1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 #include <sys/metaslab_impl.h> 48 #include "zfs_prop.h" 49 50 /* 51 * SPA locking 52 * 53 * There are four basic locks for managing spa_t structures: 54 * 55 * spa_namespace_lock (global mutex) 56 * 57 * This lock must be acquired to do any of the following: 58 * 59 * - Lookup a spa_t by name 60 * - Add or remove a spa_t from the namespace 61 * - Increase spa_refcount from non-zero 62 * - Check if spa_refcount is zero 63 * - Rename a spa_t 64 * - add/remove/attach/detach devices 65 * - Held for the duration of create/destroy/import/export 66 * 67 * It does not need to handle recursion. A create or destroy may 68 * reference objects (files or zvols) in other pools, but by 69 * definition they must have an existing reference, and will never need 70 * to lookup a spa_t by name. 71 * 72 * spa_refcount (per-spa refcount_t protected by mutex) 73 * 74 * This reference count keep track of any active users of the spa_t. The 75 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 76 * the refcount is never really 'zero' - opening a pool implicitly keeps 77 * some references in the DMU. Internally we check against SPA_MINREF, but 78 * present the image of a zero/non-zero value to consumers. 79 * 80 * spa_config_lock (per-spa read-priority rwlock) 81 * 82 * This protects the spa_t from config changes, and must be held in 83 * the following circumstances: 84 * 85 * - RW_READER to perform I/O to the spa 86 * - RW_WRITER to change the vdev config 87 * 88 * spa_config_cache_lock (per-spa mutex) 89 * 90 * This mutex prevents the spa_config nvlist from being updated. No 91 * other locks are required to obtain this lock, although implicitly you 92 * must have the namespace lock or non-zero refcount to have any kind 93 * of spa_t pointer at all. 94 * 95 * The locking order is fairly straightforward: 96 * 97 * spa_namespace_lock -> spa_refcount 98 * 99 * The namespace lock must be acquired to increase the refcount from 0 100 * or to check if it is zero. 101 * 102 * spa_refcount -> spa_config_lock 103 * 104 * There must be at least one valid reference on the spa_t to acquire 105 * the config lock. 106 * 107 * spa_namespace_lock -> spa_config_lock 108 * 109 * The namespace lock must always be taken before the config lock. 110 * 111 * 112 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 113 * are globally visible. 114 * 115 * The namespace is manipulated using the following functions, all which require 116 * the spa_namespace_lock to be held. 117 * 118 * spa_lookup() Lookup a spa_t by name. 119 * 120 * spa_add() Create a new spa_t in the namespace. 121 * 122 * spa_remove() Remove a spa_t from the namespace. This also 123 * frees up any memory associated with the spa_t. 124 * 125 * spa_next() Returns the next spa_t in the system, or the 126 * first if NULL is passed. 127 * 128 * spa_evict_all() Shutdown and remove all spa_t structures in 129 * the system. 130 * 131 * spa_guid_exists() Determine whether a pool/device guid exists. 132 * 133 * The spa_refcount is manipulated using the following functions: 134 * 135 * spa_open_ref() Adds a reference to the given spa_t. Must be 136 * called with spa_namespace_lock held if the 137 * refcount is currently zero. 138 * 139 * spa_close() Remove a reference from the spa_t. This will 140 * not free the spa_t or remove it from the 141 * namespace. No locking is required. 142 * 143 * spa_refcount_zero() Returns true if the refcount is currently 144 * zero. Must be called with spa_namespace_lock 145 * held. 146 * 147 * The spa_config_lock is manipulated using the following functions: 148 * 149 * spa_config_enter() Acquire the config lock as RW_READER or 150 * RW_WRITER. At least one reference on the spa_t 151 * must exist. 152 * 153 * spa_config_exit() Release the config lock. 154 * 155 * spa_config_held() Returns true if the config lock is currently 156 * held in the given state. 157 * 158 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 159 * 160 * spa_vdev_enter() Acquire the namespace lock and the config lock 161 * for writing. 