1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/zfs_context.h> 26 #include <sys/spa_impl.h> 27 #include <sys/zio.h> 28 #include <sys/zio_checksum.h> 29 #include <sys/zio_compress.h> 30 #include <sys/dmu.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/zap.h> 33 #include <sys/zil.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/metaslab.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/txg.h> 38 #include <sys/avl.h> 39 #include <sys/unique.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_dir.h> 42 #include <sys/dsl_prop.h> 43 #include <sys/dsl_scan.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/arc.h> 47 #include <sys/ddt.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against spa_minref, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock[] (per-spa array of rwlocks) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * The locking order is fairly straightforward: 89 * 90 * spa_namespace_lock -> spa_refcount 91 * 92 * The namespace lock must be acquired to increase the refcount from 0 93 * or to check if it is zero. 94 * 95 * spa_refcount -> spa_config_lock[] 96 * 97 * There must be at least one valid reference on the spa_t to acquire 98 * the config lock. 99 * 100 * spa_namespace_lock -> spa_config_lock[] 101 * 102 * The namespace lock must always be taken before the config lock. 103 * 104 * 105 * The spa_namespace_lock can be acquired directly and is globally visible. 106 * 107 * The namespace is manipulated using the following functions, all of which 108 * require the spa_namespace_lock to be held. 109 * 110 * spa_lookup() Lookup a spa_t by name. 111 * 112 * spa_add() Create a new spa_t in the namespace. 113 * 114 * spa_remove() Remove a spa_t from the namespace. This also 115 * frees up any memory associated with the spa_t. 116 * 117 * spa_next() Returns the next spa_t in the system, or the 118 * first if NULL is passed. 119 * 120 * spa_evict_all() Shutdown and remove all spa_t structures in 121 * the system. 122 * 123 * spa_guid_exists() Determine whether a pool/device guid exists. 124 * 125 * The spa_refcount is manipulated using the following functions: 126 * 127 * spa_open_ref() Adds a reference to the given spa_t. Must be 128 * called with spa_namespace_lock held if the 129 * refcount is currently zero. 130 * 131 * spa_close() Remove a reference from the spa_t. This will 132 * not free the spa_t or remove it from the 133 * namespace. No locking is required. 134 * 135 * spa_refcount_zero() Returns true if the refcount is currently 136 * zero. Must be called with spa_namespace_lock 137 * held. 138 * 139 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 140 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 141 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 142 * 143 * To read the configuration, it suffices to hold one of these locks as reader. 144 * To modify the configuration, you must hold all locks as writer. To modify 145 * vdev state without altering the vdev tree's topology (e.g. online/offline), 146 * you must hold SCL_STATE and SCL_ZIO as writer. 147 * 148 * We use these distinct config locks to avoid recursive lock entry. 149 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 150 * block allocations (SCL_ALLOC), which may require reading space maps 151 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 152 * 153 * The spa config locks cannot be normal rwlocks because we need the 154 * ability to hand off ownership. For example, SCL_ZIO is acquired 155 * by the issuing thread and later released by an interrupt thread. 156 * They do, however, obey the usual write-wanted semantics to prevent 157 * writer (i.e. system administrator) starvation. 158 * 159 * The lock acquisition rules are as follows: 160 * 161 * SCL_CONFIG 162 * Protects changes to the vdev tree topology, such as vdev 163 * add/remove/attach/detach. Protects the dirty config list 164 * (spa_config_dirty_list) and the set of spares and l2arc devices. 165 * 166 * SCL_STATE 167 * Protects changes to pool state and vdev state, such as vdev 168 * online/offline/fault/degrade/clear. Protects the dirty state list 169 * (spa_state_dirty_list) and global pool state (spa_state). 170 * 171 * SCL_ALLOC 172 * Protects changes to metaslab groups and classes. 173 * Held as reader by metaslab_alloc() and metaslab_claim(). 174 * 175 * SCL_ZIO 176 * Held by bp-level zios (those which have no io_vd upon entry) 177 * to prevent changes to the vdev tree. The bp-level zio implicitly 178 * protects all of its vdev child zios, which do not hold SCL_ZIO. 179 * 180 * SCL_FREE 181 * Protects changes to metaslab groups and classes. 182 * Held as reader by metaslab_free(). SCL_FREE is distinct from 183 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 184 * blocks in zio_done() while another i/o that holds either 185 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 186 * 187 * SCL_VDEV 188 * Held as reader to prevent changes to the vdev tree during trivial 189 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 190 * other locks, and lower than all of them, to ensure that it's safe 191 * to acquire regardless of caller context. 192 * 193 * In addition, the following rules apply: 194 * 195 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 196 * The lock ordering is SCL_CONFIG > spa_props_lock. 197 * 198 * (b) I/O operations on leaf vdevs. For any zio operation that takes 199 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 200 * or zio_write_phys() -- the caller must ensure that the config cannot 201 * cannot change in the interim, and that the vdev cannot be reopened. 