xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision c3c82186300a3bf11cfdda43b1cca3cd6b333629)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/spa_impl.h>
28 #include <sys/zio.h>
29 #include <sys/zio_checksum.h>
30 #include <sys/zio_compress.h>
31 #include <sys/dmu.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/zap.h>
34 #include <sys/zil.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/metaslab.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/txg.h>
39 #include <sys/avl.h>
40 #include <sys/unique.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_dir.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/metaslab_impl.h>
46 #include <sys/sunddi.h>
47 #include <sys/arc.h>
48 #include "zfs_prop.h"
49 
50 /*
51  * SPA locking
52  *
53  * There are four basic locks for managing spa_t structures:
54  *
55  * spa_namespace_lock (global mutex)
56  *
57  *	This lock must be acquired to do any of the following:
58  *
59  *		- Lookup a spa_t by name
60  *		- Add or remove a spa_t from the namespace
61  *		- Increase spa_refcount from non-zero
62  *		- Check if spa_refcount is zero
63  *		- Rename a spa_t
64  *		- add/remove/attach/detach devices
65  *		- Held for the duration of create/destroy/import/export
66  *
67  *	It does not need to handle recursion.  A create or destroy may
68  *	reference objects (files or zvols) in other pools, but by
69  *	definition they must have an existing reference, and will never need
70  *	to lookup a spa_t by name.
71  *
72  * spa_refcount (per-spa refcount_t protected by mutex)
73  *
74  *	This reference count keep track of any active users of the spa_t.  The
75  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
76  *	the refcount is never really 'zero' - opening a pool implicitly keeps
77  *	some references in the DMU.  Internally we check against spa_minref, but
78  *	present the image of a zero/non-zero value to consumers.
79  *
80  * spa_config_lock[] (per-spa array of rwlocks)
81  *
82  *	This protects the spa_t from config changes, and must be held in
83  *	the following circumstances:
84  *
85  *		- RW_READER to perform I/O to the spa
86  *		- RW_WRITER to change the vdev config
87  *
88  * The locking order is fairly straightforward:
89  *
90  *		spa_namespace_lock	->	spa_refcount
91  *
92  *	The namespace lock must be acquired to increase the refcount from 0
93  *	or to check if it is zero.
94  *
95  *		spa_refcount		->	spa_config_lock[]
96  *
97  *	There must be at least one valid reference on the spa_t to acquire
98  *	the config lock.
99  *
100  *		spa_namespace_lock	->	spa_config_lock[]
101  *
102  *	The namespace lock must always be taken before the config lock.
103  *
104  *
105  * The spa_namespace_lock can be acquired directly and is globally visible.
106  *
107  * The namespace is manipulated using the following functions, all of which
108  * require the spa_namespace_lock to be held.
109  *
110  *	spa_lookup()		Lookup a spa_t by name.
111  *
112  *	spa_add()		Create a new spa_t in the namespace.
113  *
114  *	spa_remove()		Remove a spa_t from the namespace.  This also
115  *				frees up any memory associated with the spa_t.
116  *
117  *	spa_next()		Returns the next spa_t in the system, or the
118  *				first if NULL is passed.
119  *
120  *	spa_evict_all()		Shutdown and remove all spa_t structures in
121  *				the system.
122  *
123  *	spa_guid_exists()	Determine whether a pool/device guid exists.
124  *
125  * The spa_refcount is manipulated using the following functions:
126  *
127  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
128  *				called with spa_namespace_lock held if the
129  *				refcount is currently zero.
130  *
131  *	spa_close()		Remove a reference from the spa_t.  This will
132  *				not free the spa_t or remove it from the
133  *				namespace.  No locking is required.
134  *
135  *	spa_refcount_zero()	Returns true if the refcount is currently
136  *				zero.  Must be called with spa_namespace_lock
137  *				held.
138  *
139  * The spa_config_lock[] is an array of rwlocks, ordered as follows:
140  * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV.
141  * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}().
142  *
143  * To read the configuration, it suffices to hold one of these locks as reader.
144  * To modify the configuration, you must hold all locks as writer.  To modify
145  * vdev state without altering the vdev tree's topology (e.g. online/offline),
146  * you must hold SCL_STATE and SCL_ZIO as writer.
147  *
148  * We use these distinct config locks to avoid recursive lock entry.
149  * For example, spa_sync() (which holds SCL_CONFIG as reader) induces
150  * block allocations (SCL_ALLOC), which may require reading space maps
151  * from disk (dmu_read() -> zio_read() -> SCL_ZIO).
152  *
153  * The spa config locks cannot be normal rwlocks because we need the
154  * ability to hand off ownership.  For example, SCL_ZIO is acquired
155  * by the issuing thread and later released by an interrupt thread.
156  * They do, however, obey the usual write-wanted semantics to prevent
157  * writer (i.e. system administrator) starvation.
158  *
159  * The lock acquisition rules are as follows:
160  *
161  * SCL_CONFIG
162  *	Protects changes to the vdev tree topology, such as vdev
163  *	add/remove/attach/detach.  Protects the dirty config list
164  *	(spa_config_dirty_list) and the set of spares and l2arc devices.
165  *
166  * SCL_STATE
167  *	Protects changes to pool state and vdev state, such as vdev
168  *	online/offline/fault/degrade/clear.  Protects the dirty state list
169  *	(spa_state_dirty_list) and global pool state (spa_state).
