xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision d339dfeffb229c9d6600872a9e1175f6c68a4bb3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc.  All rights reserved.
25  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26  */
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/spa_boot.h>
31 #include <sys/zio.h>
32 #include <sys/zio_checksum.h>
33 #include <sys/zio_compress.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/zap.h>
37 #include <sys/zil.h>
38 #include <sys/vdev_impl.h>
39 #include <sys/metaslab.h>
40 #include <sys/uberblock_impl.h>
41 #include <sys/txg.h>
42 #include <sys/avl.h>
43 #include <sys/unique.h>
44 #include <sys/dsl_pool.h>
45 #include <sys/dsl_dir.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/fs/zfs.h>
49 #include <sys/metaslab_impl.h>
50 #include <sys/arc.h>
51 #include <sys/ddt.h>
52 #include "zfs_prop.h"
53 #include "zfeature_common.h"
54 
55 /*
56  * SPA locking
57  *
58  * There are four basic locks for managing spa_t structures:
59  *
60  * spa_namespace_lock (global mutex)
61  *
62  *	This lock must be acquired to do any of the following:
63  *
64  *		- Lookup a spa_t by name
65  *		- Add or remove a spa_t from the namespace
66  *		- Increase spa_refcount from non-zero
67  *		- Check if spa_refcount is zero
68  *		- Rename a spa_t
69  *		- add/remove/attach/detach devices
70  *		- Held for the duration of create/destroy/import/export
71  *
72  *	It does not need to handle recursion.  A create or destroy may
73  *	reference objects (files or zvols) in other pools, but by
74  *	definition they must have an existing reference, and will never need
75  *	to lookup a spa_t by name.
76  *
77  * spa_refcount (per-spa refcount_t protected by mutex)
78  *
79  *	This reference count keep track of any active users of the spa_t.  The
80  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
81  *	the refcount is never really 'zero' - opening a pool implicitly keeps
82  *	some references in the DMU.  Internally we check against spa_minref, but
83  *	present the image of a zero/non-zero value to consumers.
84  *
85  * spa_config_lock[] (per-spa array of rwlocks)
86  *
87  *	This protects the spa_t from config changes, and must be held in
88  *	the following circumstances:
89  *
90  *		- RW_READER to perform I/O to the spa
91  *		- RW_WRITER to change the vdev config
92  *
93  * The locking order is fairly straightforward:
94  *
95  *		spa_namespace_lock	->	spa_refcount
96  *
97  *	The namespace lock must be acquired to increase the refcount from 0
98  *	or to check if it is zero.
99  *
100  *		spa_refcount		->	spa_config_lock[]
101  *
102  *	There must be at least one valid reference on the spa_t to acquire
103  *	the config lock.
104  *
105  *		spa_namespace_lock	->	spa_config_lock[]
106  *
107  *	The namespace lock must always be taken before the config lock.
108  *
109  *
110  * The spa_namespace_lock can be acquired directly and is globally visible.
111  *
112  * The namespace is manipulated using the following functions, all of which
113  * require the spa_namespace_lock to be held.
114  *
115  *	spa_lookup()		Lookup a spa_t by name.
116  *
117  *	spa_add()		Create a new spa_t in the namespace.
118  *
119  *	spa_remove()		Remove a spa_t from the namespace.  This also
120  *				frees up any memory associated with the spa_t.
121  *
122  *	spa_next()		Returns the next spa_t in the system, or the
123  *				first if NULL is passed.
124  *
125  *	spa_evict_all()		Shutdown and remove all spa_t structures in
126  *				the system.
127  *
128  *	spa_guid_exists()	Determine whether a pool/device guid exists.
129  *
130  * The spa_refcount is manipulated using the following functions:
131  *
132  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
133  *				called with spa_namespace_lock held if the
134  *				refcount is currently zero.
135  *
136  *	spa_close()		Remove a reference from the spa_t.  This will
137  *				not free the spa_t or remove it from the
138  *				namespace.  No locking is required.
139  *
140  *	spa_refcount_zero()	Returns true if the refcount is currently
141  *				zero.  Must be called with spa_namespace_lock
142  *				held.
143  *
144  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
145  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
146  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
147  *
148  * To read the configuration, it suffices to hold one of these locks as reader.
149  * To modify the configuration, you must hold all locks as writer.  To modify
150  * vdev state without altering the vdev tree's topology (e.g. online/offline),
151  * you must hold SCL_STATE and SCL_ZIO as writer.
152  *
153  * We use these distinct config locks to avoid recursive lock entry.
154  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
155  * block allocations (SCL_ALLOC), which may require reading space maps
156  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
157  *
158  * The spa config locks cannot be normal rwlocks because we need the
159  * ability to hand off ownership.  For example, SCL_ZIO is acquired
160  * by the issuing thread and later released by an interrupt thread.
161  * They do, however, obey the usual write-wanted semantics to prevent
162  * writer (i.e. system administrator) starvation.
163  *
164  * The lock acquisition rules are as follows:
165  *
166  * SCL_CONFIG
167  *	Protects changes to the vdev tree topology, such as vdev
168  *	add/remove/attach/detach.  Protects the dirty config list
169  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
170  *
171  * SCL_STATE
172  *	Protects changes to pool state and vdev state, such as vdev
173  *	online/offline/fault/degrade/clear.  Protects the dirty state list
174  *	(spa_state_dirty_list) and global pool state (spa_state).
175  *
176  * SCL_ALLOC
177  *	Protects changes to metaslab groups and classes.
178  *	Held as reader by metaslab_alloc() and metaslab_claim().
179  *
180  * SCL_ZIO
181  *	Held by bp-level zios (those which have no io_vd upon entry)
182  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
183  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
184  *
185  * SCL_FREE
186  *	Protects changes to metaslab groups and classes.
187  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
188  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
189  *	blocks in zio_done() while another i/o that holds either
190  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
191  *
192  * SCL_VDEV
193  *	Held as reader to prevent changes to the vdev tree during trivial
194  *	inquiries such as bp_get_dsize().  SCL_VDEV is distinct from the
195  *	other locks, and lower than all of them, to ensure that it's safe
196  *	to acquire regardless of caller context.
197  *
198  * In addition, the following rules apply:
199  *
200  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
201  *	The lock ordering is SCL_CONFIG > spa_props_lock.
202  *
203  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
204  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
205  *	or zio_write_phys() -- the caller must ensure that the config cannot
206  *	cannot change in the interim, and that the vdev cannot be reopened.
207  *	SCL_STATE as reader suffices for both.
208  *
209  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
210  *
211  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
212  *				for writing.
213  *
214  *	spa_vdev_exit()		Release the config lock, wait for all I/O
215  *				to complete, sync the updated configs to the
216  *				cache, and release the namespace lock.
217  *
218  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
219  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
220  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
221  *
222  * spa_rename() is also implemented within this file since it requires
223  * manipulation of the namespace.
224  */
225 
226 static avl_tree_t spa_namespace_avl;
227 kmutex_t spa_namespace_lock;
228 static kcondvar_t spa_namespace_cv;
229 static int spa_active_count;
230 int spa_max_replication_override = SPA_DVAS_PER_BP;
231 
232 static kmutex_t spa_spare_lock;
233 static avl_tree_t spa_spare_avl;
234 static kmutex_t spa_l2cache_lock;
235 static avl_tree_t spa_l2cache_avl;
236 
237 kmem_cache_t *spa_buffer_pool;
238 int spa_mode_global;
239 
240 #ifdef ZFS_DEBUG
241 /* Everything except dprintf and spa is on by default in debug builds */
242 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA);
243 #else
244 int zfs_flags = 0;
245 #endif
246 
247 /*
248  * zfs_recover can be set to nonzero to attempt to recover from
249  * otherwise-fatal errors, typically caused by on-disk corruption.  When
250  * set, calls to zfs_panic_recover() will turn into warning messages.
251  * This should only be used as a last resort, as it typically results
252  * in leaked space, or worse.