202 * SCL_STATE as reader suffices for both. 203 * 204 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 205 * 206 * spa_vdev_enter() Acquire the namespace lock and the config lock 207 * for writing. 208 * 209 * spa_vdev_exit() Release the config lock, wait for all I/O 210 * to complete, sync the updated configs to the 211 * cache, and release the namespace lock. 212 * 213 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 214 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 215 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 216 * 217 * spa_rename() is also implemented within this file since is requires 218 * manipulation of the namespace. 219 */ 220 221 static avl_tree_t spa_namespace_avl; 222 kmutex_t spa_namespace_lock; 223 static kcondvar_t spa_namespace_cv; 224 static int spa_active_count; 225 int spa_max_replication_override = SPA_DVAS_PER_BP; 226 227 static kmutex_t spa_spare_lock; 228 static avl_tree_t spa_spare_avl; 229 static kmutex_t spa_l2cache_lock; 230 static avl_tree_t spa_l2cache_avl; 231 232 kmem_cache_t *spa_buffer_pool; 233 int spa_mode_global; 234 235 #ifdef ZFS_DEBUG 236 /* Everything except dprintf is on by default in debug builds */ 237 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 238 #else 239 int zfs_flags = 0; 240 #endif 241 242 /* 243 * zfs_recover can be set to nonzero to attempt to recover from 244 * otherwise-fatal errors, typically caused by on-disk corruption. When 245 * set, calls to zfs_panic_recover() will turn into warning messages. 246 */ 247 int zfs_recover = 0; 248 249 250 /* 251 * ========================================================================== 252 * SPA config locking 253 * ========================================================================== 254 */ 255 static void 256 spa_config_lock_init(spa_t *spa) 257 { 258 for (int i = 0; i < SCL_LOCKS; i++) { 259 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 260 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 261 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 262 refcount_create(&scl->scl_count); 263 scl->scl_writer = NULL; 264 scl->scl_write_wanted = 0; 265 } 266 } 267 268 static void 269 spa_config_lock_destroy(spa_t *spa) 270 { 271 for (int i = 0; i < SCL_LOCKS; i++) { 272 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 273 mutex_destroy(&scl->scl_lock); 274 cv_destroy(&scl->scl_cv); 275 refcount_destroy(&scl->scl_count); 276 ASSERT(scl->scl_writer == NULL); 277 ASSERT(scl->scl_write_wanted == 0); 278 } 279 } 280 281 int 282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 283 { 284 for (int i = 0; i < SCL_LOCKS; i++) { 285 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 286 if (!(locks & (1 << i))) 287 continue; 288 mutex_enter(&scl->scl_lock); 289 if (rw == RW_READER) { 290 if (scl->scl_writer || scl->scl_write_wanted) { 291 mutex_exit(&scl->scl_lock); 292 spa_config_exit(spa, locks ^ (1 << i), tag); 293 return (0); 294 } 295 } else { 296 ASSERT(scl->scl_writer != curthread); 297 if (!refcount_is_zero(&scl->scl_count)) { 298 mutex_exit(&scl->scl_lock); 299 spa_config_exit(spa, locks ^ (1 << i), tag); 300 return (0); 301 } 302 scl->scl_writer = curthread; 303 } 304 (void) refcount_add(&scl->scl_count, tag); 305 mutex_exit(&scl->scl_lock); 306 } 307 return (1); 308 } 309 310 void 311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 312 { 313 int wlocks_held = 0; 314 315 for (int i = 0; i < SCL_LOCKS; i++) { 316 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 317 if (scl->scl_writer == curthread) 318 wlocks_held |= (1 << i); 319 if (!(locks & (1 << i))) 320 continue; 321 mutex_enter(&scl->scl_lock); 322 if (rw == RW_READER) { 323 while (scl->scl_writer || scl->scl_write_wanted) { 324 cv_wait(&scl->scl_cv, &scl->scl_lock); 325 } 326 } else { 327 ASSERT(scl->scl_writer != curthread); 328 while (!refcount_is_zero(&scl->scl_count)) { 329 scl->scl_write_wanted++; 330 cv_wait(&scl->scl_cv, &scl->scl_lock); 331 scl->scl_write_wanted--; 332 } 333 scl->scl_writer = curthread; 334 } 335 (void) refcount_add(&scl->scl_count, tag); 336 mutex_exit(&scl->scl_lock); 337 } 338 ASSERT(wlocks_held <= locks); 339 } 340 341 void 342 spa_config_exit(spa_t *spa, int locks, void *tag) 343 { 344 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 345 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 346 if (!(locks & (1 << i))) 347 continue; 348 mutex_enter(&scl->scl_lock); 349 ASSERT(!refcount_is_zero(&scl->scl_count)); 350 if (refcount_remove(&scl->scl_count, tag) == 0) { 351 ASSERT(scl->scl_writer == NULL || 352 scl->scl_writer == curthread); 353 scl->scl_writer = NULL; /* OK in either case */ 354 cv_broadcast(&scl->scl_cv); 355 } 356 mutex_exit(&scl->scl_lock); 357 } 358 } 359 360 int 361 spa_config_held(spa_t *spa, int locks, krw_t rw) 362 { 363 int locks_held = 0; 364 365 for (int i = 0; i < SCL_LOCKS; i++) { 366 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 367 if (!(locks & (1 << i))) 368 continue; 369 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 370 (rw == RW_WRITER && scl->scl_writer == curthread)) 371 locks_held |= 1 << i; 372 } 373 374 return (locks_held); 375 } 376 377 /* 378 * ========================================================================== 379 * SPA namespace functions 380 * ========================================================================== 381 */ 382 383 /* 384 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 385 * Returns NULL if no matching spa_t is found. 