170  *
171  * SCL_ALLOC
172  *	Protects changes to metaslab groups and classes.
173  *	Held as reader by metaslab_alloc() and metaslab_claim().
174  *
175  * SCL_ZIO
176  *	Held by bp-level zios (those which have no io_vd upon entry)
177  *	to prevent changes to the vdev tree.  The bp-level zio implicitly
178  *	protects all of its vdev child zios, which do not hold SCL_ZIO.
179  *
180  * SCL_FREE
181  *	Protects changes to metaslab groups and classes.
182  *	Held as reader by metaslab_free().  SCL_FREE is distinct from
183  *	SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free
184  *	blocks in zio_done() while another i/o that holds either
185  *	SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete.
186  *
187  * SCL_VDEV
188  *	Held as reader to prevent changes to the vdev tree during trivial
189  *	inquiries such as bp_get_dasize().  SCL_VDEV is distinct from the
190  *	other locks, and lower than all of them, to ensure that it's safe
191  *	to acquire regardless of caller context.
192  *
193  * In addition, the following rules apply:
194  *
195  * (a)	spa_props_lock protects pool properties, spa_config and spa_config_list.
196  *	The lock ordering is SCL_CONFIG > spa_props_lock.
197  *
198  * (b)	I/O operations on leaf vdevs.  For any zio operation that takes
199  *	an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(),
200  *	or zio_write_phys() -- the caller must ensure that the config cannot
201  *	cannot change in the interim, and that the vdev cannot be reopened.
202  *	SCL_STATE as reader suffices for both.
203  *
204  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
205  *
206  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
207  *				for writing.
208  *
209  *	spa_vdev_exit()		Release the config lock, wait for all I/O
210  *				to complete, sync the updated configs to the
211  *				cache, and release the namespace lock.
212  *
213  * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit().
214  * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual
215  * locking is, always, based on spa_namespace_lock and spa_config_lock[].
216  *
217  * spa_rename() is also implemented within this file since is requires
218  * manipulation of the namespace.
219  */
220 
221 static avl_tree_t spa_namespace_avl;
222 kmutex_t spa_namespace_lock;
223 static kcondvar_t spa_namespace_cv;
224 static int spa_active_count;
225 int spa_max_replication_override = SPA_DVAS_PER_BP;
226 
227 static kmutex_t spa_spare_lock;
228 static avl_tree_t spa_spare_avl;
229 static kmutex_t spa_l2cache_lock;
230 static avl_tree_t spa_l2cache_avl;
231 
232 kmem_cache_t *spa_buffer_pool;
233 int spa_mode_global;
234 
235 #ifdef ZFS_DEBUG
236 /* Everything except dprintf is on by default in debug builds */
237 int zfs_flags = ~ZFS_DEBUG_DPRINTF;
238 #else
239 int zfs_flags = 0;
240 #endif
241 
242 /*
243  * zfs_recover can be set to nonzero to attempt to recover from
244  * otherwise-fatal errors, typically caused by on-disk corruption.  When
245  * set, calls to zfs_panic_recover() will turn into warning messages.
246  */
247 int zfs_recover = 0;
248 
249 
250 /*
251  * ==========================================================================
252  * SPA config locking
253  * ==========================================================================
254  */
255 static void
256 spa_config_lock_init(spa_t *spa)
257 {
258 	for (int i = 0; i < SCL_LOCKS; i++) {
259 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
260 		mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL);
261 		cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL);
262 		refcount_create(&scl->scl_count);
263 		scl->scl_writer = NULL;
264 		scl->scl_write_wanted = 0;
265 	}
266 }
267 
268 static void
269 spa_config_lock_destroy(spa_t *spa)
270 {
271 	for (int i = 0; i < SCL_LOCKS; i++) {
272 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
273 		mutex_destroy(&scl->scl_lock);
274 		cv_destroy(&scl->scl_cv);
275 		refcount_destroy(&scl->scl_count);
276 		ASSERT(scl->scl_writer == NULL);
277 		ASSERT(scl->scl_write_wanted == 0);
278 	}
279 }
280 
281 int
282 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw)
283 {
284 	for (int i = 0; i < SCL_LOCKS; i++) {
285 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
286 		if (!(locks & (1 << i)))
287 			continue;
288 		mutex_enter(&scl->scl_lock);
289 		if (rw == RW_READER) {
290 			if (scl->scl_writer || scl->scl_write_wanted) {
291 				mutex_exit(&scl->scl_lock);
292 				spa_config_exit(spa, locks ^ (1 << i), tag);
293 				return (0);
294 			}
295 		} else {
296 			ASSERT(scl->scl_writer != curthread);
297 			if (!refcount_is_zero(&scl->scl_count)) {
298 				mutex_exit(&scl->scl_lock);
299 				spa_config_exit(spa, locks ^ (1 << i), tag);
300 				return (0);
301 			}
302 			scl->scl_writer = curthread;
303 		}
304 		(void) refcount_add(&scl->scl_count, tag);
305 		mutex_exit(&scl->scl_lock);
306 	}
307 	return (1);
308 }
309 
310 void