253  */
254 boolean_t zfs_recover = B_FALSE;
255 
256 /*
257  * If destroy encounters an EIO while reading metadata (e.g. indirect
258  * blocks), space referenced by the missing metadata can not be freed.
259  * Normally this causes the background destroy to become "stalled", as
260  * it is unable to make forward progress.  While in this stalled state,
261  * all remaining space to free from the error-encountering filesystem is
262  * "temporarily leaked".  Set this flag to cause it to ignore the EIO,
263  * permanently leak the space from indirect blocks that can not be read,
264  * and continue to free everything else that it can.
265  *
266  * The default, "stalling" behavior is useful if the storage partially
267  * fails (i.e. some but not all i/os fail), and then later recovers.  In
268  * this case, we will be able to continue pool operations while it is
269  * partially failed, and when it recovers, we can continue to free the
270  * space, with no leaks.  However, note that this case is actually
271  * fairly rare.
272  *
273  * Typically pools either (a) fail completely (but perhaps temporarily,
274  * e.g. a top-level vdev going offline), or (b) have localized,
275  * permanent errors (e.g. disk returns the wrong data due to bit flip or
276  * firmware bug).  In case (a), this setting does not matter because the
277  * pool will be suspended and the sync thread will not be able to make
278  * forward progress regardless.  In case (b), because the error is
279  * permanent, the best we can do is leak the minimum amount of space,
280  * which is what setting this flag will do.  Therefore, it is reasonable
281  * for this flag to normally be set, but we chose the more conservative
282  * approach of not setting it, so that there is no possibility of
283  * leaking space in the "partial temporary" failure case.
284  */
285 boolean_t zfs_free_leak_on_eio = B_FALSE;
286 
287 /*
288  * Expiration time in milliseconds. This value has two meanings. First it is
289  * used to determine when the spa_deadman() logic should fire. By default the
290  * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds.
291  * Secondly, the value determines if an I/O is considered "hung". Any I/O that
292  * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting
293  * in a system panic.
294  */
295 uint64_t zfs_deadman_synctime_ms = 1000000ULL;
296 
297 /*
298  * Check time in milliseconds. This defines the frequency at which we check
299  * for hung I/O.
300  */
301 uint64_t zfs_deadman_checktime_ms = 5000ULL;
302 
303 /*
304  * Override the zfs deadman behavior via /etc/system. By default the
305  * deadman is enabled except on VMware and sparc deployments.
306  */
307 int zfs_deadman_enabled = -1;
308 
309 /*
310  * The worst case is single-sector max-parity RAID-Z blocks, in which
311  * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1)
312  * times the size; so just assume that.  Add to this the fact that
313  * we can have up to 3 DVAs per bp, and one more factor of 2 because
314  * the block may be dittoed with up to 3 DVAs by ddt_sync().  All together,
315  * the worst case is:
316  *     (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24
317  */
318 int spa_asize_inflation = 24;
319 
320 /*
321  * Normally, we don't allow the last 3.2% (1/(2^spa_slop_shift)) of space in
322  * the pool to be consumed.  This ensures that we don't run the pool
323  * completely out of space, due to unaccounted changes (e.g. to the MOS).
324  * It also limits the worst-case time to allocate space.  If we have
325  * less than this amount of free space, most ZPL operations (e.g. write,
326  * create) will return ENOSPC.
327  *
328  * Certain operations (e.g. file removal, most administrative actions) can
329  * use half the slop space.  They will only return ENOSPC if less than half
330  * the slop space is free.  Typically, once the pool has less than the slop
331  * space free, the user will use these operations to free up space in the pool.
332  * These are the operations that call dsl_pool_adjustedsize() with the netfree
333  * argument set to TRUE.
334  *
335  * A very restricted set of operations are always permitted, regardless of
336  * the amount of free space.  These are the operations that call
337  * dsl_sync_task(ZFS_SPACE_CHECK_NONE), e.g. "zfs destroy".  If these
338  * operations result in a net increase in the amount of space used,
339  * it is possible to run the pool completely out of space, causing it to
340  * be permanently read-only.
341  *
342  * See also the comments in zfs_space_check_t.
343  */
344 int spa_slop_shift = 5;
345 
346 /*
347  * ==========================================================================
348  * SPA config locking
349  * ==========================================================================
350  */
351 static void
352 spa_config_lock_init(spa_t *spa)
353 {
354 	for (int i = 0; i < SCL_LOCKS; i++) {
355 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
356 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
357 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
358 		refcount_create_untracked(&scl->scl_count);
359 		scl->scl_writer = NULL;
360 		scl->scl_write_wanted = 0;
361 	}
362 }
363 
364 static void
365 spa_config_lock_destroy(spa_t *spa)
366 {
367 	for (int i = 0; i < SCL_LOCKS; i++) {
368 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
369 		mutex_destroy(&scl->scl_lock);
370 		cv_destroy(&scl->scl_cv);
371 		refcount_destroy(&scl->scl_count);
372 		ASSERT(scl->scl_writer == NULL);
373 		ASSERT(scl->scl_write_wanted == 0);
374 	}
375 }
376 
377 int
378 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
379 {
380 	for (int i = 0; i < SCL_LOCKS; i++) {
381 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
382 		if (!(locks & (1 << i)))
383 			continue;
384 		mutex_enter(&scl->scl_lock);
385 		if (rw == RW_READER) {
386 			if (scl->scl_writer || scl->scl_write_wanted) {
387 				mutex_exit(&scl->scl_lock);
388 				spa_config_exit(spa, locks ^ (1 << i), tag);
389 				return (0);
390 			}
391 		} else {
392 			ASSERT(scl->scl_writer != curthread);
393 			if (!refcount_is_zero(&scl->scl_count)) {
394 				mutex_exit(&scl->scl_lock);
395 				spa_config_exit(spa, locks ^ (1 << i), tag);
396 				return (0);
397 			}
398 			scl->scl_writer = curthread;
399 		}
400 		(void) refcount_add(&scl->scl_count, tag);
401 		mutex_exit(&scl->scl_lock);
402 	}
403 	return (1);
404 }
405 
406 void
407 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
408 {
409 	int wlocks_held = 0;
410 
411 	ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY);
412 
413 	for (int i = 0; i < SCL_LOCKS; i++) {
414 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
415 		if (scl->scl_writer == curthread)
416 			wlocks_held |= (1 << i);
417 		if (!(locks & (1 << i)))
418 			continue;
419 		mutex_enter(&scl->scl_lock);
420 		if (rw == RW_READER) {
421 			while (scl->scl_writer || scl->scl_write_wanted) {
422 				cv_wait(&scl->scl_cv, &scl->scl_lock);
423 			}
424 		} else {
425 			ASSERT(scl->scl_writer != curthread);
426 			while (!refcount_is_zero(&scl->scl_count)) {
427 				scl->scl_write_wanted++;
428 				cv_wait(&scl->scl_cv, &scl->scl_lock);
429 				scl->scl_write_wanted--;
430 			}
431 			scl->scl_writer = curthread;
432 		}
433 		(void) refcount_add(&scl->scl_count, tag);
434 		mutex_exit(&scl->scl_lock);
435 	}
436 	ASSERT(wlocks_held <= locks);
437 }
438 
439 void
440 spa_config_exit(spa_t *spa, int locks, void *tag)
441 {
442 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
443 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
444 		if (!(locks & (1 << i)))
445 			continue;
446 		mutex_enter(&scl->scl_lock);
447 		ASSERT(!refcount_is_zero(&scl->scl_count));
448 		if (refcount_remove(&scl->scl_count, tag) == 0) {
449 			ASSERT(scl->scl_writer == NULL ||
450 			    scl->scl_writer == curthread);
451 			scl->scl_writer = NULL;	/* OK in either case */
452 			cv_broadcast(&scl->scl_cv);
453 		}
454 		mutex_exit(&scl->scl_lock);
455 	}
456 }
457 
458 int
459 spa_config_held(spa_t *spa, int locks, krw_t rw)
460 {
461 	int locks_held = 0;
462 
463 	for (int i = 0; i < SCL_LOCKS; i++) {
464 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
465 		if (!(locks & (1 << i)))
466 			continue;
467 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
468 		    (rw == RW_WRITER && scl->scl_writer == curthread))
469 			locks_held |= 1 << i;
470 	}
471 
472 	return (locks_held);
473 }
474 
475 /*
476  * ==========================================================================
477  * SPA namespace functions
478  * ==========================================================================
479  */
480 
481 /*
482  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
483  * Returns NULL if no matching spa_t is found.