386 */ 387 spa_t * 388 spa_lookup(const char *name) 389 { 390 static spa_t search; /* spa_t is large; don't allocate on stack */ 391 spa_t *spa; 392 avl_index_t where; 393 char c; 394 char *cp; 395 396 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 397 398 /* 399 * If it's a full dataset name, figure out the pool name and 400 * just use that. 401 */ 402 cp = strpbrk(name, "/@"); 403 if (cp) { 404 c = *cp; 405 *cp = '\0'; 406 } 407 408 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 409 spa = avl_find(&spa_namespace_avl, &search, &where); 410 411 if (cp) 412 *cp = c; 413 414 return (spa); 415 } 416 417 /* 418 * Create an uninitialized spa_t with the given name. Requires 419 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 420 * exist by calling spa_lookup() first. 421 */ 422 spa_t * 423 spa_add(const char *name, nvlist_t *config, const char *altroot) 424 { 425 spa_t *spa; 426 spa_config_dirent_t *dp; 427 428 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 429 430 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 431 432 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 433 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 434 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 435 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 436 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 437 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 438 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 439 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 440 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 441 442 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 443 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 444 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 445 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 446 447 for (int t = 0; t < TXG_SIZE; t++) 448 bplist_init(&spa->spa_free_bplist[t]); 449 bplist_init(&spa->spa_deferred_bplist); 450 451 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 452 spa->spa_state = POOL_STATE_UNINITIALIZED; 453 spa->spa_freeze_txg = UINT64_MAX; 454 spa->spa_final_txg = UINT64_MAX; 455 spa->spa_load_max_txg = UINT64_MAX; 456 spa->spa_proc = &p0; 457 spa->spa_proc_state = SPA_PROC_NONE; 458 459 refcount_create(&spa->spa_refcount); 460 spa_config_lock_init(spa); 461 462 avl_add(&spa_namespace_avl, spa); 463 464 /* 465 * Set the alternate root, if there is one. 466 */ 467 if (altroot) { 468 spa->spa_root = spa_strdup(altroot); 469 spa_active_count++; 470 } 471 472 /* 473 * Every pool starts with the default cachefile 474 */ 475 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 476 offsetof(spa_config_dirent_t, scd_link)); 477 478 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 479 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 480 list_insert_head(&spa->spa_config_list, dp); 481 482 if (config != NULL) 483 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 484 485 return (spa); 486 } 487 488 /* 489 * Removes a spa_t from the namespace, freeing up any memory used. Requires 490 * spa_namespace_lock. This is called only after the spa_t has been closed and 491 * deactivated. 492 */ 493 void 494 spa_remove(spa_t *spa) 495 { 496 spa_config_dirent_t *dp; 497 498 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 499 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 500 501 nvlist_free(spa->spa_config_splitting); 502 503 avl_remove(&spa_namespace_avl, spa); 504 cv_broadcast(&spa_namespace_cv); 505 506 if (spa->spa_root) { 507 spa_strfree(spa->spa_root); 508 spa_active_count--; 509 } 510 511 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 512 list_remove(&spa->spa_config_list, dp); 513 if (dp->scd_path != NULL) 514 spa_strfree(dp->scd_path); 515 kmem_free(dp, sizeof (spa_config_dirent_t)); 516 } 517 518 list_destroy(&spa->spa_config_list); 519 520 spa_config_set(spa, NULL); 521 522 refcount_destroy(&spa->spa_refcount); 523 524 spa_config_lock_destroy(spa); 525 526 for (int t = 0; t < TXG_SIZE; t++) 527 bplist_fini(&spa->spa_free_bplist[t]); 528 bplist_fini(&spa->spa_deferred_bplist); 529 530 cv_destroy(&spa->spa_async_cv); 531 cv_destroy(&spa->spa_proc_cv); 532 cv_destroy(&spa->spa_scrub_io_cv); 533 cv_destroy(&spa->spa_suspend_cv); 534 535 mutex_destroy(&spa->spa_async_lock); 536 mutex_destroy(&spa->spa_errlist_lock); 537 mutex_destroy(&spa->spa_errlog_lock); 538 mutex_destroy(&spa->spa_history_lock); 539 mutex_destroy(&spa->spa_proc_lock); 540 mutex_destroy(&spa->spa_props_lock); 541 mutex_destroy(&spa->spa_scrub_lock); 542 mutex_destroy(&spa->spa_suspend_lock); 543 mutex_destroy(&spa->spa_vdev_top_lock); 544 545 kmem_free(spa, sizeof (spa_t)); 546 } 547 548 /* 549 * Given a pool, return the next pool in the namespace, or NULL if there is 550 * none. If 'prev' is NULL, return the first pool. 551 */ 552 spa_t * 553 spa_next(spa_t *prev) 554 { 555 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 556 557 if (prev) 558 return (AVL_NEXT(&spa_namespace_avl, prev)); 559 else 560 return (avl_first(&spa_namespace_avl)); 561 } 562 563 /* 564 * ========================================================================== 565 * SPA refcount functions 566 * ========================================================================== 567 */ 568 569 /* 570 * Add a reference to the given spa_t. Must