311 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw)
312 {
313 	for (int i = 0; i < SCL_LOCKS; i++) {
314 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
315 		if (!(locks & (1 << i)))
316 			continue;
317 		mutex_enter(&scl->scl_lock);
318 		if (rw == RW_READER) {
319 			while (scl->scl_writer || scl->scl_write_wanted) {
320 				cv_wait(&scl->scl_cv, &scl->scl_lock);
321 			}
322 		} else {
323 			ASSERT(scl->scl_writer != curthread);
324 			while (!refcount_is_zero(&scl->scl_count)) {
325 				scl->scl_write_wanted++;
326 				cv_wait(&scl->scl_cv, &scl->scl_lock);
327 				scl->scl_write_wanted--;
328 			}
329 			scl->scl_writer = curthread;
330 		}
331 		(void) refcount_add(&scl->scl_count, tag);
332 		mutex_exit(&scl->scl_lock);
333 	}
334 }
335 
336 void
337 spa_config_exit(spa_t *spa, int locks, void *tag)
338 {
339 	for (int i = SCL_LOCKS - 1; i >= 0; i--) {
340 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
341 		if (!(locks & (1 << i)))
342 			continue;
343 		mutex_enter(&scl->scl_lock);
344 		ASSERT(!refcount_is_zero(&scl->scl_count));
345 		if (refcount_remove(&scl->scl_count, tag) == 0) {
346 			ASSERT(scl->scl_writer == NULL ||
347 			    scl->scl_writer == curthread);
348 			scl->scl_writer = NULL;	/* OK in either case */
349 			cv_broadcast(&scl->scl_cv);
350 		}
351 		mutex_exit(&scl->scl_lock);
352 	}
353 }
354 
355 int
356 spa_config_held(spa_t *spa, int locks, krw_t rw)
357 {
358 	int locks_held = 0;
359 
360 	for (int i = 0; i < SCL_LOCKS; i++) {
361 		spa_config_lock_t *scl = &spa->spa_config_lock[i];
362 		if (!(locks & (1 << i)))
363 			continue;
364 		if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) ||
365 		    (rw == RW_WRITER && scl->scl_writer == curthread))
366 			locks_held |= 1 << i;
367 	}
368 
369 	return (locks_held);
370 }
371 
372 /*
373  * ==========================================================================
374  * SPA namespace functions
375  * ==========================================================================
376  */
377 
378 /*
379  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
380  * Returns NULL if no matching spa_t is found.
381  */
382 spa_t *
383 spa_lookup(const char *name)
384 {
385 	static spa_t search;	/* spa_t is large; don't allocate on stack */
386 	spa_t *spa;
387 	avl_index_t where;
388 	char c;
389 	char *cp;
390 
391 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
392 
393 	/*
394 	 * If it's a full dataset name, figure out the pool name and
395 	 * just use that.
396 	 */
397 	cp = strpbrk(name, "/@");
398 	if (cp) {
399 		c = *cp;
400 		*cp = '\0';
401 	}
402 
403 	(void) strlcpy(search.spa_name, name, sizeof (search.spa_name));
404 	spa = avl_find(&spa_namespace_avl, &search, &where);
405 
406 	if (cp)
407 		*cp = c;
408 
409 	return (spa);
410 }
411 
412 /*
413  * Create an uninitialized spa_t with the given name.  Requires
414  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
415  * exist by calling spa_lookup() first.
416  */
417 spa_t *
418 spa_add(const char *name, const char *altroot)
419 {
420 	spa_t *spa;
421 	spa_config_dirent_t *dp;
422 
423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
424 
425 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
426 
427 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
428 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
429 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
430 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
431 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
432 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
433 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
434 
435 	cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL);
436 	cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL);
437 	cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL);
438 
439 	(void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name));
440 	spa->spa_state = POOL_STATE_UNINITIALIZED;
441 	spa->spa_freeze_txg = UINT64_MAX;
442 	spa->spa_final_txg = UINT64_MAX;
443 
444 	refcount_create(&spa->spa_refcount);
445 	spa_config_lock_init(spa);
446 
447 	avl_add(&spa_namespace_avl, spa);
448 
449 	mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL);
450 
451 	/*
452 	 * Set the alternate root, if there is one.
453 	 */
454 	if (altroot) {
455 		spa->spa_root = spa_strdup(altroot);
456 		spa_active_count++;
457 	}
458 
459 	/*
460 	 * Every pool starts with the default cachefile
461 	 */
462 	list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t),
463 	    offsetof(spa_config_dirent_t, scd_link));
464 
465 	dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP);
466 	dp->scd_path = spa_strdup(spa_config_path);
467 	list_insert_head(&spa->spa_config_list, dp);
468 
469 	return (spa);
470 }
471 
472 /*
473  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
474  * spa_namespace_lock.  This is called only after the spa_t has been closed and
475  * deactivated.
