1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 /* 254 * Expiration time in milliseconds. This value has two meanings. First it is 255 * used to determine when the spa_deadman() logic should fire. By default the 256 * spa_deadman() will fire if spa_sync() has not completed in 1000 seconds. 257 * Secondly, the value determines if an I/O is considered "hung". Any I/O that 258 * has not completed in zfs_deadman_synctime_ms is considered "hung" resulting 259 * in a system panic. 260 */ 261 uint64_t zfs_deadman_synctime_ms = 1000000ULL; 262 263 /* 264 * Check time in milliseconds. This defines the frequency at which we check 265 * for hung I/O. 266 */ 267 uint64_t zfs_deadman_checktime_ms = 5000ULL; 268 269 /* 270 * Override the zfs deadman behavior via /etc/system. By default the 271 * deadman is enabled except on VMware and sparc deployments. 272 */ 273 int zfs_deadman_enabled = -1; 274 275 /* 276 * The worst case is single-sector max-parity RAID-Z blocks, in which 277 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 278 * times the size; so just assume that. Add to this the fact that 279 * we can have up to 3 DVAs per bp, and one more factor of 2 because 280 * the block may be dittoed with up to 3 DVAs by ddt_sync(). All together, 281 * the worst case is: 282 * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2 == 24 283 */ 284 int spa_asize_inflation = 24; 285 286 /* 287 * ========================================================================== 288 * SPA config locking 289 * ========================================================================== 290 */ 291 static void 292 spa_config_lock_init(spa_t *spa) 293 { 294 for (int i = 0; i < SCL_LOCKS; i++) { 295 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 296 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 297 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 298 refcount_create_untracked(&scl->scl_count); 299 scl->scl_writer = NULL; 300 scl->scl_write_wanted = 0; 301 } 302 } 303 304 static void 305 spa_config_lock_destroy(spa_t *spa) 306 { 307 for (int i = 0; i < SCL_LOCKS; i++) { 308 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 309 mutex_destroy(&scl->scl_lock); 310 cv_destroy(&scl->scl_cv); 311 refcount_destroy(&scl->scl_count); 312 ASSERT(scl->scl_writer == NULL); 313 ASSERT(scl->scl_write_wanted == 0); 314 } 315 } 316 317 int 318 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 319 { 320 for (int i = 0; i < SCL_LOCKS; i++) { 321 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 322 if (!(locks & (1 << i))) 323 continue; 324 mutex_enter(&scl->scl_lock); 325 if (rw == RW_READER) { 326 if (scl->scl_writer || scl->scl_write_wanted) { 327 mutex_exit(&scl->scl_lock); 328 spa_config_exit(spa, locks ^ (1 << i), tag); 329 return (0); 330 } 331 } else { 332 ASSERT(scl->scl_writer != curthread); 333 if (!refcount_is_zero(&scl->scl_count)) { 334 mutex_exit(&scl->scl_lock); 335 spa_config_exit(spa, locks ^ (1 << i), tag); 336 return (0); 337 } 338 scl->scl_writer = curthread; 339 } 340 (void) refcount_add(&scl->scl_count, tag); 341 mutex_exit(&scl->scl_lock); 342 } 343 return (1); 344 } 345 346 void 347 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 348 { 349 int wlocks_held = 0; 350 351 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 352 353 for (int i = 0; i < SCL_LOCKS; i++) { 354 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 355 if (scl->scl_writer == curthread) 356 wlocks_held |= (1 << i); 357 if (!(locks & (1 << i))) 358 continue; 359 mutex_enter(&scl->scl_lock); 360 if (rw == RW_READER) { 361 while (scl->scl_writer || scl->scl_write_wanted) { 362 cv_wait(&scl->scl_cv, &scl->scl_lock); 363 } 364 } else { 365 ASSERT(scl->scl_writer != curthread); 366 while (!refcount_is_zero(&scl->scl_count)) { 367 scl->scl_write_wanted++; 368 cv_wait(&scl->scl_cv, &scl->scl_lock); 369 scl->scl_write_wanted--; 370 } 371 scl->scl_writer = curthread; 372 } 373 (void) refcount_add(&scl->scl_count, tag); 374 mutex_exit(&scl->scl_lock); 375 } 376 ASSERT(wlocks_held <= locks); 377 } 378 379 void 380 spa_config_exit(spa_t *spa, int locks, void *tag) 381 { 382 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 383 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 384 if (!(locks & (1 << i))) 385 continue; 386 mutex_enter(&scl->scl_lock); 387 ASSERT(!refcount_is_zero(&scl->scl_count)); 388 if (refcount_remove(&scl->scl_count, tag) == 0) { 389 ASSERT(scl->scl_writer == NULL || 390 scl->scl_writer == curthread); 391 scl->scl_writer = NULL; /* OK in either case */ 392 cv_broadcast(&scl->scl_cv); 393 } 394 mutex_exit(&scl->scl_lock); 395 } 396 } 397 398 int 399 spa_config_held(spa_t *spa, int locks, krw_t rw) 400 { 401 int locks_held = 0; 402 403 for (int i = 0; i < SCL_LOCKS; i++) { 404 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 405 if (!(locks & (1 << i))) 406 continue; 407 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 408 (rw == RW_WRITER && scl->scl_writer == curthread)) 409 locks_held |= 1 << i; 410 } 411 412 return (locks_held); 413 } 414 415 /* 416 * ========================================================================== 417 * SPA namespace functions 418 * ========================================================================== 419 */ 420 421 /* 422 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 423 * Returns NULL if no matching spa_t is found. 424 */ 425 spa_t * 426 spa_lookup(const char *name) 427 { 428 static spa_t search; /* spa_t is large; don't allocate on stack */ 429 spa_t *spa; 430 avl_index_t where; 431 char *cp; 432 433 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 434 435 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 436 437 /* 438 * If it's a full dataset name, figure out the pool name and 439 * just use that. 440 */ 441 cp = strpbrk(search.spa_name, "/@"); 442 if (cp != NULL) 443 *cp = '\0'; 444 445 spa = avl_find(&spa_namespace_avl, &search, &where); 446 447 return (spa); 448 } 449 450 /* 451 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 452 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 453 * looking for potentially hung I/Os. 454 */ 455 void 456 spa_deadman(void *arg) 457 { 458 spa_t *spa = arg; 459 460 /* 461 * Disable the deadman timer if the pool is suspended. 