have at least one reference, or 571 * have the namespace lock held. 572 */ 573 void 574 spa_open_ref(spa_t *spa, void *tag) 575 { 576 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 577 MUTEX_HELD(&spa_namespace_lock)); 578 (void) refcount_add(&spa->spa_refcount, tag); 579 } 580 581 /* 582 * Remove a reference to the given spa_t. Must have at least one reference, or 583 * have the namespace lock held. 584 */ 585 void 586 spa_close(spa_t *spa, void *tag) 587 { 588 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 589 MUTEX_HELD(&spa_namespace_lock)); 590 (void) refcount_remove(&spa->spa_refcount, tag); 591 } 592 593 /* 594 * Check to see if the spa refcount is zero. Must be called with 595 * spa_namespace_lock held. We really compare against spa_minref, which is the 596 * number of references acquired when opening a pool 597 */ 598 boolean_t 599 spa_refcount_zero(spa_t *spa) 600 { 601 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 602 603 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 604 } 605 606 /* 607 * ========================================================================== 608 * SPA spare and l2cache tracking 609 * ========================================================================== 610 */ 611 612 /* 613 * Hot spares and cache devices are tracked using the same code below, 614 * for 'auxiliary' devices. 615 */ 616 617 typedef struct spa_aux { 618 uint64_t aux_guid; 619 uint64_t aux_pool; 620 avl_node_t aux_avl; 621 int aux_count; 622 } spa_aux_t; 623 624 static int 625 spa_aux_compare(const void *a, const void *b) 626 { 627 const spa_aux_t *sa = a; 628 const spa_aux_t *sb = b; 629 630 if (sa->aux_guid < sb->aux_guid) 631 return (-1); 632 else if (sa->aux_guid > sb->aux_guid) 633 return (1); 634 else 635 return (0); 636 } 637 638 void 639 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 640 { 641 avl_index_t where; 642 spa_aux_t search; 643 spa_aux_t *aux; 644 645 search.aux_guid = vd->vdev_guid; 646 if ((aux = avl_find(avl, &search, &where)) != NULL) { 647 aux->aux_count++; 648 } else { 649 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 650 aux->aux_guid = vd->vdev_guid; 651 aux->aux_count = 1; 652 avl_insert(avl, aux, where); 653 } 654 } 655 656 void 657 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 658 { 659 spa_aux_t search; 660 spa_aux_t *aux; 661 avl_index_t where; 662 663 search.aux_guid = vd->vdev_guid; 664 aux = avl_find(avl, &search, &where); 665 666 ASSERT(aux != NULL); 667 668 if (--aux->aux_count == 0) { 669 avl_remove(avl, aux); 670 kmem_free(aux, sizeof (spa_aux_t)); 671 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 672 aux->aux_pool = 0ULL; 673 } 674 } 675 676 boolean_t 677 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 678 { 679 spa_aux_t search, *found; 680 681 search.aux_guid = guid; 682 found = avl_find(avl, &search, NULL); 683 684 if (pool) { 685 if (found) 686 *pool = found->aux_pool; 687 else 688 *pool = 0ULL; 689 } 690 691 if (refcnt) { 692 if (found) 693 *refcnt = found->aux_count; 694 else 695 *refcnt = 0; 696 } 697 698 return (found != NULL); 699 } 700 701 void 702 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 703 { 704 spa_aux_t search, *found; 705 avl_index_t where; 706 707 search.aux_guid = vd->vdev_guid; 708 found = avl_find(avl, &search, &where); 709 ASSERT(found != NULL); 710 ASSERT(found->aux_pool == 0ULL); 711 712 found->aux_pool = spa_guid(vd->vdev_spa); 713 } 714 715 /* 716 * Spares are tracked globally due to the following constraints: 717 * 718 * - A spare may be part of multiple pools. 719 * - A spare may be added to a pool even if it's actively in use within 720 * another pool. 721 * - A spare in use in any pool can only be the source of a replacement if 722 * the target is a spare in the same pool. 723 * 724 * We keep track of all spares on the system through the use of a reference 725 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 726 * spare, then we bump the reference count in the AVL tree. In addition, we set 727 * the 'vdev_isspare' member to indicate that the device is a spare (active or 728 * inactive). When a spare is made active (used to replace a device in the 729 * pool), we also keep track of which pool its been made a part of. 730 * 731 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 732 * called under the spa_namespace lock as part of vdev reconfiguration. The 733 * separate spare lock exists for the status query path, which does not need to 734 * be completely consistent with respect to other vdev configuration changes. 735 */ 736 737 static int 738 spa_spare_compare(const void *a, const void *b) 739 { 740 return (spa_aux_compare(a, b)); 741 } 742 743 void 744 spa_spare_add(vdev_t *vd) 745 { 746 mutex_enter(&spa_spare_lock); 747 ASSERT(!vd->vdev_isspare); 748 spa_aux_add(vd, &spa_spare_avl); 749 vd->vdev_isspare = B_TRUE; 750 mutex_exit(&spa_spare_lock); 751 } 752 753 void 754 spa_spare_remove(vdev_t *vd) 755 { 756 mutex_enter(&spa_spare_lock); 757 ASSERT(vd->vdev_isspare); 758 spa_aux_remove(vd, &spa_spare_avl); 759 vd->vdev_isspare = B_FALSE; 760 mutex_exit(&spa_spare_lock); 761 } 762 763 boolean_t 764 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 765 { 766 boolean_t found; 767 768 mutex_enter(&spa_spare_lock); 769 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 770 mutex_exit(&spa_spare_lock); 771 772 return (found); 773 } 774 775 void 776 spa_spare_activate(vdev_t *vd) 777 { 778 mutex_enter(&spa_spare_lock); 779 ASSERT(vd->vdev_isspare); 780 spa_aux_activate(vd, &spa_spare_avl); 781 mutex_exit(&spa_spare_lock); 782 } 783 784 /* 785 * Level 2 ARC devices are tracked globally for the same reasons as spares. 