476  */
477 void
478 spa_remove(spa_t *spa)
479 {
480 	spa_config_dirent_t *dp;
481 
482 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
483 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
484 
485 	avl_remove(&spa_namespace_avl, spa);
486 	cv_broadcast(&spa_namespace_cv);
487 
488 	if (spa->spa_root) {
489 		spa_strfree(spa->spa_root);
490 		spa_active_count--;
491 	}
492 
493 	while ((dp = list_head(&spa->spa_config_list)) != NULL) {
494 		list_remove(&spa->spa_config_list, dp);
495 		if (dp->scd_path != NULL)
496 			spa_strfree(dp->scd_path);
497 		kmem_free(dp, sizeof (spa_config_dirent_t));
498 	}
499 
500 	list_destroy(&spa->spa_config_list);
501 
502 	spa_config_set(spa, NULL);
503 
504 	refcount_destroy(&spa->spa_refcount);
505 
506 	spa_config_lock_destroy(spa);
507 
508 	cv_destroy(&spa->spa_async_cv);
509 	cv_destroy(&spa->spa_scrub_io_cv);
510 	cv_destroy(&spa->spa_suspend_cv);
511 
512 	mutex_destroy(&spa->spa_async_lock);
513 	mutex_destroy(&spa->spa_scrub_lock);
514 	mutex_destroy(&spa->spa_errlog_lock);
515 	mutex_destroy(&spa->spa_errlist_lock);
516 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
517 	mutex_destroy(&spa->spa_history_lock);
518 	mutex_destroy(&spa->spa_props_lock);
519 	mutex_destroy(&spa->spa_suspend_lock);
520 
521 	kmem_free(spa, sizeof (spa_t));
522 }
523 
524 /*
525  * Given a pool, return the next pool in the namespace, or NULL if there is
526  * none.  If 'prev' is NULL, return the first pool.
527  */
528 spa_t *
529 spa_next(spa_t *prev)
530 {
531 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
532 
533 	if (prev)
534 		return (AVL_NEXT(&spa_namespace_avl, prev));
535 	else
536 		return (avl_first(&spa_namespace_avl));
537 }
538 
539 /*
540  * ==========================================================================
541  * SPA refcount functions
542  * ==========================================================================
543  */
544 
545 /*
546  * Add a reference to the given spa_t.  Must have at least one reference, or
547  * have the namespace lock held.
548  */
549 void
550 spa_open_ref(spa_t *spa, void *tag)
551 {
552 	ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref ||
553 	    MUTEX_HELD(&spa_namespace_lock));
554 	(void) refcount_add(&spa->spa_refcount, tag);
555 }
556 
557 /*
558  * Remove a reference to the given spa_t.  Must have at least one reference, or
559  * have the namespace lock held.
560  */
561 void
562 spa_close(spa_t *spa, void *tag)
563 {
564 	ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref ||
565 	    MUTEX_HELD(&spa_namespace_lock));
566 	(void) refcount_remove(&spa->spa_refcount, tag);
567 }
568 
569 /*
570  * Check to see if the spa refcount is zero.  Must be called with
571  * spa_namespace_lock held.  We really compare against spa_minref, which is the
572  * number of references acquired when opening a pool
573  */
574 boolean_t
575 spa_refcount_zero(spa_t *spa)
576 {
577 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
578 
579 	return (refcount_count(&spa->spa_refcount) == spa->spa_minref);
580 }
581 
582 /*
583  * ==========================================================================
584  * SPA spare and l2cache tracking
585  * ==========================================================================
586  */
587 
588 /*
589  * Hot spares and cache devices are tracked using the same code below,
590  * for 'auxiliary' devices.
591  */
592 
593 typedef struct spa_aux {
594 	uint64_t	aux_guid;
595 	uint64_t	aux_pool;
596 	avl_node_t	aux_avl;
597 	int		aux_count;
598 } spa_aux_t;
599 
600 static int
601 spa_aux_compare(const void *a, const void *b)
602 {
603 	const spa_aux_t *sa = a;
604 	const spa_aux_t *sb = b;
605 
606 	if (sa->aux_guid < sb->aux_guid)
607 		return (-1);
608 	else if (sa->aux_guid > sb->aux_guid)
609 		return (1);
610 	else
611 		return (0);
612 }
613 
614 void
615 spa_aux_add(vdev_t *vd, avl_tree_t *avl)
616 {
617 	avl_index_t where;
618 	spa_aux_t search;
619 	spa_aux_t *aux;
620 
621 	search.aux_guid = vd->vdev_guid;
622 	if ((aux = avl_find(avl, &search, &where)) != NULL) {
623 		aux->aux_count++;
624 	} else {
625 		aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP);
626 		aux->aux_guid = vd->vdev_guid;
627 		aux->aux_count = 1;
628 		avl_insert(avl, aux, where);
629 	}
630 }
631 
632 void
633 spa_aux_remove(vdev_t *vd, avl_tree_t *avl)
634 {
635 	spa_aux_t search;
636 	spa_aux_t *aux;
637 	avl_index_t where;
638 
639 	search.aux_guid = vd->vdev_guid;
640 	aux = avl_find(avl, &search, &where);
641 
642 	ASSERT(aux != NULL);
643 
644 	if (--aux->aux_count == 0) {
645 		avl_remove(avl, aux);
646 		kmem_free(aux, sizeof (spa_aux_t));
647 	} else if (aux->aux_pool == spa_guid(vd->vdev_spa)) {
648 		aux->aux_pool = 0ULL;
649 	}
650 }
651 
652 boolean_t
653 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl)
654 {
655 	spa_aux_t search, *found;
656 
657 	search.aux_guid = guid;
658 	found = avl_find(avl, &search, NULL);
659 
660 	if (pool) {
661 		if (found)
662 			*pool = found->aux_pool;
663 		else
664 			*pool = 0ULL;
665 	}
666 
667 	if (refcnt) {
668 		if (found)
669 			*refcnt = found->aux_count;
670 		else
671 			*refcnt = 0;
672 	}
673 
674 	return (found != NULL);
675 }
676 
677 void
678 spa_aux_activate(vdev_t *vd, avl_tree_t *avl)
679 {
680 	spa_aux_t search, *found;
681 	avl_index_t where;
682 
683 	search.aux_guid = vd->vdev_guid;
684 	found = avl_find(avl, &search, &where);
685 	ASSERT(found != NULL);
686 	ASSERT(found->aux_pool == 0ULL);
687 
688 	found->aux_pool = spa_guid(vd->vdev_spa);
689 }
690 
691 /*
692  * Spares are tracked globally due to the following constraints:
693  *
694  * 	- A spare may be part of multiple pools.