162 * 163 * spa_vdev_exit() Release the config lock, wait for all I/O 164 * to complete, sync the updated configs to the 165 * cache, and release the namespace lock. 166 * 167 * The spa_name() function also requires either the spa_namespace_lock 168 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 169 * also implemented within this file since is requires manipulation of the 170 * namespace. 171 */ 172 173 static avl_tree_t spa_namespace_avl; 174 kmutex_t spa_namespace_lock; 175 static kcondvar_t spa_namespace_cv; 176 static int spa_active_count; 177 int spa_max_replication_override = SPA_DVAS_PER_BP; 178 179 static kmutex_t spa_spare_lock; 180 static avl_tree_t spa_spare_avl; 181 182 kmem_cache_t *spa_buffer_pool; 183 int spa_mode; 184 185 #ifdef ZFS_DEBUG 186 /* Everything except dprintf is on by default in debug builds */ 187 int zfs_flags = ~ZFS_DEBUG_DPRINTF; 188 #else 189 int zfs_flags = 0; 190 #endif 191 192 /* 193 * zfs_recover can be set to nonzero to attempt to recover from 194 * otherwise-fatal errors, typically caused by on-disk corruption. When 195 * set, calls to zfs_panic_recover() will turn into warning messages. 196 */ 197 int zfs_recover = 0; 198 199 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 200 201 /* 202 * ========================================================================== 203 * SPA namespace functions 204 * ========================================================================== 205 */ 206 207 /* 208 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 209 * Returns NULL if no matching spa_t is found. 210 */ 211 spa_t * 212 spa_lookup(const char *name) 213 { 214 spa_t search, *spa; 215 avl_index_t where; 216 char c; 217 char *cp; 218 219 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 220 221 /* 222 * If it's a full dataset name, figure out the pool name and 223 * just use that. 224 */ 225 cp = strpbrk(name, "/@"); 226 if (cp) { 227 c = *cp; 228 *cp = '\0'; 229 } 230 231 search.spa_name = (char *)name; 232 spa = avl_find(&spa_namespace_avl, &search, &where); 233 234 if (cp) 235 *cp = c; 236 237 return (spa); 238 } 239 240 /* 241 * Create an uninitialized spa_t with the given name. Requires 242 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 243 * exist by calling spa_lookup() first. 244 */ 245 spa_t * 246 spa_add(const char *name, const char *altroot) 247 { 248 spa_t *spa; 249 250 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 251 252 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 253 254 rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); 255 256 mutex_init(&spa->spa_uberblock_lock, NULL, MUTEX_DEFAULT, NULL); 257 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 258 mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); 259 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 260 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 261 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 262 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 263 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 264 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 265 266 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 267 cv_init(&spa->spa_scrub_cv, NULL, CV_DEFAULT, NULL); 268 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 269 270 spa->spa_name = spa_strdup(name); 271 spa->spa_state = POOL_STATE_UNINITIALIZED; 272 spa->spa_freeze_txg = UINT64_MAX; 273 spa->spa_final_txg = UINT64_MAX; 274 275 refcount_create(&spa->spa_refcount); 276 rprw_init(&spa->spa_config_lock); 277 278 avl_add(&spa_namespace_avl, spa); 279 280 mutex_init(&spa->spa_zio_lock, NULL, MUTEX_DEFAULT, NULL); 281 282 /* 283 * Set the alternate root, if there is one. 284 */ 285 if (altroot) { 286 spa->spa_root = spa_strdup(altroot); 287 spa_active_count++; 288 } 289 290 return (spa); 291 } 292 293 /* 294 * Removes a spa_t from the namespace, freeing up any memory used. Requires 295 * spa_namespace_lock. This is called only after the spa_t has been closed and 296 * deactivated. 