786 * Cache devices currently only support one pool per cache device, and so 787 * for these devices the aux reference count is currently unused beyond 1. 788 */ 789 790 static int 791 spa_l2cache_compare(const void *a, const void *b) 792 { 793 return (spa_aux_compare(a, b)); 794 } 795 796 void 797 spa_l2cache_add(vdev_t *vd) 798 { 799 mutex_enter(&spa_l2cache_lock); 800 ASSERT(!vd->vdev_isl2cache); 801 spa_aux_add(vd, &spa_l2cache_avl); 802 vd->vdev_isl2cache = B_TRUE; 803 mutex_exit(&spa_l2cache_lock); 804 } 805 806 void 807 spa_l2cache_remove(vdev_t *vd) 808 { 809 mutex_enter(&spa_l2cache_lock); 810 ASSERT(vd->vdev_isl2cache); 811 spa_aux_remove(vd, &spa_l2cache_avl); 812 vd->vdev_isl2cache = B_FALSE; 813 mutex_exit(&spa_l2cache_lock); 814 } 815 816 boolean_t 817 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 818 { 819 boolean_t found; 820 821 mutex_enter(&spa_l2cache_lock); 822 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 823 mutex_exit(&spa_l2cache_lock); 824 825 return (found); 826 } 827 828 void 829 spa_l2cache_activate(vdev_t *vd) 830 { 831 mutex_enter(&spa_l2cache_lock); 832 ASSERT(vd->vdev_isl2cache); 833 spa_aux_activate(vd, &spa_l2cache_avl); 834 mutex_exit(&spa_l2cache_lock); 835 } 836 837 /* 838 * ========================================================================== 839 * SPA vdev locking 840 * ========================================================================== 841 */ 842 843 /* 844 * Lock the given spa_t for the purpose of adding or removing a vdev. 845 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 846 * It returns the next transaction group for the spa_t. 847 */ 848 uint64_t 849 spa_vdev_enter(spa_t *spa) 850 { 851 mutex_enter(&spa->spa_vdev_top_lock); 852 mutex_enter(&spa_namespace_lock); 853 return (spa_vdev_config_enter(spa)); 854 } 855 856 /* 857 * Internal implementation for spa_vdev_enter(). Used when a vdev 858 * operation requires multiple syncs (i.e. removing a device) while 859 * keeping the spa_namespace_lock held. 860 */ 861 uint64_t 862 spa_vdev_config_enter(spa_t *spa) 863 { 864 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 865 866 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 867 868 return (spa_last_synced_txg(spa) + 1); 869 } 870 871 /* 872 * Used in combination with spa_vdev_config_enter() to allow the syncing 873 * of multiple transactions without releasing the spa_namespace_lock. 874 */ 875 void 876 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 877 { 878 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 879 880 int config_changed = B_FALSE; 881 882 ASSERT(txg > spa_last_synced_txg(spa)); 883 884 spa->spa_pending_vdev = NULL; 885 886 /* 887 * Reassess the DTLs. 888 */ 889 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 890 891 /* 892 * If the config changed, notify the scrub that it must restart. 893 * This will initiate a resilver if needed. 894 */ 895 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 896 config_changed = B_TRUE; 897 spa->spa_config_generation++; 898 } 899 900 /* 901 * Verify the metaslab classes. 902 */ 903 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 904 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 905 906 spa_config_exit(spa, SCL_ALL, spa); 907 908 /* 909 * Panic the system if the specified tag requires it. This 910 * is useful for ensuring that configurations are updated 911 * transactionally. 912 */ 913 if (zio_injection_enabled) 914 zio_handle_panic_injection(spa, tag, 0); 915 916 /* 917 * Note: this txg_wait_synced() is important because it ensures 918 * that there won't be more than one config change per txg. 919 * This allows us to use the txg as the generation number. 920 */ 921 if (error == 0) 922 txg_wait_synced(spa->spa_dsl_pool, txg); 923 924 if (vd != NULL) { 925 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 926 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 927 vdev_free(vd); 928 spa_config_exit(spa, SCL_ALL, spa); 929 } 930 931 /* 932 * If the config changed, update the config cache. 933 */ 934 if (config_changed) 935 spa_config_sync(spa, B_FALSE, B_TRUE); 936 } 937 938 /* 939 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 940 * locking of spa_vdev_enter(), we also want make sure the transactions have 941 * synced to disk, and then update the global configuration cache with the new 942 * information. 943 */ 944 int 945 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 946 { 947 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 948 mutex_exit(&spa_namespace_lock); 949 mutex_exit(&spa->spa_vdev_top_lock); 950 951 return (error); 952 } 953 954 /* 955 * Lock the given spa_t for the purpose of changing vdev state. 