484  */
485 spa_t *
486 spa_lookup(const char *name)
487 {
488 	static spa_t search;	/* spa_t is large; don't allocate on stack */
489 	spa_t *spa;
490 	avl_index_t where;
491 	char *cp;
492 
493 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
494 
495 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
496 
497 	/*
498 	 * If it's a full dataset name, figure out the pool name and
499 	 * just use that.
500 	 */
501 	cp = strpbrk(search.spa_name, "/@#");
502 	if (cp != NULL)
503 		*cp = '\0';
504 
505 	spa = avl_find(&spa_namespace_avl, &search, &where);
506 
507 	return (spa);
508 }
509 
510 /*
511  * Fires when spa_sync has not completed within zfs_deadman_synctime_ms.
512  * If the zfs_deadman_enabled flag is set then it inspects all vdev queues
513  * looking for potentially hung I/Os.
514  */
515 void
516 spa_deadman(void *arg)
517 {
518 	spa_t *spa = arg;
519 
520 	/*
521 	 * Disable the deadman timer if the pool is suspended.
522 	 */
523 	if (spa_suspended(spa)) {
524 		VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
525 		return;
526 	}
527 
528 	zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu",
529 	    (gethrtime() - spa->spa_sync_starttime) / NANOSEC,
530 	    ++spa->spa_deadman_calls);
531 	if (zfs_deadman_enabled)
532 		vdev_deadman(spa->spa_root_vdev);
533 }
534 
535 /*
536  * Create an uninitialized spa_t with the given name.  Requires
537  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
538  * exist by calling spa_lookup() first.
539  */
540 spa_t *
541 spa_add(const char *name, nvlist_t *config, const char *altroot)
542 {
543 	spa_t *spa;
544 	spa_config_dirent_t *dp;
545 	cyc_handler_t hdlr;
546 	cyc_time_t when;
547 
548 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
549 
550 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
551 
552 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
553 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
554 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
555 	mutex_init(&spa->spa_evicting_os_lock, NULL, MUTEX_DEFAULT, NULL);
556 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
557 	mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL);
558 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
559 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
560 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
561 	mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL);
562 	mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL);
563 
564 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
565 	cv_init(&spa->spa_evicting_os_cv, NULL, CV_DEFAULT, NULL);
566 	cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL);
567 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
568 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
569 
570 	for (int t = 0; t < TXG_SIZE; t++)
571 		bplist_create(&spa->spa_free_bplist[t]);
572 
573 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
574 	spa->spa_state = POOL_STATE_UNINITIALIZED;
575 	spa->spa_freeze_txg = UINT64_MAX;
576 	spa->spa_final_txg = UINT64_MAX;
577 	spa->spa_load_max_txg = UINT64_MAX;
578 	spa->spa_proc = &p0;
579 	spa->spa_proc_state = SPA_PROC_NONE;
580 
581 	hdlr.cyh_func = spa_deadman;
582 	hdlr.cyh_arg = spa;
583 	hdlr.cyh_level = CY_LOW_LEVEL;
584 
585 	spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms);
586 
587 	/*
588 	 * This determines how often we need to check for hung I/Os after
589 	 * the cyclic has already fired. Since checking for hung I/Os is
590 	 * an expensive operation we don't want to check too frequently.
591 	 * Instead wait for 5 seconds before checking again.
592 	 */
593 	when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms);
594 	when.cyt_when = CY_INFINITY;
595 	mutex_enter(&cpu_lock);
596 	spa->spa_deadman_cycid = cyclic_add(&hdlr, &when);
597 	mutex_exit(&cpu_lock);
598 
599 	refcount_create(&spa->spa_refcount);
600 	spa_config_lock_init(spa);
601 
602 	avl_add(&spa_namespace_avl, spa);
603 
604 	/*
605 	 * Set the alternate root, if there is one.
606 	 */
607 	if (altroot) {
608 		spa->spa_root = spa_strdup(altroot);
609 		spa_active_count++;
610 	}
611 
612 	/*
613 	 * Every pool starts with the default cachefile
614 	 */
615 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
616 	    offsetof(spa_config_dirent_t, scd_link));
617 
618 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
619 	dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path);
620 	list_insert_head(&spa->spa_config_list, dp);
621 
622 	VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME,
623 	    KM_SLEEP) == 0);
624 
625 	if (config != NULL) {
626 		nvlist_t *features;
627 
628 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
629 		    &features) == 0) {
630 			VERIFY(nvlist_dup(features, &spa->spa_label_features,
631 			    0) == 0);
632 		}
633 
634 		VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0);
635 	}
636 
637 	if (spa->spa_label_features == NULL) {
638 		VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME,
639 		    KM_SLEEP) == 0);
640 	}
641 
642 	spa->spa_iokstat = kstat_create("zfs", 0, name,
643 	    "disk", KSTAT_TYPE_IO, 1, 0);
644 	if (spa->spa_iokstat) {
645 		spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock;
646 		kstat_install(spa->spa_iokstat);
647 	}
648 
649 	spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0);
650 
651 	spa->spa_min_ashift = INT_MAX;
652 	spa->spa_max_ashift = 0;
653 
654 	/*
655 	 * As a pool is being created, treat all features as disabled by
656 	 * setting SPA_FEATURE_DISABLED for all entries in the feature
657 	 * refcount cache.
658 	 */
659 	for (int i = 0; i < SPA_FEATURES; i++) {
660 		spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED;
661 	}
662 
663 	return (spa);
664 }
665 
666 /*
667  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
668  * spa_namespace_lock.  This is called only after the spa_t has been closed and
669  * deactivated.
670  */
671 void
672 spa_remove(spa_t *spa)
673 {
674 	spa_config_dirent_t *dp;
675 
676 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
677 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
678 	ASSERT3U(refcount_count(&spa->spa_refcount), ==, 0);
679 
680 	nvlist_free(spa->spa_config_splitting);
681 
682 	avl_remove(&spa_namespace_avl, spa);
683 	cv_broadcast(&spa_namespace_cv);
684 
685 	if (spa->spa_root) {
686 		spa_strfree(spa->spa_root);
687 		spa_active_count--;
688 	}
689 
690 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
691 		list_remove(&spa->spa_config_list, dp);
692 		if (dp->scd_path != NULL)
693 			spa_strfree(dp->scd_path);
694 		kmem_free(dp, sizeof (spa_config_dirent_t));
695 	}
696 
697 	list_destroy(&spa->spa_config_list);
698 
699 	nvlist_free(spa->spa_label_features);
700 	nvlist_free(spa->spa_load_info);
701 	spa_config_set(spa, NULL);
702 
703 	mutex_enter(&cpu_lock);
704 	if (spa->spa_deadman_cycid != CYCLIC_NONE)
705 		cyclic_remove(spa->spa_deadman_cycid);
706 	mutex_exit(&cpu_lock);
707 	spa->spa_deadman_cycid = CYCLIC_NONE;
708 
709 	refcount_destroy(&spa->spa_refcount);
710 
711 	spa_config_lock_destroy(spa);
712 
713 	kstat_delete(spa->spa_iokstat);
714 	spa->spa_iokstat = NULL;
715 
716 	for (int t = 0; t < TXG_SIZE; t++)
717 		bplist_destroy(&spa->spa_free_bplist[t]);
718 
719 	cv_destroy(&spa->spa_async_cv);
720 	cv_destroy(&spa->spa_evicting_os_cv);
721 	cv_destroy(&spa->spa_proc_cv);
722 	cv_destroy(&spa->spa_scrub_io_cv);
723 	cv_destroy(&spa->spa_suspend_cv);
724 
725 	mutex_destroy(&spa->spa_async_lock);
726 	mutex_destroy(&spa->spa_errlist_lock);
727 	mutex_destroy(&spa->spa_errlog_lock);
728 	mutex_destroy(&spa->spa_evicting_os_lock);
729 	mutex_destroy(&spa->spa_history_lock);
730 	mutex_destroy(&spa->spa_proc_lock);
731 	mutex_destroy(&spa->spa_props_lock);
732 	mutex_destroy(&spa->spa_scrub_lock);
733 	mutex_destroy(&spa->spa_suspend_lock);
734 	mutex_destroy(&spa->spa_vdev_top_lock);
735 	mutex_destroy(&spa->spa_iokstat_lock);
736 
737 	kmem_free(spa, sizeof (spa_t));
738 }
739 
740 /*
741  * Given a pool, return the next pool in the namespace, or NULL if there is
742  * none.  If 'prev' is NULL, return the first pool.