297 */ 298 void 299 spa_remove(spa_t *spa) 300 { 301 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 302 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 303 ASSERT(spa->spa_scrub_thread == NULL); 304 305 avl_remove(&spa_namespace_avl, spa); 306 cv_broadcast(&spa_namespace_cv); 307 308 if (spa->spa_root) { 309 spa_strfree(spa->spa_root); 310 spa_active_count--; 311 } 312 313 if (spa->spa_name) 314 spa_strfree(spa->spa_name); 315 316 spa_config_set(spa, NULL); 317 318 refcount_destroy(&spa->spa_refcount); 319 320 rprw_destroy(&spa->spa_config_lock); 321 322 rw_destroy(&spa->spa_traverse_lock); 323 324 cv_destroy(&spa->spa_async_cv); 325 cv_destroy(&spa->spa_scrub_cv); 326 cv_destroy(&spa->spa_scrub_io_cv); 327 328 mutex_destroy(&spa->spa_uberblock_lock); 329 mutex_destroy(&spa->spa_async_lock); 330 mutex_destroy(&spa->spa_config_cache_lock); 331 mutex_destroy(&spa->spa_scrub_lock); 332 mutex_destroy(&spa->spa_errlog_lock); 333 mutex_destroy(&spa->spa_errlist_lock); 334 mutex_destroy(&spa->spa_sync_bplist.bpl_lock); 335 mutex_destroy(&spa->spa_history_lock); 336 mutex_destroy(&spa->spa_props_lock); 337 mutex_destroy(&spa->spa_zio_lock); 338 339 kmem_free(spa, sizeof (spa_t)); 340 } 341 342 /* 343 * Given a pool, return the next pool in the namespace, or NULL if there is 344 * none. If 'prev' is NULL, return the first pool. 345 */ 346 spa_t * 347 spa_next(spa_t *prev) 348 { 349 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 350 351 if (prev) 352 return (AVL_NEXT(&spa_namespace_avl, prev)); 353 else 354 return (avl_first(&spa_namespace_avl)); 355 } 356 357 /* 358 * ========================================================================== 359 * SPA refcount functions 360 * ========================================================================== 361 */ 362 363 /* 364 * Add a reference to the given spa_t. Must have at least one reference, or 365 * have the namespace lock held. 366 */ 367 void 368 spa_open_ref(spa_t *spa, void *tag) 369 { 370 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 371 MUTEX_HELD(&spa_namespace_lock)); 372 373 (void) refcount_add(&spa->spa_refcount, tag); 374 } 375 376 /* 377 * Remove a reference to the given spa_t. Must have at least one reference, or 378 * have the namespace lock held. 379 */ 380 void 381 spa_close(spa_t *spa, void *tag) 382 { 383 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 384 MUTEX_HELD(&spa_namespace_lock)); 385 386 (void) refcount_remove(&spa->spa_refcount, tag); 387 } 388 389 /* 390 * Check to see if the spa refcount is zero. Must be called with 391 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 392 * number of references acquired when opening a pool 393 */ 394 boolean_t 395 spa_refcount_zero(spa_t *spa) 396 { 397 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 398 399 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 400 } 401 402 /* 403 * ========================================================================== 404 * SPA spare tracking 405 * ========================================================================== 406 */ 407 408 /* 409 * Spares are tracked globally due to the following constraints: 410 * 411 * - A spare may be part of multiple pools. 412 * - A spare may be added to a pool even if it's actively in use within 413 * another pool. 414 * - A spare in use in any pool can only be the source of a replacement if 415 * the target is a spare in the same pool. 416 * 417 * We keep track of all spares on the system through the use of a reference 418 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 419 * spare, then we bump the reference count in the AVL tree. In addition, we set 420 * the 'vdev_isspare' member to indicate that the device is a spare (active or 421 * inactive). When a spare is made active (used to replace a device in the 422 * pool), we also keep track of which pool its been made a part of. 423 * 424 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 425 * called under the spa_namespace lock as part of vdev reconfiguration. The 426 * separate spare lock exists for the status query path, which does not need to 427 * be completely consistent with respect to other vdev configuration changes. 