956 */ 957 void 958 spa_vdev_state_enter(spa_t *spa, int oplocks) 959 { 960 int locks = SCL_STATE_ALL | oplocks; 961 962 /* 963 * Root pools may need to read of the underlying devfs filesystem 964 * when opening up a vdev. Unfortunately if we're holding the 965 * SCL_ZIO lock it will result in a deadlock when we try to issue 966 * the read from the root filesystem. Instead we "prefetch" 967 * the associated vnodes that we need prior to opening the 968 * underlying devices and cache them so that we can prevent 969 * any I/O when we are doing the actual open. 970 */ 971 if (spa_is_root(spa)) { 972 int low = locks & ~(SCL_ZIO - 1); 973 int high = locks & ~low; 974 975 spa_config_enter(spa, high, spa, RW_WRITER); 976 vdev_hold(spa->spa_root_vdev); 977 spa_config_enter(spa, low, spa, RW_WRITER); 978 } else { 979 spa_config_enter(spa, locks, spa, RW_WRITER); 980 } 981 spa->spa_vdev_locks = locks; 982 } 983 984 int 985 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 986 { 987 boolean_t config_changed = B_FALSE; 988 989 if (vd != NULL || error == 0) 990 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 991 0, 0, B_FALSE); 992 993 if (vd != NULL) { 994 vdev_state_dirty(vd->vdev_top); 995 config_changed = B_TRUE; 996 spa->spa_config_generation++; 997 } 998 999 if (spa_is_root(spa)) 1000 vdev_rele(spa->spa_root_vdev); 1001 1002 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1003 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1004 1005 /* 1006 * If anything changed, wait for it to sync. This ensures that, 1007 * from the system administrator's perspective, zpool(1M) commands 1008 * are synchronous. This is important for things like zpool offline: 1009 * when the command completes, you expect no further I/O from ZFS. 1010 */ 1011 if (vd != NULL) 1012 txg_wait_synced(spa->spa_dsl_pool, 0); 1013 1014 /* 1015 * If the config changed, update the config cache. 1016 */ 1017 if (config_changed) { 1018 mutex_enter(&spa_namespace_lock); 1019 spa_config_sync(spa, B_FALSE, B_TRUE); 1020 mutex_exit(&spa_namespace_lock); 1021 } 1022 1023 return (error); 1024 } 1025 1026 /* 1027 * ========================================================================== 1028 * Miscellaneous functions 1029 * ========================================================================== 1030 */ 1031 1032 /* 1033 * Rename a spa_t. 1034 */ 1035 int 1036 spa_rename(const char *name, const char *newname) 1037 { 1038 spa_t *spa; 1039 int err; 1040 1041 /* 1042 * Lookup the spa_t and grab the config lock for writing. We need to 1043 * actually open the pool so that we can sync out the necessary labels. 1044 * It's OK to call spa_open() with the namespace lock held because we 1045 * allow recursive calls for other reasons. 1046 */ 1047 mutex_enter(&spa_namespace_lock); 1048 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1049 mutex_exit(&spa_namespace_lock); 1050 return (err); 1051 } 1052 1053 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1054 1055 avl_remove(&spa_namespace_avl, spa); 1056 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1057 avl_add(&spa_namespace_avl, spa); 1058 1059 /* 1060 * Sync all labels to disk with the new names by marking the root vdev 1061 * dirty and waiting for it to sync. It will pick up the new pool name 1062 * during the sync. 1063 */ 1064 vdev_config_dirty(spa->spa_root_vdev); 1065 1066 spa_config_exit(spa, SCL_ALL, FTAG); 1067 1068 txg_wait_synced(spa->spa_dsl_pool, 0); 1069 1070 /* 1071 * Sync the updated config cache. 1072 */ 1073 spa_config_sync(spa, B_FALSE, B_TRUE); 1074 1075 spa_close(spa, FTAG); 1076 1077 mutex_exit(&spa_namespace_lock); 1078 1079 return (0); 1080 } 1081 1082 /* 1083 * Determine whether a pool with given pool_guid exists. If device_guid is 1084 * non-zero, determine whether the pool exists *and* contains a device with the 1085 * specified device_guid. 1086 */ 1087 boolean_t 1088 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1089 { 1090 spa_t *spa; 1091 avl_tree_t *t = &spa_namespace_avl; 1092 1093 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1094 1095 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1096 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1097 continue; 1098 if (spa->spa_root_vdev == NULL) 1099 continue; 1100 if (spa_guid(spa) == pool_guid) { 1101 if (device_guid == 0) 1102 break; 1103 1104 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1105 device_guid) != NULL) 1106 break; 1107 1108 /* 1109 * Check any devices we may be in the process of adding. 1110 */ 1111 if (spa->spa_pending_vdev) { 1112 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1113 device_guid) != NULL) 1114 break; 1115 } 1116 } 1117 } 1118 1119 return (spa != NULL); 1120 } 1121 1122 char * 1123 spa_strdup(const char *s) 1124 { 1125 size_t len; 1126 char *new; 1127 1128 len = strlen(s); 1129 new = kmem_alloc(len + 1, KM_SLEEP); 1130 bcopy(s, new, len); 1131 new[len] = '\0'; 1132 1133 return (new); 1134 } 1135 1136 void 1137 spa_strfree(char *s) 1138 { 1139 kmem_free(s, strlen(s) + 1); 1140 } 1141 1142 uint64_t 1143 spa_get_random(uint64_t range) 1144 { 1145 uint64_t r; 1146 1147 ASSERT(range != 0); 1148 1149 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1150 1151 return (r % range); 1152 } 1153 1154 uint64_t 1155 spa_generate_guid(spa_t *spa) 1156 { 1157 uint64_t guid = spa_get_random(-1ULL); 1158 1159 if (spa != NULL) { 1160 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1161 guid = spa_get_random(-1ULL); 1162 } else { 1163 while (guid == 0 || spa_guid_exists(guid, 0)) 1164 guid = spa_get_random(-1ULL); 1165 } 1166 1167 return (guid); 1168 } 1169 1170 void 1171 sprintf_blkptr(char *buf, const blkptr_t *bp) 1172 { 1173 char *type = NULL; 1174 char *checksum = NULL; 1175 char *compress = NULL; 1176 1177 if (bp != NULL) { 1178 type = dmu_ot[BP_GET_TYPE(bp)].ot_name; 1179 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1180 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1181 } 1182 1183 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1184 } 1185 1186 void 1187 spa_freeze(spa_t *spa) 1188 { 1189 uint64_t freeze_txg = 0; 1190 1191 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1192 if (spa->spa_freeze_txg == UINT64_MAX) { 1193 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1194 spa->spa_freeze_txg = freeze_txg; 1195 } 1196 spa_config_exit(spa, SCL_ALL, FTAG); 1197 if (freeze_txg != 0) 1198 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1199 } 1200 1201 void 1202 zfs_panic_recover(const char *fmt, ...) 