743  */
744 spa_t *
745 spa_next(spa_t *prev)
746 {
747 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
748 
749 	if (prev)
750 		return (AVL_NEXT(&spa_namespace_avl, prev));
751 	else
752 		return (avl_first(&spa_namespace_avl));
753 }
754 
755 /*
756  * ==========================================================================
757  * SPA refcount functions
758  * ==========================================================================
759  */
760 
761 /*
762  * Add a reference to the given spa_t.  Must have at least one reference, or
763  * have the namespace lock held.
764  */
765 void
766 spa_open_ref(spa_t *spa, void *tag)
767 {
768 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
769 	    MUTEX_HELD(&spa_namespace_lock));
770 	(void) refcount_add(&spa->spa_refcount, tag);
771 }
772 
773 /*
774  * Remove a reference to the given spa_t.  Must have at least one reference, or
775  * have the namespace lock held.
776  */
777 void
778 spa_close(spa_t *spa, void *tag)
779 {
780 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
781 	    MUTEX_HELD(&spa_namespace_lock));
782 	(void) refcount_remove(&spa->spa_refcount, tag);
783 }
784 
785 /*
786  * Remove a reference to the given spa_t held by a dsl dir that is
787  * being asynchronously released.  Async releases occur from a taskq
788  * performing eviction of dsl datasets and dirs.  The namespace lock
789  * isn't held and the hold by the object being evicted may contribute to
790  * spa_minref (e.g. dataset or directory released during pool export),
791  * so the asserts in spa_close() do not apply.
792  */
793 void
794 spa_async_close(spa_t *spa, void *tag)
795 {
796 	(void) refcount_remove(&spa->spa_refcount, tag);
797 }
798 
799 /*
800  * Check to see if the spa refcount is zero.  Must be called with
801  * spa_namespace_lock held.  We really compare against spa_minref, which is the
802  * number of references acquired when opening a pool
803  */
804 boolean_t
805 spa_refcount_zero(spa_t *spa)
806 {
807 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
808 
809 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
810 }
811 
812 /*
813  * ==========================================================================
814  * SPA spare and l2cache tracking
815  * ==========================================================================
816  */
817 
818 /*
819  * Hot spares and cache devices are tracked using the same code below,
820  * for 'auxiliary' devices.
821  */
822 
823 typedef struct spa_aux {
824 	uint64_t	aux_guid;
825 	uint64_t	aux_pool;
826 	avl_node_t	aux_avl;
827 	int		aux_count;
828 } spa_aux_t;
829 
830 static int
831 spa_aux_compare(const void *a, const void *b)
832 {
833 	const spa_aux_t *sa = a;
834 	const spa_aux_t *sb = b;
835 
836 	if (sa->aux_guid < sb->aux_guid)
837 		return (-1);
838 	else if (sa->aux_guid > sb->aux_guid)
839 		return (1);
840 	else
841 		return (0);
842 }
843 
844 void
845 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
846 {
847 	avl_index_t where;
848 	spa_aux_t search;
849 	spa_aux_t *aux;
850 
851 	search.aux_guid = vd->vdev_guid;
852 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
853 		aux->aux_count++;
854 	} else {
855 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
856 		aux->aux_guid = vd->vdev_guid;
857 		aux->aux_count = 1;
858 		avl_insert(avl, aux, where);
859 	}
860 }
861 
862 void
863 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
864 {
865 	spa_aux_t search;
866 	spa_aux_t *aux;
867 	avl_index_t where;
868 
869 	search.aux_guid = vd->vdev_guid;
870 	aux = avl_find(avl, &search, &where);
871 
872 	ASSERT(aux != NULL);
873 
874 	if (--aux->aux_count == 0) {
875 		avl_remove(avl, aux);
876 		kmem_free(aux, sizeof (spa_aux_t));
877 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
878 		aux->aux_pool = 0ULL;
879 	}
880 }
881 
882 boolean_t
883 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
884 {
885 	spa_aux_t search, *found;
886 
887 	search.aux_guid = guid;
888 	found = avl_find(avl, &search, NULL);
889 
890 	if (pool) {
891 		if (found)
892 			*pool = found->aux_pool;
893 		else
894 			*pool = 0ULL;
895 	}
896 
897 	if (refcnt) {
898 		if (found)
899 			*refcnt = found->aux_count;
900 		else
901 			*refcnt = 0;
902 	}
903 
904 	return (found != NULL);
905 }
906 
907 void
908 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
909 {
910 	spa_aux_t search, *found;
911 	avl_index_t where;
912 
913 	search.aux_guid = vd->vdev_guid;
914 	found = avl_find(avl, &search, &where);
915 	ASSERT(found != NULL);
916 	ASSERT(found->aux_pool == 0ULL);
917 
918 	found->aux_pool = spa_guid(vd->vdev_spa);
919 }
920 
921 /*
922  * Spares are tracked globally due to the following constraints:
923  *
924  * 	- A spare may be part of multiple pools.
925  * 	- A spare may be added to a pool even if it's actively in use within
926  *	  another pool.
927  * 	- A spare in use in any pool can only be the source of a replacement if
928  *	  the target is a spare in the same pool.
929  *
930  * We keep track of all spares on the system through the use of a reference
931  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
932  * spare, then we bump the reference count in the AVL tree.  In addition, we set
933  * the 'vdev_isspare' member to indicate that the device is a spare (active or
934  * inactive).  When a spare is made active (used to replace a device in the
935  * pool), we also keep track of which pool its been made a part of.
936  *
937  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
938  * called under the spa_namespace lock as part of vdev reconfiguration.  The
939  * separate spare lock exists for the status query path, which does not need to
940  * be completely consistent with respect to other vdev configuration changes.
941  */
942 
943 static int
944 spa_spare_compare(const void *a, const void *b)
945 {
946 	return (spa_aux_compare(a, b));
947 }
948 
949 void
950 spa_spare_add(vdev_t *vd)
951 {
952 	mutex_enter(&spa_spare_lock);
953 	ASSERT(!vd->vdev_isspare);
954 	spa_aux_add(vd, &spa_spare_avl);
955 	vd->vdev_isspare = B_TRUE;
956 	mutex_exit(&spa_spare_lock);
957 }
958 
959 void
960 spa_spare_remove(vdev_t *vd)
961 {
962 	mutex_enter(&spa_spare_lock);
963 	ASSERT(vd->vdev_isspare);
964 	spa_aux_remove(vd, &spa_spare_avl);
965 	vd->vdev_isspare = B_FALSE;
966 	mutex_exit(&spa_spare_lock);
967 }
968 
969 boolean_t
970 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
971 {
972 	boolean_t found;
973 
974 	mutex_enter(&spa_spare_lock);
975 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
976 	mutex_exit(&spa_spare_lock);
977 
978 	return (found);
979 }
980 
981 void
982 spa_spare_activate(vdev_t *vd)
983 {
984 	mutex_enter(&spa_spare_lock);
985 	ASSERT(vd->vdev_isspare);
986 	spa_aux_activate(vd, &spa_spare_avl);
987 	mutex_exit(&spa_spare_lock);
988 }
989 
990 /*
991  * Level 2 ARC devices are tracked globally for the same reasons as spares.