428 */ 429 430 typedef struct spa_spare { 431 uint64_t spare_guid; 432 uint64_t spare_pool; 433 avl_node_t spare_avl; 434 int spare_count; 435 } spa_spare_t; 436 437 static int 438 spa_spare_compare(const void *a, const void *b) 439 { 440 const spa_spare_t *sa = a; 441 const spa_spare_t *sb = b; 442 443 if (sa->spare_guid < sb->spare_guid) 444 return (-1); 445 else if (sa->spare_guid > sb->spare_guid) 446 return (1); 447 else 448 return (0); 449 } 450 451 void 452 spa_spare_add(vdev_t *vd) 453 { 454 avl_index_t where; 455 spa_spare_t search; 456 spa_spare_t *spare; 457 458 mutex_enter(&spa_spare_lock); 459 ASSERT(!vd->vdev_isspare); 460 461 search.spare_guid = vd->vdev_guid; 462 if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) { 463 spare->spare_count++; 464 } else { 465 spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP); 466 spare->spare_guid = vd->vdev_guid; 467 spare->spare_count = 1; 468 avl_insert(&spa_spare_avl, spare, where); 469 } 470 vd->vdev_isspare = B_TRUE; 471 472 mutex_exit(&spa_spare_lock); 473 } 474 475 void 476 spa_spare_remove(vdev_t *vd) 477 { 478 spa_spare_t search; 479 spa_spare_t *spare; 480 avl_index_t where; 481 482 mutex_enter(&spa_spare_lock); 483 484 search.spare_guid = vd->vdev_guid; 485 spare = avl_find(&spa_spare_avl, &search, &where); 486 487 ASSERT(vd->vdev_isspare); 488 ASSERT(spare != NULL); 489 490 if (--spare->spare_count == 0) { 491 avl_remove(&spa_spare_avl, spare); 492 kmem_free(spare, sizeof (spa_spare_t)); 493 } else if (spare->spare_pool == spa_guid(vd->vdev_spa)) { 494 spare->spare_pool = 0ULL; 495 } 496 497 vd->vdev_isspare = B_FALSE; 498 mutex_exit(&spa_spare_lock); 499 } 500 501 boolean_t 502 spa_spare_exists(uint64_t guid, uint64_t *pool) 503 { 504 spa_spare_t search, *found; 505 avl_index_t where; 506 507 mutex_enter(&spa_spare_lock); 508 509 search.spare_guid = guid; 510 found = avl_find(&spa_spare_avl, &search, &where); 511 512 if (pool) { 513 if (found) 514 *pool = found->spare_pool; 515 else 516 *pool = 0ULL; 517 } 518 519 mutex_exit(&spa_spare_lock); 520 521 return (found != NULL); 522 } 523 524 void 525 spa_spare_activate(vdev_t *vd) 526 { 527 spa_spare_t search, *found; 528 avl_index_t where; 529 530 mutex_enter(&spa_spare_lock); 531 ASSERT(vd->vdev_isspare); 532 533 search.spare_guid = vd->vdev_guid; 534 found = avl_find(&spa_spare_avl, &search, &where); 535 ASSERT(found != NULL); 536 ASSERT(found->spare_pool == 0ULL); 537 538 found->spare_pool = spa_guid(vd->vdev_spa); 539 mutex_exit(&spa_spare_lock); 540 } 541 542 /* 543 * ========================================================================== 544 * SPA config locking 545 * ========================================================================== 546 */ 547 void 548 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 549 { 550 rprw_enter(&spa->spa_config_lock, rw, tag); 551 } 552 553 void 554 spa_config_exit(spa_t *spa, void *tag) 555 { 556 rprw_exit(&spa->spa_config_lock, tag); 557 } 558 559 boolean_t 560 spa_config_held(spa_t *spa, krw_t rw) 561 { 562 return (rprw_held(&spa->spa_config_lock, rw)); 563 } 564 565 /* 566 * ========================================================================== 567 * SPA vdev locking 568 * ========================================================================== 569 */ 570 571 /* 572 * Lock the given spa_t for the purpose of adding or removing a vdev. 573 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 574 * It returns the next transaction group for the spa_t. 575 */ 576 uint64_t 577 spa_vdev_enter(spa_t *spa) 578 { 579 mutex_enter(&spa_namespace_lock); 580 581 /* 582 * Suspend scrub activity while we mess with the config. We must do 583 * this after acquiring the namespace lock to avoid a 3-way deadlock 584 * with spa_scrub_stop() and the scrub thread. 585 */ 586 spa_scrub_suspend(spa); 587 588 spa_config_enter(spa, RW_WRITER, spa); 589 590 return (spa_last_synced_txg(spa) + 1); 591 } 592 593 /* 594 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 595 * locking of spa_vdev_enter(), we also want make sure the transactions have 596 * synced to disk, and then update the global configuration cache with the new 597 * information. 