556 557 sr = kmem_alloc(sizeof (*sr), KM_SLEEP); 558 sr->sr_offset = offset; 559 sr->sr_refcnt = refcnt; 560 561 avl_add(t, sr); 562 } 563 564 void 565 space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end, 566 int64_t refcnt) 567 { 568 space_map_ref_add_node(t, start, refcnt); 569 space_map_ref_add_node(t, end, -refcnt); 570 } 571 572 /* 573 * Convert (or add) a space map into a reference tree. 574 */ 575 void 576 space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt) 577 { 578 space_seg_t *ss; 579 580 ASSERT(MUTEX_HELD(sm->sm_lock)); 581 582 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) 583 space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt); 584 } 585 586 /* 587 * Convert a reference tree into a space map. The space map will contain 588 * all members of the reference tree for which refcnt >= minref. 589 */ 590 void 591 space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref) 592 { 593 uint64_t start = -1ULL; 594 int64_t refcnt = 0; 595 space_ref_t *sr; 596 597 ASSERT(MUTEX_HELD(sm->sm_lock)); 598 599 space_map_vacate(sm, NULL, NULL); 600 601 for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) { 602 refcnt += sr->sr_refcnt; 603 if (refcnt >= minref) { 604 if (start == -1ULL) { 605 start = sr->sr_offset; 606 } 607 } else { 608 if (start != -1ULL) { 609 uint64_t end = sr->sr_offset; 610 ASSERT(start <= end); 611 if (end > start) 612 space_map_add(sm, start, end - start); 613 start = -1ULL; 614 } 615 } 616 } 617 ASSERT(refcnt == 0); 618 ASSERT(start == -1ULL); 619 } 620