695  * 	- A spare may be added to a pool even if it's actively in use within
696  *	  another pool.
697  * 	- A spare in use in any pool can only be the source of a replacement if
698  *	  the target is a spare in the same pool.
699  *
700  * We keep track of all spares on the system through the use of a reference
701  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
702  * spare, then we bump the reference count in the AVL tree.  In addition, we set
703  * the 'vdev_isspare' member to indicate that the device is a spare (active or
704  * inactive).  When a spare is made active (used to replace a device in the
705  * pool), we also keep track of which pool its been made a part of.
706  *
707  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
708  * called under the spa_namespace lock as part of vdev reconfiguration.  The
709  * separate spare lock exists for the status query path, which does not need to
710  * be completely consistent with respect to other vdev configuration changes.
711  */
712 
713 static int
714 spa_spare_compare(const void *a, const void *b)
715 {
716 	return (spa_aux_compare(a, b));
717 }
718 
719 void
720 spa_spare_add(vdev_t *vd)
721 {
722 	mutex_enter(&spa_spare_lock);
723 	ASSERT(!vd->vdev_isspare);
724 	spa_aux_add(vd, &spa_spare_avl);
725 	vd->vdev_isspare = B_TRUE;
726 	mutex_exit(&spa_spare_lock);
727 }
728 
729 void
730 spa_spare_remove(vdev_t *vd)
731 {
732 	mutex_enter(&spa_spare_lock);
733 	ASSERT(vd->vdev_isspare);
734 	spa_aux_remove(vd, &spa_spare_avl);
735 	vd->vdev_isspare = B_FALSE;
736 	mutex_exit(&spa_spare_lock);
737 }
738 
739 boolean_t
740 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt)
741 {
742 	boolean_t found;
743 
744 	mutex_enter(&spa_spare_lock);
745 	found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl);
746 	mutex_exit(&spa_spare_lock);
747 
748 	return (found);
749 }
750 
751 void
752 spa_spare_activate(vdev_t *vd)
753 {
754 	mutex_enter(&spa_spare_lock);
755 	ASSERT(vd->vdev_isspare);
756 	spa_aux_activate(vd, &spa_spare_avl);
757 	mutex_exit(&spa_spare_lock);
758 }
759 
760 /*
761  * Level 2 ARC devices are tracked globally for the same reasons as spares.
762  * Cache devices currently only support one pool per cache device, and so
763  * for these devices the aux reference count is currently unused beyond 1.
764  */
765 
766 static int
767 spa_l2cache_compare(const void *a, const void *b)
768 {
769 	return (spa_aux_compare(a, b));
770 }
771 
772 void
773 spa_l2cache_add(vdev_t *vd)
774 {
775 	mutex_enter(&spa_l2cache_lock);
776 	ASSERT(!vd->vdev_isl2cache);
777 	spa_aux_add(vd, &spa_l2cache_avl);
778 	vd->vdev_isl2cache = B_TRUE;
779 	mutex_exit(&spa_l2cache_lock);
780 }
781 
782 void
783 spa_l2cache_remove(vdev_t *vd)
784 {
785 	mutex_enter(&spa_l2cache_lock);
786 	ASSERT(vd->vdev_isl2cache);
787 	spa_aux_remove(vd, &spa_l2cache_avl);
788 	vd->vdev_isl2cache = B_FALSE;
789 	mutex_exit(&spa_l2cache_lock);
790 }
791 
792 boolean_t
793 spa_l2cache_exists(uint64_t guid, uint64_t *pool)
794 {
795 	boolean_t found;
796 
797 	mutex_enter(&spa_l2cache_lock);
798 	found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl);
799 	mutex_exit(&spa_l2cache_lock);
800 
801 	return (found);
802 }
803 
804 void
805 spa_l2cache_activate(vdev_t *vd)
806 {
807 	mutex_enter(&spa_l2cache_lock);
808 	ASSERT(vd->vdev_isl2cache);
809 	spa_aux_activate(vd, &spa_l2cache_avl);
810 	mutex_exit(&spa_l2cache_lock);
811 }
812 
813 void
814 spa_l2cache_space_update(vdev_t *vd, int64_t space, int64_t alloc)
815 {
816 	vdev_space_update(vd, space, alloc, B_FALSE);
817 }
818 
819 /*
820  * ==========================================================================
821  * SPA vdev locking
822  * ==========================================================================
823  */
824 
825 /*
826  * Lock the given spa_t for the purpose of adding or removing a vdev.
827  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
828  * It returns the next transaction group for the spa_t.
829  */
830 uint64_t
831 spa_vdev_enter(spa_t *spa)
832 {
833 	mutex_enter(&spa_namespace_lock);
834 
835 	spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
836 
837 	return (spa_last_synced_txg(spa) + 1);
838 }
839 
840 /*
841  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
842  * locking of spa_vdev_enter(), we also want make sure the transactions have
843  * synced to disk, and then update the global configuration cache with the new
844  * information.