1203 { 1204 va_list adx; 1205 1206 va_start(adx, fmt); 1207 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1208 va_end(adx); 1209 } 1210 1211 /* 1212 * This is a stripped-down version of strtoull, suitable only for converting 1213 * lowercase hexidecimal numbers that don't overflow. 1214 */ 1215 uint64_t 1216 strtonum(const char *str, char **nptr) 1217 { 1218 uint64_t val = 0; 1219 char c; 1220 int digit; 1221 1222 while ((c = *str) != '\0') { 1223 if (c >= '0' && c <= '9') 1224 digit = c - '0'; 1225 else if (c >= 'a' && c <= 'f') 1226 digit = 10 + c - 'a'; 1227 else 1228 break; 1229 1230 val *= 16; 1231 val += digit; 1232 1233 str++; 1234 } 1235 1236 if (nptr) 1237 *nptr = (char *)str; 1238 1239 return (val); 1240 } 1241 1242 /* 1243 * ========================================================================== 1244 * Accessor functions 1245 * ========================================================================== 1246 */ 1247 1248 boolean_t 1249 spa_shutting_down(spa_t *spa) 1250 { 1251 return (spa->spa_async_suspended); 1252 } 1253 1254 dsl_pool_t * 1255 spa_get_dsl(spa_t *spa) 1256 { 1257 return (spa->spa_dsl_pool); 1258 } 1259 1260 blkptr_t * 1261 spa_get_rootblkptr(spa_t *spa) 1262 { 1263 return (&spa->spa_ubsync.ub_rootbp); 1264 } 1265 1266 void 1267 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1268 { 1269 spa->spa_uberblock.ub_rootbp = *bp; 1270 } 1271 1272 void 1273 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1274 { 1275 if (spa->spa_root == NULL) 1276 buf[0] = '\0'; 1277 else 1278 (void) strncpy(buf, spa->spa_root, buflen); 1279 } 1280 1281 int 1282 spa_sync_pass(spa_t *spa) 1283 { 1284 return (spa->spa_sync_pass); 1285 } 1286 1287 char * 1288 spa_name(spa_t *spa) 1289 { 1290 return (spa->spa_name); 1291 } 1292 1293 uint64_t 1294 spa_guid(spa_t *spa) 1295 { 1296 /* 1297 * If we fail to parse the config during spa_load(), we can go through 1298 * the error path (which posts an ereport) and end up here with no root 1299 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 1300 * this case. 1301 */ 1302 if (spa->spa_root_vdev != NULL) 1303 return (spa->spa_root_vdev->vdev_guid); 1304 else 1305 return (spa->spa_load_guid); 1306 } 1307 1308 uint64_t 1309 spa_last_synced_txg(spa_t *spa) 1310 { 1311 return (spa->spa_ubsync.ub_txg); 1312 } 1313 1314 uint64_t 1315 spa_first_txg(spa_t *spa) 1316 { 1317 return (spa->spa_first_txg); 1318 } 1319 1320 uint64_t 1321 spa_syncing_txg(spa_t *spa) 1322 { 1323 return (spa->spa_syncing_txg); 1324 } 1325 1326 pool_state_t 1327 spa_state(spa_t *spa) 1328 { 1329 return (spa->spa_state); 1330 } 1331 1332 spa_load_state_t 1333 spa_load_state(spa_t *spa) 1334 { 1335 return (spa->spa_load_state); 1336 } 1337 1338 uint64_t 1339 spa_freeze_txg(spa_t *spa) 1340 { 1341 return (spa->spa_freeze_txg); 1342 } 1343 1344 /* ARGSUSED */ 1345 uint64_t 1346 spa_get_asize(spa_t *spa, uint64_t lsize) 1347 { 1348 /* 1349 * The worst case is single-sector max-parity RAID-Z blocks, in which 1350 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1351 * times the size; so just assume that. Add to this the fact that 1352 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1353 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1354 */ 1355 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1356 } 1357 1358 uint64_t 1359 spa_get_dspace(spa_t *spa) 1360 { 1361 return (spa->spa_dspace); 1362 } 1363 1364 void 1365 spa_update_dspace(spa_t *spa) 1366 { 1367 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1368 ddt_get_dedup_dspace(spa); 1369 } 1370 1371 /* 1372 * Return the failure mode that has been set to this pool. The default 1373 * behavior will be to block all I/Os when a complete failure occurs. 1374 */ 1375 uint8_t 1376 spa_get_failmode(spa_t *spa) 1377 { 1378 return (spa->spa_failmode); 1379 } 1380 1381 boolean_t 1382 spa_suspended(spa_t *spa) 1383 { 1384 return (spa->spa_suspended); 1385 } 1386 1387 uint64_t 1388 spa_version(spa_t *spa) 1389 { 1390 return (spa->spa_ubsync.ub_version); 1391 } 1392 1393 boolean_t 1394 spa_deflate(spa_t *spa) 1395 { 1396 return (spa->spa_deflate); 1397 } 1398 1399 metaslab_class_t * 1400 spa_normal_class(spa_t *spa) 1401 { 1402 return (spa->spa_normal_class); 1403 } 1404 1405 metaslab_class_t * 1406 spa_log_class(spa_t *spa) 1407 { 1408 return (spa->spa_log_class); 1409 } 1410 1411 int 1412 spa_max_replication(spa_t *spa) 1413 { 1414 /* 1415 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1416 * handle BPs with more than one DVA allocated. Set our max 1417 * replication level accordingly. 