992  * Cache devices currently only support one pool per cache device, and so
993  * for these devices the aux reference count is currently unused beyond 1.
994  */
995 
996 static int
997 spa_l2cache_compare(const void *a, const void *b)
998 {
999 	return (spa_aux_compare(a, b));
1000 }
1001 
1002 void
1003 spa_l2cache_add(vdev_t *vd)
1004 {
1005 	mutex_enter(&spa_l2cache_lock);
1006 	ASSERT(!vd->vdev_isl2cache);
1007 	spa_aux_add(vd, &spa_l2cache_avl);
1008 	vd->vdev_isl2cache = B_TRUE;
1009 	mutex_exit(&spa_l2cache_lock);
1010 }
1011 
1012 void
1013 spa_l2cache_remove(vdev_t *vd)
1014 {
1015 	mutex_enter(&spa_l2cache_lock);
1016 	ASSERT(vd->vdev_isl2cache);
1017 	spa_aux_remove(vd, &spa_l2cache_avl);
1018 	vd->vdev_isl2cache = B_FALSE;
1019 	mutex_exit(&spa_l2cache_lock);
1020 }
1021 
1022 boolean_t
1023 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
1024 {
1025 	boolean_t found;
1026 
1027 	mutex_enter(&spa_l2cache_lock);
1028 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
1029 	mutex_exit(&spa_l2cache_lock);
1030 
1031 	return (found);
1032 }
1033 
1034 void
1035 spa_l2cache_activate(vdev_t *vd)
1036 {
1037 	mutex_enter(&spa_l2cache_lock);
1038 	ASSERT(vd->vdev_isl2cache);
1039 	spa_aux_activate(vd, &spa_l2cache_avl);
1040 	mutex_exit(&spa_l2cache_lock);
1041 }
1042 
1043 /*
1044  * ==========================================================================
1045  * SPA vdev locking
1046  * ==========================================================================
1047  */
1048 
1049 /*
1050  * Lock the given spa_t for the purpose of adding or removing a vdev.
1051  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
1052  * It returns the next transaction group for the spa_t.
1053  */
1054 uint64_t
1055 spa_vdev_enter(spa_t *spa)
1056 {
1057 	mutex_enter(&spa->spa_vdev_top_lock);
1058 	mutex_enter(&spa_namespace_lock);
1059 	return (spa_vdev_config_enter(spa));
1060 }
1061 
1062 /*
1063  * Internal implementation for spa_vdev_enter().  Used when a vdev
1064  * operation requires multiple syncs (i.e. removing a device) while
1065  * keeping the spa_namespace_lock held.
1066  */
1067 uint64_t
1068 spa_vdev_config_enter(spa_t *spa)
1069 {
1070 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1071 
1072 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1073 
1074 	return (spa_last_synced_txg(spa) + 1);
1075 }
1076 
1077 /*
1078  * Used in combination with spa_vdev_config_enter() to allow the syncing
1079  * of multiple transactions without releasing the spa_namespace_lock.
1080  */
1081 void
1082 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag)
1083 {
1084 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1085 
1086 	int config_changed = B_FALSE;
1087 
1088 	ASSERT(txg > spa_last_synced_txg(spa));
1089 
1090 	spa->spa_pending_vdev = NULL;
1091 
1092 	/*
1093 	 * Reassess the DTLs.
1094 	 */
1095 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
1096 
1097 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
1098 		config_changed = B_TRUE;
1099 		spa->spa_config_generation++;
1100 	}
1101 
1102 	/*
1103 	 * Verify the metaslab classes.
1104 	 */
1105 	ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0);
1106 	ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0);
1107 
1108 	spa_config_exit(spa, SCL_ALL, spa);
1109 
1110 	/*
1111 	 * Panic the system if the specified tag requires it.  This
1112 	 * is useful for ensuring that configurations are updated
1113 	 * transactionally.
1114 	 */
1115 	if (zio_injection_enabled)
1116 		zio_handle_panic_injection(spa, tag, 0);
1117 
1118 	/*
1119 	 * Note: this txg_wait_synced() is important because it ensures
1120 	 * that there won't be more than one config change per txg.
1121 	 * This allows us to use the txg as the generation number.
1122 	 */
1123 	if (error == 0)
1124 		txg_wait_synced(spa->spa_dsl_pool, txg);
1125 
1126 	if (vd != NULL) {
1127 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL);
1128 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
1129 		vdev_free(vd);
1130 		spa_config_exit(spa, SCL_ALL, spa);
1131 	}
1132 
1133 	/*
1134 	 * If the config changed, update the config cache.
1135 	 */
1136 	if (config_changed)
1137 		spa_config_sync(spa, B_FALSE, B_TRUE);
1138 }
1139 
1140 /*
1141  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
1142  * locking of spa_vdev_enter(), we also want make sure the transactions have
1143  * synced to disk, and then update the global configuration cache with the new
1144  * information.
1145  */
1146 int
1147 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
1148 {
1149 	spa_vdev_config_exit(spa, vd, txg, error, FTAG);
1150 	mutex_exit(&spa_namespace_lock);
1151 	mutex_exit(&spa->spa_vdev_top_lock);
1152 
1153 	return (error);
1154 }
1155 
1156 /*
1157  * Lock the given spa_t for the purpose of changing vdev state.
1158  */
1159 void
1160 spa_vdev_state_enter(spa_t *spa, int oplocks)
1161 {
1162 	int locks = SCL_STATE_ALL | oplocks;
1163 
1164 	/*
1165 	 * Root pools may need to read of the underlying devfs filesystem
1166 	 * when opening up a vdev.  Unfortunately if we're holding the
1167 	 * SCL_ZIO lock it will result in a deadlock when we try to issue
1168 	 * the read from the root filesystem.  Instead we "prefetch"
1169 	 * the associated vnodes that we need prior to opening the
1170 	 * underlying devices and cache them so that we can prevent
1171 	 * any I/O when we are doing the actual open.
1172 	 */
1173 	if (spa_is_root(spa)) {
1174 		int low = locks & ~(SCL_ZIO - 1);
1175 		int high = locks & ~low;
1176 
1177 		spa_config_enter(spa, high, spa, RW_WRITER);
1178 		vdev_hold(spa->spa_root_vdev);
1179 		spa_config_enter(spa, low, spa, RW_WRITER);
1180 	} else {
1181 		spa_config_enter(spa, locks, spa, RW_WRITER);
1182 	}
1183 	spa->spa_vdev_locks = locks;
1184 }
1185 
1186 int
1187 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
1188 {
1189 	boolean_t config_changed = B_FALSE;
1190 
1191 	if (vd != NULL || error == 0)
1192 		vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev,
1193 		    0, 0, B_FALSE);
1194 
1195 	if (vd != NULL) {
1196 		vdev_state_dirty(vd->vdev_top);
1197 		config_changed = B_TRUE;
1198 		spa->spa_config_generation++;
1199 	}
1200 
1201 	if (spa_is_root(spa))
1202 		vdev_rele(spa->spa_root_vdev);
1203 
1204 	ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL);
1205 	spa_config_exit(spa, spa->spa_vdev_locks, spa);
1206 
1207 	/*
1208 	 * If anything changed, wait for it to sync.  This ensures that,
1209 	 * from the system administrator's perspective, zpool(1M) commands
1210 	 * are synchronous.  This is important for things like zpool offline:
1211 	 * when the command completes, you expect no further I/O from ZFS.
1212 	 */
1213 	if (vd != NULL)
1214 		txg_wait_synced(spa->spa_dsl_pool, 0);
1215 
1216 	/*
1217 	 * If the config changed, update the config cache.