845  */
846 int
847 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
848 {
849 	int config_changed = B_FALSE;
850 
851 	ASSERT(txg > spa_last_synced_txg(spa));
852 
853 	spa->spa_pending_vdev = NULL;
854 
855 	/*
856 	 * Reassess the DTLs.
857 	 */
858 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
859 
860 	/*
861 	 * If the config changed, notify the scrub thread that it must restart.
862 	 */
863 	if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) {
864 		dsl_pool_scrub_restart(spa->spa_dsl_pool);
865 		config_changed = B_TRUE;
866 	}
867 
868 	spa_config_exit(spa, SCL_ALL, spa);
869 
870 	/*
871 	 * Note: this txg_wait_synced() is important because it ensures
872 	 * that there won't be more than one config change per txg.
873 	 * This allows us to use the txg as the generation number.
874 	 */
875 	if (error == 0)
876 		txg_wait_synced(spa->spa_dsl_pool, txg);
877 
878 	if (vd != NULL) {
879 		ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0);
880 		spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
881 		vdev_free(vd);
882 		spa_config_exit(spa, SCL_ALL, spa);
883 	}
884 
885 	/*
886 	 * If the config changed, update the config cache.
887 	 */
888 	if (config_changed)
889 		spa_config_sync(spa, B_FALSE, B_TRUE);
890 
891 	mutex_exit(&spa_namespace_lock);
892 
893 	return (error);
894 }
895 
896 /*
897  * Lock the given spa_t for the purpose of changing vdev state.
898  */
899 void
900 spa_vdev_state_enter(spa_t *spa)
901 {
902 	spa_config_enter(spa, SCL_STATE_ALL, spa, RW_WRITER);
903 }
904 
905 int
906 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error)
907 {
908 	if (vd != NULL)
909 		vdev_state_dirty(vd->vdev_top);
910 
911 	spa_config_exit(spa, SCL_STATE_ALL, spa);
912 
913 	/*
914 	 * If anything changed, wait for it to sync.  This ensures that,
915 	 * from the system administrator's perspective, zpool(1M) commands
916 	 * are synchronous.  This is important for things like zpool offline:
917 	 * when the command completes, you expect no further I/O from ZFS.
918 	 */
919 	if (vd != NULL)
920 		txg_wait_synced(spa->spa_dsl_pool, 0);
921 
922 	return (error);
923 }
924 
925 /*
926  * ==========================================================================
927  * Miscellaneous functions
928  * ==========================================================================
929  */
930 
931 /*
932  * Rename a spa_t.
933  */
934 int
935 spa_rename(const char *name, const char *newname)
936 {
937 	spa_t *spa;
938 	int err;
939 
940 	/*
941 	 * Lookup the spa_t and grab the config lock for writing.  We need to
942 	 * actually open the pool so that we can sync out the necessary labels.
943 	 * It's OK to call spa_open() with the namespace lock held because we
944 	 * allow recursive calls for other reasons.
945 	 */
946 	mutex_enter(&spa_namespace_lock);
947 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
948 		mutex_exit(&spa_namespace_lock);
949 		return (err);
950 	}
951 
952 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
953 
954 	avl_remove(&spa_namespace_avl, spa);
955 	(void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name));
956 	avl_add(&spa_namespace_avl, spa);
957 
958 	/*
959 	 * Sync all labels to disk with the new names by marking the root vdev
960 	 * dirty and waiting for it to sync.  It will pick up the new pool name
961 	 * during the sync.
962 	 */
963 	vdev_config_dirty(spa->spa_root_vdev);
964 
965 	spa_config_exit(spa, SCL_ALL, FTAG);
966 
967 	txg_wait_synced(spa->spa_dsl_pool, 0);
968 
969 	/*
970 	 * Sync the updated config cache.
971 	 */
972 	spa_config_sync(spa, B_FALSE, B_TRUE);
973 
974 	spa_close(spa, FTAG);
975 
976 	mutex_exit(&spa_namespace_lock);
977 
978 	return (0);
979 }
980 
981 
982 /*
983  * Determine whether a pool with given pool_guid exists.  If device_guid is
984  * non-zero, determine whether the pool exists *and* contains a device with the
985  * specified device_guid.
986  */
987 boolean_t
988 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
989 {
990 	spa_t *spa;
991 	avl_tree_t *t = &spa_namespace_avl;
992 
993 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
994 
995 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
996 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
997 			continue;
998 		if (spa->spa_root_vdev == NULL)
999 			continue;
1000 		if (spa_guid(spa) == pool_guid) {
1001 			if (device_guid == 0)
1002 				break;
1003 
1004 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
1005 			    device_guid) != NULL)
1006 				break;
1007 
1008 			/*
1009 			 * Check any devices we may be in the process of adding.