1418 */ 1419 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1420 return (1); 1421 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1422 } 1423 1424 int 1425 spa_prev_software_version(spa_t *spa) 1426 { 1427 return (spa->spa_prev_software_version); 1428 } 1429 1430 uint64_t 1431 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1432 { 1433 uint64_t asize = DVA_GET_ASIZE(dva); 1434 uint64_t dsize = asize; 1435 1436 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1437 1438 if (asize != 0 && spa->spa_deflate) { 1439 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1440 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1441 } 1442 1443 return (dsize); 1444 } 1445 1446 uint64_t 1447 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1448 { 1449 uint64_t dsize = 0; 1450 1451 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1452 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1453 1454 return (dsize); 1455 } 1456 1457 uint64_t 1458 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1459 { 1460 uint64_t dsize = 0; 1461 1462 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1463 1464 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1465 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1466 1467 spa_config_exit(spa, SCL_VDEV, FTAG); 1468 1469 return (dsize); 1470 } 1471 1472 /* 1473 * ========================================================================== 1474 * Initialization and Termination 1475 * ========================================================================== 1476 */ 1477 1478 static int 1479 spa_name_compare(const void *a1, const void *a2) 1480 { 1481 const spa_t *s1 = a1; 1482 const spa_t *s2 = a2; 1483 int s; 1484 1485 s = strcmp(s1->spa_name, s2->spa_name); 1486 if (s > 0) 1487 return (1); 1488 if (s < 0) 1489 return (-1); 1490 return (0); 1491 } 1492 1493 int 1494 spa_busy(void) 1495 { 1496 return (spa_active_count); 1497 } 1498 1499 void 1500 spa_boot_init() 1501 { 1502 spa_config_load(); 1503 } 1504 1505 void 1506 spa_init(int mode) 1507 { 1508 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1509 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1510 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1511 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1512 1513 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1514 offsetof(spa_t, spa_avl)); 1515 1516 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1517 offsetof(spa_aux_t, aux_avl)); 1518 1519 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1520 offsetof(spa_aux_t, aux_avl)); 1521 1522 spa_mode_global = mode; 1523 1524 refcount_init(); 1525 unique_init(); 1526 zio_init(); 1527 dmu_init(); 1528 zil_init(); 1529 vdev_cache_stat_init(); 1530 zfs_prop_init(); 1531 zpool_prop_init(); 1532 spa_config_load(); 1533 l2arc_start(); 1534 } 1535 1536 void 1537 spa_fini(void) 1538 { 1539 l2arc_stop(); 1540 1541 spa_evict_all(); 1542 1543 vdev_cache_stat_fini(); 1544 zil_fini(); 1545 dmu_fini(); 1546 zio_fini(); 1547 unique_fini(); 1548 refcount_fini(); 1549 1550 avl_destroy(&spa_namespace_avl); 1551 avl_destroy(&spa_spare_avl); 1552 avl_destroy(&spa_l2cache_avl); 1553 1554 cv_destroy(&spa_namespace_cv); 1555 mutex_destroy(&spa_namespace_lock); 1556 mutex_destroy(&spa_spare_lock); 1557 mutex_destroy(&spa_l2cache_lock); 1558 } 1559 1560 /* 1561 * Return whether this pool has slogs. No locking needed. 1562 * It's not a problem if the wrong answer is returned as it's only for 1563 * performance and not correctness 1564 */ 1565 boolean_t 1566 spa_has_slogs(spa_t *spa) 1567 { 1568 return (spa->spa_log_class->mc_rotor != NULL); 1569 } 1570 1571 spa_log_state_t 1572 spa_get_log_state(spa_t *spa) 1573 { 1574 return (spa->spa_log_state); 1575 } 1576 1577 void 1578 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1579 { 1580 spa->spa_log_state = state; 1581 } 1582 1583 boolean_t 1584 spa_is_root(spa_t *spa) 1585 { 1586 return (spa->spa_is_root); 1587 } 1588 1589 boolean_t 1590 spa_writeable(spa_t *spa) 1591 { 1592 return (!!(spa->spa_mode & FWRITE)); 1593 } 1594 1595 int 1596 spa_mode(spa_t *spa) 1597 { 1598 return (spa->spa_mode); 1599 } 1600 1601 uint64_t 1602 spa_bootfs(spa_t *spa) 1603 { 1604 return (spa->spa_bootfs); 1605 } 1606 1607 uint64_t 1608 spa_delegation(spa_t *spa) 1609 { 1610 return (spa->spa_delegation); 1611 } 1612 1613 objset_t * 1614 spa_meta_objset(spa_t *spa) 1615 { 1616 return (spa->spa_meta_objset); 1617 } 1618 1619 enum zio_checksum 1620 spa_dedup_checksum(spa_t *spa) 1621 { 1622 return (spa->spa_dedup_checksum); 1623 } 1624 1625 /* 1626 * Reset pool scan stat per scan pass (or reboot). 1627 */ 1628 void 1629 spa_scan_stat_init(spa_t *spa) 1630 { 1631 /* data not stored on disk */ 1632 spa->spa_scan_pass_start = gethrestime_sec(); 1633 spa->spa_scan_pass_exam = 0; 1634 vdev_scan_stat_init(spa->spa_root_vdev); 1635 } 1636 1637 /* 1638 * Get scan stats for zpool status reports 1639 */ 1640 int 1641 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1642 { 1643 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1644 1645 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1646 return (ENOENT); 1647 bzero(ps, sizeof (pool_scan_stat_t)); 1648 1649 /* data stored on disk */ 1650 ps->pss_func = scn->scn_phys.scn_func; 1651 ps->pss_start_time = scn->scn_phys.scn_start_time; 1652 ps->pss_end_time = scn->scn_phys.scn_end_time; 1653 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1654 ps->pss_examined = scn->scn_phys.scn_examined; 1655 ps->pss_to_process = scn->scn_phys.scn_to_process; 1656 ps->pss_processed = scn->scn_phys.scn_processed; 1657 ps->pss_errors = scn->scn_phys.scn_errors; 1658 ps->pss_state = scn->scn_phys.scn_state; 1659 1660 /* data not stored on disk */ 1661 ps->pss_pass_start = spa->spa_scan_pass_start; 1662 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1663 1664 return (0); 1665 } 1666