1218 	 */
1219 	if (config_changed) {
1220 		mutex_enter(&spa_namespace_lock);
1221 		spa_config_sync(spa, B_FALSE, B_TRUE);
1222 		mutex_exit(&spa_namespace_lock);
1223 	}
1224 
1225 	return (error);
1226 }
1227 
1228 /*
1229  * ==========================================================================
1230  * Miscellaneous functions
1231  * ==========================================================================
1232  */
1233 
1234 void
1235 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx)
1236 {
1237 	if (!nvlist_exists(spa->spa_label_features, feature)) {
1238 		fnvlist_add_boolean(spa->spa_label_features, feature);
1239 		/*
1240 		 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't
1241 		 * dirty the vdev config because lock SCL_CONFIG is not held.
1242 		 * Thankfully, in this case we don't need to dirty the config
1243 		 * because it will be written out anyway when we finish
1244 		 * creating the pool.
1245 		 */
1246 		if (tx->tx_txg != TXG_INITIAL)
1247 			vdev_config_dirty(spa->spa_root_vdev);
1248 	}
1249 }
1250 
1251 void
1252 spa_deactivate_mos_feature(spa_t *spa, const char *feature)
1253 {
1254 	if (nvlist_remove_all(spa->spa_label_features, feature) == 0)
1255 		vdev_config_dirty(spa->spa_root_vdev);
1256 }
1257 
1258 /*
1259  * Rename a spa_t.
1260  */
1261 int
1262 spa_rename(const char *name, const char *newname)
1263 {
1264 	spa_t *spa;
1265 	int err;
1266 
1267 	/*
1268 	 * Lookup the spa_t and grab the config lock for writing.  We need to
1269 	 * actually open the pool so that we can sync out the necessary labels.
1270 	 * It's OK to call spa_open() with the namespace lock held because we
1271 	 * allow recursive calls for other reasons.
1272 	 */
1273 	mutex_enter(&spa_namespace_lock);
1274 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
1275 		mutex_exit(&spa_namespace_lock);
1276 		return (err);
1277 	}
1278 
1279 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1280 
1281 	avl_remove(&spa_namespace_avl, spa);
1282 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
1283 	avl_add(&spa_namespace_avl, spa);
1284 
1285 	/*
1286 	 * Sync all labels to disk with the new names by marking the root vdev
1287 	 * dirty and waiting for it to sync.  It will pick up the new pool name
1288 	 * during the sync.
1289 	 */
1290 	vdev_config_dirty(spa->spa_root_vdev);
1291 
1292 	spa_config_exit(spa, SCL_ALL, FTAG);
1293 
1294 	txg_wait_synced(spa->spa_dsl_pool, 0);
1295 
1296 	/*
1297 	 * Sync the updated config cache.
1298 	 */
1299 	spa_config_sync(spa, B_FALSE, B_TRUE);
1300 
1301 	spa_close(spa, FTAG);
1302 
1303 	mutex_exit(&spa_namespace_lock);
1304 
1305 	return (0);
1306 }
1307 
1308 /*
1309  * Return the spa_t associated with given pool_guid, if it exists.  If
1310  * device_guid is non-zero, determine whether the pool exists *and* contains
1311  * a device with the specified device_guid.
1312  */
1313 spa_t *
1314 spa_by_guid(uint64_t pool_guid, uint64_t device_guid)
1315 {
1316 	spa_t *spa;
1317 	avl_tree_t *t = &spa_namespace_avl;
1318 
1319 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1320 
1321 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
1322 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1323 			continue;
1324 		if (spa->spa_root_vdev == NULL)
1325 			continue;
1326 		if (spa_guid(spa) == pool_guid) {
1327 			if (device_guid == 0)
1328 				break;
1329 
1330 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1331 			    device_guid) != NULL)
1332 				break;
1333 
1334 			/*
1335 			 * Check any devices we may be in the process of adding.
1336 			 */
1337 			if (spa->spa_pending_vdev) {
1338 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1339 				    device_guid) != NULL)
1340 					break;
1341 			}
1342 		}
1343 	}
1344 
1345 	return (spa);
1346 }
1347 
1348 /*
1349  * Determine whether a pool with the given pool_guid exists.
1350  */
1351 boolean_t
1352 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
1353 {
1354 	return (spa_by_guid(pool_guid, device_guid) != NULL);
1355 }
1356 
1357 char *
1358 spa_strdup(const char *s)
1359 {
1360 	size_t len;
1361 	char *new;
1362 
1363 	len = strlen(s);
1364 	new = kmem_alloc(len + 1, KM_SLEEP);
1365 	bcopy(s, new, len);
1366 	new[len] = '\0';
1367 
1368 	return (new);
1369 }
1370 
1371 void
1372 spa_strfree(char *s)
1373 {
1374 	kmem_free(s, strlen(s) + 1);
1375 }
1376 
1377 uint64_t
1378 spa_get_random(uint64_t range)
1379 {
1380 	uint64_t r;
1381 
1382 	ASSERT(range != 0);
1383 
1384 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1385 
1386 	return (r % range);
1387 }
1388 
1389 uint64_t
1390 spa_generate_guid(spa_t *spa)
1391 {
1392 	uint64_t guid = spa_get_random(-1ULL);
1393 
1394 	if (spa != NULL) {
1395 		while (guid == 0 || spa_guid_exists(spa_guid(spa), guid))
1396 			guid = spa_get_random(-1ULL);
1397 	} else {
1398 		while (guid == 0 || spa_guid_exists(guid, 0))
1399 			guid = spa_get_random(-1ULL);
1400 	}
1401 
1402 	return (guid);
1403 }
1404 
1405 void
1406 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp)
1407 {
1408 	char type[256];
1409 	char *checksum = NULL;
1410 	char *compress = NULL;
1411 
1412 	if (bp != NULL) {
1413 		if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) {
1414 			dmu_object_byteswap_t bswap =
1415 			    DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
1416 			(void) snprintf(type, sizeof (type), "bswap %s %s",
1417 			    DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ?
1418 			    "metadata" : "data",
1419 			    dmu_ot_byteswap[bswap].ob_name);
1420 		} else {
1421 			(void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name,
1422 			    sizeof (type));
1423 		}
1424 		if (!BP_IS_EMBEDDED(bp)) {
1425 			checksum =
1426 			    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name;
1427 		}
1428 		compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name;
1429 	}
1430 
1431 	SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum,
1432 	    compress);
1433 }
1434 
1435 void
1436 spa_freeze(spa_t *spa)
1437 {
1438 	uint64_t freeze_txg = 0;
1439 
1440 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1441 	if (spa->spa_freeze_txg == UINT64_MAX) {
1442 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1443 		spa->spa_freeze_txg = freeze_txg;
1444 	}
1445 	spa_config_exit(spa, SCL_ALL, FTAG);
1446 	if (freeze_txg != 0)
1447 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1448 }
1449 
1450 void
1451 zfs_panic_recover(const char *fmt, ...)
1452 {
1453 	va_list adx;
1454 
1455 	va_start(adx, fmt);
1456 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1457 	va_end(adx);
1458 }
1459 
1460 /*
1461  * This is a stripped-down version of strtoull, suitable only for converting
1462  * lowercase hexadecimal numbers that don't overflow.