1010 			 */
1011 			if (spa->spa_pending_vdev) {
1012 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
1013 				    device_guid) != NULL)
1014 					break;
1015 			}
1016 		}
1017 	}
1018 
1019 	return (spa != NULL);
1020 }
1021 
1022 char *
1023 spa_strdup(const char *s)
1024 {
1025 	size_t len;
1026 	char *new;
1027 
1028 	len = strlen(s);
1029 	new = kmem_alloc(len + 1, KM_SLEEP);
1030 	bcopy(s, new, len);
1031 	new[len] = '\0';
1032 
1033 	return (new);
1034 }
1035 
1036 void
1037 spa_strfree(char *s)
1038 {
1039 	kmem_free(s, strlen(s) + 1);
1040 }
1041 
1042 uint64_t
1043 spa_get_random(uint64_t range)
1044 {
1045 	uint64_t r;
1046 
1047 	ASSERT(range != 0);
1048 
1049 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
1050 
1051 	return (r % range);
1052 }
1053 
1054 void
1055 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
1056 {
1057 	int d;
1058 
1059 	if (bp == NULL) {
1060 		(void) snprintf(buf, len, "<NULL>");
1061 		return;
1062 	}
1063 
1064 	if (BP_IS_HOLE(bp)) {
1065 		(void) snprintf(buf, len, "<hole>");
1066 		return;
1067 	}
1068 
1069 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
1070 	    (u_longlong_t)BP_GET_LEVEL(bp),
1071 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
1072 	    (u_longlong_t)BP_GET_LSIZE(bp),
1073 	    (u_longlong_t)BP_GET_PSIZE(bp));
1074 
1075 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
1076 		const dva_t *dva = &bp->blk_dva[d];
1077 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
1078 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
1079 		    (u_longlong_t)DVA_GET_VDEV(dva),
1080 		    (u_longlong_t)DVA_GET_OFFSET(dva),
1081 		    (u_longlong_t)DVA_GET_ASIZE(dva));
1082 	}
1083 
1084 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
1085 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
1086 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
1087 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
1088 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
1089 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
1090 	    (u_longlong_t)bp->blk_birth,
1091 	    (u_longlong_t)bp->blk_fill,
1092 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
1093 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
1094 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
1095 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
1096 }
1097 
1098 void
1099 spa_freeze(spa_t *spa)
1100 {
1101 	uint64_t freeze_txg = 0;
1102 
1103 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1104 	if (spa->spa_freeze_txg == UINT64_MAX) {
1105 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
1106 		spa->spa_freeze_txg = freeze_txg;
1107 	}
1108 	spa_config_exit(spa, SCL_ALL, FTAG);
1109 	if (freeze_txg != 0)
1110 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
1111 }
1112 
1113 void
1114 zfs_panic_recover(const char *fmt, ...)
1115 {
1116 	va_list adx;
1117 
1118 	va_start(adx, fmt);
1119 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
1120 	va_end(adx);
1121 }
1122 
1123 /*
1124  * ==========================================================================
1125  * Accessor functions
1126  * ==========================================================================
1127  */
1128 
1129 boolean_t
1130 spa_shutting_down(spa_t *spa)
1131 {
1132 	return (spa->spa_async_suspended);
1133 }
1134 
1135 dsl_pool_t *
1136 spa_get_dsl(spa_t *spa)
1137 {
1138 	return (spa->spa_dsl_pool);
1139 }
1140 
1141 blkptr_t *
1142 spa_get_rootblkptr(spa_t *spa)
1143 {
1144 	return (&spa->spa_ubsync.ub_rootbp);
1145 }
1146 
1147 void
1148 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
1149 {
1150 	spa->spa_uberblock.ub_rootbp = *bp;
1151 }
1152 
1153 void
1154 spa_altroot(spa_t *spa, char *buf, size_t buflen)
1155 {
1156 	if (spa->spa_root == NULL)
1157 		buf[0] = '\0';
1158 	else
1159 		(void) strncpy(buf, spa->spa_root, buflen);
1160 }
1161 
1162 int
1163 spa_sync_pass(spa_t *spa)
1164 {
1165 	return (spa->spa_sync_pass);
1166 }
1167 
1168 char *
1169 spa_name(spa_t *spa)
1170 {
1171 	return (spa->spa_name);
1172 }
1173 
1174 uint64_t
1175 spa_guid(spa_t *spa)
1176 {
1177 	/*
1178 	 * If we fail to parse the config during spa_load(), we can go through
1179 	 * the error path (which posts an ereport) and end up here with no root
1180 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
1181 	 * this case.
1182 	 */
1183 	if (spa->spa_root_vdev != NULL)
1184 		return (spa->spa_root_vdev->vdev_guid);
1185 	else
1186 		return (spa->spa_load_guid);
1187 }
1188 
1189 uint64_t
1190 spa_last_synced_txg(spa_t *spa)
1191 {
1192 	return (spa->spa_ubsync.ub_txg);
1193 }
1194 
1195 uint64_t
1196 spa_first_txg(spa_t *spa)
1197 {
1198 	return (spa->spa_first_txg);
1199 }
1200 
1201 pool_state_t
1202 spa_state(spa_t *spa)
1203 {
1204 	return (spa->spa_state);
1205 }
1206 
1207 uint64_t
1208 spa_freeze_txg(spa_t *spa)
1209 {
1210 	return (spa->spa_freeze_txg);
1211 }
1212 
1213 /*
1214  * Return how much space is allocated in the pool (ie. sum of all asize)
1215  */
1216 uint64_t
1217 spa_get_alloc(spa_t *spa)
1218 {
1219 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
1220 }
1221 
1222 /*
1223  * Return how much (raid-z inflated) space there is in the pool.