598 */ 599 int 600 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 601 { 602 int config_changed = B_FALSE; 603 604 ASSERT(txg > spa_last_synced_txg(spa)); 605 606 /* 607 * Reassess the DTLs. 608 */ 609 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 610 611 /* 612 * If the config changed, notify the scrub thread that it must restart. 613 */ 614 if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) { 615 config_changed = B_TRUE; 616 spa_scrub_restart(spa, txg); 617 } 618 619 spa_config_exit(spa, spa); 620 621 /* 622 * Allow scrubbing to resume. 623 */ 624 spa_scrub_resume(spa); 625 626 /* 627 * Note: this txg_wait_synced() is important because it ensures 628 * that there won't be more than one config change per txg. 629 * This allows us to use the txg as the generation number. 630 */ 631 if (error == 0) 632 txg_wait_synced(spa->spa_dsl_pool, txg); 633 634 if (vd != NULL) { 635 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 636 vdev_free(vd); 637 } 638 639 /* 640 * If the config changed, update the config cache. 641 */ 642 if (config_changed) 643 spa_config_sync(); 644 645 mutex_exit(&spa_namespace_lock); 646 647 return (error); 648 } 649 650 /* 651 * ========================================================================== 652 * Miscellaneous functions 653 * ========================================================================== 654 */ 655 656 /* 657 * Rename a spa_t. 658 */ 659 int 660 spa_rename(const char *name, const char *newname) 661 { 662 spa_t *spa; 663 int err; 664 665 /* 666 * Lookup the spa_t and grab the config lock for writing. We need to 667 * actually open the pool so that we can sync out the necessary labels. 668 * It's OK to call spa_open() with the namespace lock held because we 669 * allow recursive calls for other reasons. 670 */ 671 mutex_enter(&spa_namespace_lock); 672 if ((err = spa_open(name, &spa, FTAG)) != 0) { 673 mutex_exit(&spa_namespace_lock); 674 return (err); 675 } 676 677 spa_config_enter(spa, RW_WRITER, FTAG); 678 679 avl_remove(&spa_namespace_avl, spa); 680 spa_strfree(spa->spa_name); 681 spa->spa_name = spa_strdup(newname); 682 avl_add(&spa_namespace_avl, spa); 683 684 /* 685 * Sync all labels to disk with the new names by marking the root vdev 686 * dirty and waiting for it to sync. It will pick up the new pool name 687 * during the sync. 688 */ 689 vdev_config_dirty(spa->spa_root_vdev); 690 691 spa_config_exit(spa, FTAG); 692 693 txg_wait_synced(spa->spa_dsl_pool, 0); 694 695 /* 696 * Sync the updated config cache. 697 */ 698 spa_config_sync(); 699 700 spa_close(spa, FTAG); 701 702 mutex_exit(&spa_namespace_lock); 703 704 return (0); 705 } 706 707 708 /* 709 * Determine whether a pool with given pool_guid exists. If device_guid is 710 * non-zero, determine whether the pool exists *and* contains a device with the 711 * specified device_guid. 712 */ 713 boolean_t 714 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 715 { 716 spa_t *spa; 717 avl_tree_t *t = &spa_namespace_avl; 718 719 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 720 721 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 722 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 723 continue; 724 if (spa->spa_root_vdev == NULL) 725 continue; 726 if (spa_guid(spa) == pool_guid) { 727 if (device_guid == 0) 728 break; 729 730 if (vdev_lookup_by_guid(spa->spa_root_vdev, 731 device_guid) != NULL) 732 break; 733 734 /* 735 * Check any devices we may be in the process of adding. 736 */ 737 if (spa->spa_pending_vdev) { 738 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 739 device_guid) != NULL) 740 break; 741 } 742 } 743 } 744 745 return (spa != NULL); 746 } 747 748 char * 749 spa_strdup(const char *s) 750 { 751 size_t len; 752 char *new; 753 754 len = strlen(s); 755 new = kmem_alloc(len + 1, KM_SLEEP); 756 bcopy(s, new, len); 757 new[len] = '\0'; 758 759 return (new); 760 } 761 762 void 763 spa_strfree(char *s) 764 { 765 kmem_free(s, strlen(s) + 1); 766 } 767 768 uint64_t 769 spa_get_random(uint64_t range) 770 { 771 uint64_t r; 772 773 ASSERT(range != 0); 774 775 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 776 777 return (r % range); 778 } 779 780 void 781 sprintf_blkptr(char *buf, int len, const blkptr_t *bp) 782 { 783 int d; 784 785 if (bp == NULL) { 786 (void) snprintf(buf, len, "<NULL>"); 787 return; 788 } 789 790 if (BP_IS_HOLE(bp)) { 791 (void) snprintf(buf, len, "<hole>"); 792 return; 793 } 794 795 (void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ", 796 (u_longlong_t)BP_GET_LEVEL(bp), 797 dmu_ot[BP_GET_TYPE(bp)].ot_name, 798 (u_longlong_t)BP_GET_LSIZE(bp), 799 (u_longlong_t)BP_GET_PSIZE(bp)); 800 801 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 802 const dva_t *dva = &bp->blk_dva[d]; 803 (void) snprintf(buf + strlen(buf), len - strlen(buf), 804 "DVA[%d]=<%llu:%llx:%llx> ", d, 805 (u_longlong_t)DVA_GET_VDEV(dva), 806 (u_longlong_t)DVA_GET_OFFSET(dva), 807 (u_longlong_t)DVA_GET_ASIZE(dva)); 808 } 809 810 (void) snprintf(buf + strlen(buf), len - strlen(buf), 811 "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 812 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 813 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 814 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 815 BP_IS_GANG(bp) ? "gang" : "contiguous", 816 (u_longlong_t)bp->blk_birth, 817 (u_longlong_t)bp->blk_fill, 818 (u_longlong_t)bp->blk_cksum.zc_word[0], 819 (u_longlong_t)bp->blk_cksum.zc_word[1], 820 (u_longlong_t)bp->blk_cksum.zc_word[2], 821 (u_longlong_t)bp->blk_cksum.zc_word[3]); 822 } 823 824 void 825 spa_freeze(spa_t *spa) 826 { 827 uint64_t freeze_txg = 0; 828 829 spa_config_enter(spa, RW_WRITER, FTAG); 830 if (spa->spa_freeze_txg == UINT64_MAX) { 831 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 832 spa->spa_freeze_txg = freeze_txg; 833 } 834 spa_config_exit(spa, FTAG); 835 if (freeze_txg != 0) 836 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 837 } 838 839 void 840 zfs_panic_recover(const char *fmt, ...) 841 { 842 va_list adx; 843 844 va_start(adx, fmt); 845 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 846 va_end(adx); 847 } 848 849 /* 850 * ========================================================================== 851 * Accessor functions 852 * ========================================================================== 853 */ 854 855 krwlock_t * 856 spa_traverse_rwlock(spa_t *spa) 857 { 858 return (&spa->spa_traverse_lock); 859 } 860 861 int 862 spa_traverse_wanted(spa_t *spa) 863 { 864 return (spa->spa_traverse_wanted); 865 } 866 867 dsl_pool_t * 868 spa_get_dsl(spa_t *spa) 869 { 870 return (spa->spa_dsl_pool); 871 } 872 873 blkptr_t * 874 spa_get_rootblkptr(spa_t *spa) 875 { 876 return (&spa->spa_ubsync.ub_rootbp); 877 } 878 879 void 880 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 881 { 882 spa->spa_uberblock.ub_rootbp = *bp; 883 } 884 885 void 886 spa_altroot(spa_t *spa, char *buf, size_t buflen) 887 { 888 if (spa->spa_root == NULL) 889 buf[0] = '\0'; 890 else 891 (void) strncpy(buf, spa->spa_root, buflen); 892 } 893 894 int 895 spa_sync_pass(spa_t *spa) 896 { 897 return (spa->spa_sync_pass); 898 } 899 900 char * 901 spa_name(spa_t *spa) 902 { 903 /* 904 * Accessing the name requires holding either the namespace lock or the 905 * config lock, both of which are required to do a rename. 906 */ 907 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 908 spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); 909 910 return (spa->spa_name); 911 } 912 913 uint64_t 914 spa_guid(spa_t *spa) 915 { 916 /* 917 * If we fail to parse the config during spa_load(), we can go through 918 * the error path (which posts an ereport) and end up here with no root 919 * vdev. We stash the original pool guid in 'spa_load_guid' to handle 920 * this case. 921 */ 922 if (spa->spa_root_vdev != NULL) 923 return (spa->spa_root_vdev->vdev_guid); 924 else 925 return (spa->spa_load_guid); 926 } 927 928 uint64_t 929 spa_last_synced_txg(spa_t *spa) 930 { 931 return (spa->spa_ubsync.ub_txg); 932 } 933 934 uint64_t 935 spa_first_txg(spa_t *spa) 936 { 937 return (spa->spa_first_txg); 938 } 939 940 int 941 spa_state(spa_t *spa) 942 { 943 return (spa->spa_state); 944 } 945 946 uint64_t 947 spa_freeze_txg(spa_t *spa) 948 { 949 return (spa->spa_freeze_txg); 950 } 951 952 /* 953 * Return how much space is allocated in the pool (ie. sum of all asize) 