1463  */
1464 uint64_t
1465 strtonum(const char *str, char **nptr)
1466 {
1467 	uint64_t val = 0;
1468 	char c;
1469 	int digit;
1470 
1471 	while ((c = *str) != '\0') {
1472 		if (c >= '0' && c <= '9')
1473 			digit = c - '0';
1474 		else if (c >= 'a' && c <= 'f')
1475 			digit = 10 + c - 'a';
1476 		else
1477 			break;
1478 
1479 		val *= 16;
1480 		val += digit;
1481 
1482 		str++;
1483 	}
1484 
1485 	if (nptr)
1486 		*nptr = (char *)str;
1487 
1488 	return (val);
1489 }
1490 
1491 /*
1492  * ==========================================================================
1493  * Accessor functions
1494  * ==========================================================================
1495  */
1496 
1497 boolean_t
1498 spa_shutting_down(spa_t *spa)
1499 {
1500 	return (spa->spa_async_suspended);
1501 }
1502 
1503 dsl_pool_t *
1504 spa_get_dsl(spa_t *spa)
1505 {
1506 	return (spa->spa_dsl_pool);
1507 }
1508 
1509 boolean_t
1510 spa_is_initializing(spa_t *spa)
1511 {
1512 	return (spa->spa_is_initializing);
1513 }
1514 
1515 blkptr_t *
1516 spa_get_rootblkptr(spa_t *spa)
1517 {
1518 	return (&spa->spa_ubsync.ub_rootbp);
1519 }
1520 
1521 void
1522 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1523 {
1524 	spa->spa_uberblock.ub_rootbp = *bp;
1525 }
1526 
1527 void
1528 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1529 {
1530 	if (spa->spa_root == NULL)
1531 		buf[0] = '\0';
1532 	else
1533 		(void) strncpy(buf, spa->spa_root, buflen);
1534 }
1535 
1536 int
1537 spa_sync_pass(spa_t *spa)
1538 {
1539 	return (spa->spa_sync_pass);
1540 }
1541 
1542 char *
1543 spa_name(spa_t *spa)
1544 {
1545 	return (spa->spa_name);
1546 }
1547 
1548 uint64_t
1549 spa_guid(spa_t *spa)
1550 {
1551 	dsl_pool_t *dp = spa_get_dsl(spa);
1552 	uint64_t guid;
1553 
1554 	/*
1555 	 * If we fail to parse the config during spa_load(), we can go through
1556 	 * the error path (which posts an ereport) and end up here with no root
1557 	 * vdev.  We stash the original pool guid in 'spa_config_guid' to handle
1558 	 * this case.
1559 	 */
1560 	if (spa->spa_root_vdev == NULL)
1561 		return (spa->spa_config_guid);
1562 
1563 	guid = spa->spa_last_synced_guid != 0 ?
1564 	    spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid;
1565 
1566 	/*
1567 	 * Return the most recently synced out guid unless we're
1568 	 * in syncing context.
1569 	 */
1570 	if (dp && dsl_pool_sync_context(dp))
1571 		return (spa->spa_root_vdev->vdev_guid);
1572 	else
1573 		return (guid);
1574 }
1575 
1576 uint64_t
1577 spa_load_guid(spa_t *spa)
1578 {
1579 	/*
1580 	 * This is a GUID that exists solely as a reference for the
1581 	 * purposes of the arc.  It is generated at load time, and
1582 	 * is never written to persistent storage.
1583 	 */
1584 	return (spa->spa_load_guid);
1585 }
1586 
1587 uint64_t
1588 spa_last_synced_txg(spa_t *spa)
1589 {
1590 	return (spa->spa_ubsync.ub_txg);
1591 }
1592 
1593 uint64_t
1594 spa_first_txg(spa_t *spa)
1595 {
1596 	return (spa->spa_first_txg);
1597 }
1598 
1599 uint64_t
1600 spa_syncing_txg(spa_t *spa)
1601 {
1602 	return (spa->spa_syncing_txg);
1603 }
1604 
1605 pool_state_t
1606 spa_state(spa_t *spa)
1607 {
1608 	return (spa->spa_state);
1609 }
1610 
1611 spa_load_state_t
1612 spa_load_state(spa_t *spa)
1613 {
1614 	return (spa->spa_load_state);
1615 }
1616 
1617 uint64_t
1618 spa_freeze_txg(spa_t *spa)
1619 {
1620 	return (spa->spa_freeze_txg);
1621 }
1622 
1623 /* ARGSUSED */
1624 uint64_t
1625 spa_get_asize(spa_t *spa, uint64_t lsize)
1626 {
1627 	return (lsize * spa_asize_inflation);
1628 }
1629 
1630 /*
1631  * Return the amount of slop space in bytes.  It is 1/32 of the pool (3.2%),
1632  * or at least 32MB.
1633  *
1634  * See the comment above spa_slop_shift for details.
1635  */
1636 uint64_t
1637 spa_get_slop_space(spa_t *spa) {
1638 	uint64_t space = spa_get_dspace(spa);
1639 	return (MAX(space >> spa_slop_shift, SPA_MINDEVSIZE >> 1));
1640 }
1641 
1642 uint64_t
1643 spa_get_dspace(spa_t *spa)
1644 {
1645 	return (spa->spa_dspace);
1646 }
1647 
1648 void
1649 spa_update_dspace(spa_t *spa)
1650 {
1651 	spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) +
1652 	    ddt_get_dedup_dspace(spa);
1653 }
1654 
1655 /*
1656  * Return the failure mode that has been set to this pool. The default
1657  * behavior will be to block all I/Os when a complete failure occurs.
1658  */
1659 uint8_t
1660 spa_get_failmode(spa_t *spa)
1661 {
1662 	return (spa->spa_failmode);
1663 }
1664 
1665 boolean_t
1666 spa_suspended(spa_t *spa)
1667 {
1668 	return (spa->spa_suspended);
1669 }
1670 
1671 uint64_t
1672 spa_version(spa_t *spa)
1673 {
1674 	return (spa->spa_ubsync.ub_version);
1675 }
1676 
1677 boolean_t
1678 spa_deflate(spa_t *spa)
1679 {
1680 	return (spa->spa_deflate);
1681 }
1682 
1683 metaslab_class_t *
1684 spa_normal_class(spa_t *spa)
1685 {
1686 	return (spa->spa_normal_class);
1687 }
1688 
1689 metaslab_class_t *
1690 spa_log_class(spa_t *spa)
1691 {
1692 	return (spa->spa_log_class);
1693 }
1694 
1695 void
1696 spa_evicting_os_register(spa_t *spa, objset_t *os)
1697 {
1698 	mutex_enter(&spa->spa_evicting_os_lock);
1699 	list_insert_head(&spa->spa_evicting_os_list, os);
1700 	mutex_exit(&spa->spa_evicting_os_lock);
1701 }
1702 
1703 void
1704 spa_evicting_os_deregister(spa_t *spa, objset_t *os)
1705 {
1706 	mutex_enter(&spa->spa_evicting_os_lock);
1707 	list_remove(&spa->spa_evicting_os_list, os);
1708 	cv_broadcast(&spa->spa_evicting_os_cv);
1709 	mutex_exit(&spa->spa_evicting_os_lock);
1710 }
1711 
1712 void
1713 spa_evicting_os_wait(spa_t *spa)
1714 {
1715 	mutex_enter(&spa->spa_evicting_os_lock);
1716 	while (!list_is_empty(&spa->spa_evicting_os_list))
1717 		cv_wait(&spa->spa_evicting_os_cv, &spa->spa_evicting_os_lock);
1718 	mutex_exit(&spa->spa_evicting_os_lock);
1719 
1720 	dmu_buf_user_evict_wait();
1721 }
1722 
1723 int
1724 spa_max_replication(spa_t *spa)
1725 {
1726 	/*
1727 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1728 	 * handle BPs with more than one DVA allocated.  Set our max
1729 	 * replication level accordingly.