1224  */
1225 uint64_t
1226 spa_get_space(spa_t *spa)
1227 {
1228 	return (spa->spa_root_vdev->vdev_stat.vs_space);
1229 }
1230 
1231 /*
1232  * Return the amount of raid-z-deflated space in the pool.
1233  */
1234 uint64_t
1235 spa_get_dspace(spa_t *spa)
1236 {
1237 	if (spa->spa_deflate)
1238 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1239 	else
1240 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1241 }
1242 
1243 /* ARGSUSED */
1244 uint64_t
1245 spa_get_asize(spa_t *spa, uint64_t lsize)
1246 {
1247 	/*
1248 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1249 	 * case the space requirement is exactly 2x; so just assume that.
1250 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1251 	 * we have to multiply by a total of 6x.
1252 	 */
1253 	return (lsize * 6);
1254 }
1255 
1256 /*
1257  * Return the failure mode that has been set to this pool. The default
1258  * behavior will be to block all I/Os when a complete failure occurs.
1259  */
1260 uint8_t
1261 spa_get_failmode(spa_t *spa)
1262 {
1263 	return (spa->spa_failmode);
1264 }
1265 
1266 boolean_t
1267 spa_suspended(spa_t *spa)
1268 {
1269 	return (spa->spa_suspended);
1270 }
1271 
1272 uint64_t
1273 spa_version(spa_t *spa)
1274 {
1275 	return (spa->spa_ubsync.ub_version);
1276 }
1277 
1278 int
1279 spa_max_replication(spa_t *spa)
1280 {
1281 	/*
1282 	 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to
1283 	 * handle BPs with more than one DVA allocated.  Set our max
1284 	 * replication level accordingly.
1285 	 */
1286 	if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS)
1287 		return (1);
1288 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1289 }
1290 
1291 uint64_t
1292 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1293 {
1294 	int sz = 0, i;
1295 
1296 	if (!spa->spa_deflate)
1297 		return (BP_GET_ASIZE(bp));
1298 
1299 	spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
1300 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1301 		vdev_t *vd =
1302 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1303 		if (vd)
1304 			sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >>
1305 			    SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio;
1306 	}
1307 	spa_config_exit(spa, SCL_VDEV, FTAG);
1308 	return (sz);
1309 }
1310 
1311 /*
1312  * ==========================================================================
1313  * Initialization and Termination
1314  * ==========================================================================
1315  */
1316 
1317 static int
1318 spa_name_compare(const void *a1, const void *a2)
1319 {
1320 	const spa_t *s1 = a1;
1321 	const spa_t *s2 = a2;
1322 	int s;
1323 
1324 	s = strcmp(s1->spa_name, s2->spa_name);
1325 	if (s > 0)
1326 		return (1);
1327 	if (s < 0)
1328 		return (-1);
1329 	return (0);
1330 }
1331 
1332 int
1333 spa_busy(void)
1334 {
1335 	return (spa_active_count);
1336 }
1337 
1338 void
1339 spa_boot_init()
1340 {
1341 	spa_config_load();
1342 }
1343 
1344 void
1345 spa_init(int mode)
1346 {
1347 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1348 	mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL);
1349 	mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL);
1350 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1351 
1352 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1353 	    offsetof(spa_t, spa_avl));
1354 
1355 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t),
1356 	    offsetof(spa_aux_t, aux_avl));
1357 
1358 	avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t),
1359 	    offsetof(spa_aux_t, aux_avl));
1360 
1361 	spa_mode_global = mode;
1362 
1363 	refcount_init();
1364 	unique_init();
1365 	zio_init();
1366 	dmu_init();
1367 	zil_init();
1368 	vdev_cache_stat_init();
1369 	zfs_prop_init();
1370 	zpool_prop_init();
1371 	spa_config_load();
1372 	l2arc_start();
1373 }
1374 
1375 void
1376 spa_fini(void)
1377 {
1378 	l2arc_stop();
1379 
1380 	spa_evict_all();
1381 
1382 	vdev_cache_stat_fini();
1383 	zil_fini();
1384 	dmu_fini();
1385 	zio_fini();
1386 	unique_fini();
1387 	refcount_fini();
1388 
1389 	avl_destroy(&spa_namespace_avl);
1390 	avl_destroy(&spa_spare_avl);
1391 	avl_destroy(&spa_l2cache_avl);
1392 
1393 	cv_destroy(&spa_namespace_cv);
1394 	mutex_destroy(&spa_namespace_lock);
1395 	mutex_destroy(&spa_spare_lock);
1396 	mutex_destroy(&spa_l2cache_lock);
1397 }
1398 
1399 /*
1400  * Return whether this pool has slogs. No locking needed.
1401  * It's not a problem if the wrong answer is returned as it's only for
1402  * performance and not correctness
1403  */
1404 boolean_t
1405 spa_has_slogs(spa_t *spa)
1406 {
1407 	return (spa->spa_log_class->mc_rotor != NULL);
1408 }
1409 
1410 /*
1411  * Return whether this pool is the root pool.
1412  */
1413 boolean_t
1414 spa_is_root(spa_t *spa)
1415 {
1416 	return (spa->spa_is_root);
1417 }
1418 
1419 boolean_t
1420 spa_writeable(spa_t *spa)
1421 {
1422 	return (!!(spa->spa_mode & FWRITE));
1423 }
1424 
1425 int
1426 spa_mode(spa_t *spa)
1427 {
1428 	return (spa->spa_mode);
1429 }
1430