954 */ 955 uint64_t 956 spa_get_alloc(spa_t *spa) 957 { 958 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 959 } 960 961 /* 962 * Return how much (raid-z inflated) space there is in the pool. 963 */ 964 uint64_t 965 spa_get_space(spa_t *spa) 966 { 967 return (spa->spa_root_vdev->vdev_stat.vs_space); 968 } 969 970 /* 971 * Return the amount of raid-z-deflated space in the pool. 972 */ 973 uint64_t 974 spa_get_dspace(spa_t *spa) 975 { 976 if (spa->spa_deflate) 977 return (spa->spa_root_vdev->vdev_stat.vs_dspace); 978 else 979 return (spa->spa_root_vdev->vdev_stat.vs_space); 980 } 981 982 /* ARGSUSED */ 983 uint64_t 984 spa_get_asize(spa_t *spa, uint64_t lsize) 985 { 986 /* 987 * For now, the worst case is 512-byte RAID-Z blocks, in which 988 * case the space requirement is exactly 2x; so just assume that. 989 * Add to this the fact that we can have up to 3 DVAs per bp, and 990 * we have to multiply by a total of 6x. 991 */ 992 return (lsize * 6); 993 } 994 995 /* 996 * Return the failure mode that has been set to this pool. The default 997 * behavior will be to block all I/Os when a complete failure occurs. 998 */ 999 uint8_t 1000 spa_get_failmode(spa_t *spa) 1001 { 1002 return (spa->spa_failmode); 1003 } 1004 1005 uint64_t 1006 spa_version(spa_t *spa) 1007 { 1008 return (spa->spa_ubsync.ub_version); 1009 } 1010 1011 int 1012 spa_max_replication(spa_t *spa) 1013 { 1014 /* 1015 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1016 * handle BPs with more than one DVA allocated. Set our max 1017 * replication level accordingly. 1018 */ 1019 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1020 return (1); 1021 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1022 } 1023 1024 uint64_t 1025 bp_get_dasize(spa_t *spa, const blkptr_t *bp) 1026 { 1027 int sz = 0, i; 1028 1029 if (!spa->spa_deflate) 1030 return (BP_GET_ASIZE(bp)); 1031 1032 spa_config_enter(spa, RW_READER, FTAG); 1033 for (i = 0; i < SPA_DVAS_PER_BP; i++) { 1034 vdev_t *vd = 1035 vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i])); 1036 if (vd) 1037 sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> 1038 SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1039 } 1040 spa_config_exit(spa, FTAG); 1041 return (sz); 1042 } 1043 1044 /* 1045 * ========================================================================== 1046 * Initialization and Termination 1047 * ========================================================================== 1048 */ 1049 1050 static int 1051 spa_name_compare(const void *a1, const void *a2) 1052 { 1053 const spa_t *s1 = a1; 1054 const spa_t *s2 = a2; 1055 int s; 1056 1057 s = strcmp(s1->spa_name, s2->spa_name); 1058 if (s > 0) 1059 return (1); 1060 if (s < 0) 1061 return (-1); 1062 return (0); 1063 } 1064 1065 int 1066 spa_busy(void) 1067 { 1068 return (spa_active_count); 1069 } 1070 1071 void 1072 spa_init(int mode) 1073 { 1074 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1075 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1076 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1077 1078 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1079 offsetof(spa_t, spa_avl)); 1080 1081 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t), 1082 offsetof(spa_spare_t, spare_avl)); 1083 1084 spa_mode = mode; 1085 1086 refcount_init(); 1087 unique_init(); 1088 zio_init(); 1089 dmu_init(); 1090 zil_init(); 1091 zfs_prop_init(); 1092 zpool_prop_init(); 1093 spa_config_load(); 1094 } 1095 1096 void 1097 spa_fini(void) 1098 { 1099 spa_evict_all(); 1100 1101 zil_fini(); 1102 dmu_fini(); 1103 zio_fini(); 1104 unique_fini(); 1105 refcount_fini(); 1106 1107 avl_destroy(&spa_namespace_avl); 1108 avl_destroy(&spa_spare_avl); 1109 1110 cv_destroy(&spa_namespace_cv); 1111 mutex_destroy(&spa_namespace_lock); 1112 mutex_destroy(&spa_spare_lock); 1113 } 1114 1115 /* 1116 * Return whether this pool has slogs. No locking needed. 1117 * It's not a problem if the wrong answer is returned as it's only for 1118 * performance and not correctness 1119 */ 1120 boolean_t 1121 spa_has_slogs(spa_t *spa) 1122 { 1123 return (spa->spa_log_class->mc_rotor != NULL); 1124 } 1125