1730 	 */
1731 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1732 		return (1);
1733 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1734 }
1735 
1736 int
1737 spa_prev_software_version(spa_t *spa)
1738 {
1739 	return (spa->spa_prev_software_version);
1740 }
1741 
1742 uint64_t
1743 spa_deadman_synctime(spa_t *spa)
1744 {
1745 	return (spa->spa_deadman_synctime);
1746 }
1747 
1748 uint64_t
1749 dva_get_dsize_sync(spa_t *spa, const dva_t *dva)
1750 {
1751 	uint64_t asize = DVA_GET_ASIZE(dva);
1752 	uint64_t dsize = asize;
1753 
1754 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1755 
1756 	if (asize != 0 && spa->spa_deflate) {
1757 		vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
1758 		dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1759 	}
1760 
1761 	return (dsize);
1762 }
1763 
1764 uint64_t
1765 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp)
1766 {
1767 	uint64_t dsize = 0;
1768 
1769 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1770 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1771 
1772 	return (dsize);
1773 }
1774 
1775 uint64_t
1776 bp_get_dsize(spa_t *spa, const blkptr_t *bp)
1777 {
1778 	uint64_t dsize = 0;
1779 
1780 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1781 
1782 	for (int d = 0; d < BP_GET_NDVAS(bp); d++)
1783 		dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]);
1784 
1785 	spa_config_exit(spa, SCL_VDEV, FTAG);
1786 
1787 	return (dsize);
1788 }
1789 
1790 /*
1791  * ==========================================================================
1792  * Initialization and Termination
1793  * ==========================================================================
1794  */
1795 
1796 static int
1797 spa_name_compare(const void *a1, const void *a2)
1798 {
1799 	const spa_t *s1 = a1;
1800 	const spa_t *s2 = a2;
1801 	int s;
1802 
1803 	s = strcmp(s1->spa_name, s2->spa_name);
1804 	if (s > 0)
1805 		return (1);
1806 	if (s < 0)
1807 		return (-1);
1808 	return (0);
1809 }
1810 
1811 int
1812 spa_busy(void)
1813 {
1814 	return (spa_active_count);
1815 }
1816 
1817 void
1818 spa_boot_init()
1819 {
1820 	spa_config_load();
1821 }
1822 
1823 void
1824 spa_init(int mode)
1825 {
1826 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1827 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1828 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1829 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1830 
1831 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1832 	    offsetof(spa_t, spa_avl));
1833 
1834 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1835 	    offsetof(spa_aux_t, aux_avl));
1836 
1837 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1838 	    offsetof(spa_aux_t, aux_avl));
1839 
1840 	spa_mode_global = mode;
1841 
1842 #ifdef _KERNEL
1843 	spa_arch_init();
1844 #else
1845 	if (spa_mode_global != FREAD && dprintf_find_string("watch")) {
1846 		arc_procfd = open("/proc/self/ctl", O_WRONLY);
1847 		if (arc_procfd == -1) {
1848 			perror("could not enable watchpoints: "
1849 			    "opening /proc/self/ctl failed: ");
1850 		} else {
1851 			arc_watch = B_TRUE;
1852 		}
1853 	}
1854 #endif
1855 
1856 	refcount_init();
1857 	unique_init();
1858 	range_tree_init();
1859 	zio_init();
1860 	dmu_init();
1861 	zil_init();
1862 	vdev_cache_stat_init();
1863 	zfs_prop_init();
1864 	zpool_prop_init();
1865 	zpool_feature_init();
1866 	spa_config_load();
1867 	l2arc_start();
1868 }
1869 
1870 void
1871 spa_fini(void)
1872 {
1873 	l2arc_stop();
1874 
1875 	spa_evict_all();
1876 
1877 	vdev_cache_stat_fini();
1878 	zil_fini();
1879 	dmu_fini();
1880 	zio_fini();
1881 	range_tree_fini();
1882 	unique_fini();
1883 	refcount_fini();
1884 
1885 	avl_destroy(&spa_namespace_avl);
1886 	avl_destroy(&spa_spare_avl);
1887 	avl_destroy(&spa_l2cache_avl);
1888 
1889 	cv_destroy(&spa_namespace_cv);
1890 	mutex_destroy(&spa_namespace_lock);
1891 	mutex_destroy(&spa_spare_lock);
1892 	mutex_destroy(&spa_l2cache_lock);
1893 }
1894 
1895 /*
1896  * Return whether this pool has slogs. No locking needed.
1897  * It's not a problem if the wrong answer is returned as it's only for
1898  * performance and not correctness
1899  */
1900 boolean_t
1901 spa_has_slogs(spa_t *spa)
1902 {
1903 	return (spa->spa_log_class->mc_rotor != NULL);
1904 }
1905 
1906 spa_log_state_t
1907 spa_get_log_state(spa_t *spa)
1908 {
1909 	return (spa->spa_log_state);
1910 }
1911 
1912 void
1913 spa_set_log_state(spa_t *spa, spa_log_state_t state)
1914 {
1915 	spa->spa_log_state = state;
1916 }
1917 
1918 boolean_t
1919 spa_is_root(spa_t *spa)
1920 {
1921 	return (spa->spa_is_root);
1922 }
1923 
1924 boolean_t
1925 spa_writeable(spa_t *spa)
1926 {
1927 	return (!!(spa->spa_mode & FWRITE));
1928 }
1929 
1930 /*
1931  * Returns true if there is a pending sync task in any of the current
1932  * syncing txg, the current quiescing txg, or the current open txg.
1933  */
1934 boolean_t
1935 spa_has_pending_synctask(spa_t *spa)
1936 {
1937 	return (!txg_all_lists_empty(&spa->spa_dsl_pool->dp_sync_tasks));
1938 }
1939 
1940 int
1941 spa_mode(spa_t *spa)
1942 {
1943 	return (spa->spa_mode);
1944 }
1945 
1946 uint64_t
1947 spa_bootfs(spa_t *spa)
1948 {
1949 	return (spa->spa_bootfs);
1950 }
1951 
1952 uint64_t
1953 spa_delegation(spa_t *spa)
1954 {
1955 	return (spa->spa_delegation);
1956 }
1957 
1958 objset_t *
1959 spa_meta_objset(spa_t *spa)
1960 {
1961 	return (spa->spa_meta_objset);
1962 }
1963 
1964 enum zio_checksum
1965 spa_dedup_checksum(spa_t *spa)
1966 {
1967 	return (spa->spa_dedup_checksum);
1968 }
1969 
1970 /*
1971  * Reset pool scan stat per scan pass (or reboot).
1972  */
1973 void
1974 spa_scan_stat_init(spa_t *spa)
1975 {
1976 	/* data not stored on disk */
1977 	spa->spa_scan_pass_start = gethrestime_sec();
1978 	spa->spa_scan_pass_exam = 0;
1979 	vdev_scan_stat_init(spa->spa_root_vdev);
1980 }
1981 
1982 /*
1983  * Get scan stats for zpool status reports
1984  */
1985 int
1986 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps)
1987 {
1988 	dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL;
1989 
1990 	if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE)
1991 		return (SET_ERROR(ENOENT));
1992 	bzero(ps, sizeof (pool_scan_stat_t));
1993 
1994 	/* data stored on disk */
1995 	ps->pss_func = scn->scn_phys.scn_func;
1996 	ps->pss_start_time = scn->scn_phys.scn_start_time;
1997 	ps->pss_end_time = scn->scn_phys.scn_end_time;
1998 	ps->pss_to_examine = scn->scn_phys.scn_to_examine;
1999 	ps->pss_examined = scn->scn_phys.scn_examined;
2000 	ps->pss_to_process = scn->scn_phys.scn_to_process;
2001 	ps->pss_processed = scn->scn_phys.scn_processed;
2002 	ps->pss_errors = scn->scn_phys.scn_errors;
2003 	ps->pss_state = scn->scn_phys.scn_state;
2004 
2005 	/* data not stored on disk */
2006 	ps->pss_pass_start = spa->spa_scan_pass_start;
2007 	ps->pss_pass_exam = spa->spa_scan_pass_exam;
2008 
2009 	return (0);
2010 }
2011 
2012 boolean_t
2013 spa_debug_enabled(spa_t *spa)
2014 {
2015 	return (spa->spa_debug);
2016 }
2017 
2018 int
2019 spa_maxblocksize(spa_t *spa)
2020 {
2021 	if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS))
2022 		return (SPA_MAXBLOCKSIZE);
2023 	else
2024 		return (SPA_OLD_MAXBLOCKSIZE);
2025 }
2026