462 */ 463 if (spa_suspended(spa)) { 464 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 465 return; 466 } 467 468 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 469 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 470 ++spa->spa_deadman_calls); 471 if (zfs_deadman_enabled) 472 vdev_deadman(spa->spa_root_vdev); 473 } 474 475 /* 476 * Create an uninitialized spa_t with the given name. Requires 477 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 478 * exist by calling spa_lookup() first. 479 */ 480 spa_t * 481 spa_add(const char *name, nvlist_t *config, const char *altroot) 482 { 483 spa_t *spa; 484 spa_config_dirent_t *dp; 485 cyc_handler_t hdlr; 486 cyc_time_t when; 487 488 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 489 490 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 491 492 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 493 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 494 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 495 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 496 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 497 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 498 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 499 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 500 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 501 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 502 503 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 504 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 505 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 506 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 507 508 for (int t = 0; t < TXG_SIZE; t++) 509 bplist_create(&spa->spa_free_bplist[t]); 510 511 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 512 spa->spa_state = POOL_STATE_UNINITIALIZED; 513 spa->spa_freeze_txg = UINT64_MAX; 514 spa->spa_final_txg = UINT64_MAX; 515 spa->spa_load_max_txg = UINT64_MAX; 516 spa->spa_proc = &p0; 517 spa->spa_proc_state = SPA_PROC_NONE; 518 519 hdlr.cyh_func = spa_deadman; 520 hdlr.cyh_arg = spa; 521 hdlr.cyh_level = CY_LOW_LEVEL; 522 523 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime_ms); 524 525 /* 526 * This determines how often we need to check for hung I/Os after 527 * the cyclic has already fired. Since checking for hung I/Os is 528 * an expensive operation we don't want to check too frequently. 529 * Instead wait for 5 seconds before checking again. 530 */ 531 when.cyt_interval = MSEC2NSEC(zfs_deadman_checktime_ms); 532 when.cyt_when = CY_INFINITY; 533 mutex_enter(&cpu_lock); 534 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 535 mutex_exit(&cpu_lock); 536 537 refcount_create(&spa->spa_refcount); 538 spa_config_lock_init(spa); 539 540 avl_add(&spa_namespace_avl, spa); 541 542 /* 543 * Set the alternate root, if there is one. 544 */ 545 if (altroot) { 546 spa->spa_root = spa_strdup(altroot); 547 spa_active_count++; 548 } 549 550 /* 551 * Every pool starts with the default cachefile 552 */ 553 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 554 offsetof(spa_config_dirent_t, scd_link)); 555 556 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 557 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 558 list_insert_head(&spa->spa_config_list, dp); 559 560 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 561 KM_SLEEP) == 0); 562 563 if (config != NULL) { 564 nvlist_t *features; 565 566 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 567 &features) == 0) { 568 VERIFY(nvlist_dup(features, &spa->spa_label_features, 569 0) == 0); 570 } 571 572 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 573 } 574 575 if (spa->spa_label_features == NULL) { 576 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 577 KM_SLEEP) == 0); 578 } 579 580 spa->spa_iokstat = kstat_create("zfs", 0, name, 581 "disk", KSTAT_TYPE_IO, 1, 0); 582 if (spa->spa_iokstat) { 583 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 584 kstat_install(spa->spa_iokstat); 585 } 586 587 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 588 589 /* 590 * As a pool is being created, treat all features as disabled by 591 * setting SPA_FEATURE_DISABLED for all entries in the feature 592 * refcount cache. 593 */ 594 for (int i = 0; i < SPA_FEATURES; i++) { 595 spa->spa_feat_refcount_cache[i] = SPA_FEATURE_DISABLED; 596 } 597 598 return (spa); 599 } 600 601 /* 602 * Removes a spa_t from the namespace, freeing up any memory used. Requires 603 * spa_namespace_lock. This is called only after the spa_t has been closed and 604 * deactivated. 605 */ 606 void 607 spa_remove(spa_t *spa) 608 { 609 spa_config_dirent_t *dp; 610 611 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 612 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 613 614 nvlist_free(spa->spa_config_splitting); 615 616 avl_remove(&spa_namespace_avl, spa); 617 cv_broadcast(&spa_namespace_cv); 618 619 if (spa->spa_root) { 620 spa_strfree(spa->spa_root); 621 spa_active_count--; 622 } 623 624 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 625 list_remove(&spa->spa_config_list, dp); 626 if (dp->scd_path != NULL) 627 spa_strfree(dp->scd_path); 628 kmem_free(dp, sizeof (spa_config_dirent_t)); 629 } 630 631 list_destroy(&spa->spa_config_list); 632 633 nvlist_free(spa->spa_label_features); 634 nvlist_free(spa->spa_load_info); 635 spa_config_set(spa, NULL); 636 637 mutex_enter(&cpu_lock); 638 if (spa->spa_deadman_cycid != CYCLIC_NONE) 639 cyclic_remove(spa->spa_deadman_cycid); 640 mutex_exit(&cpu_lock); 641 spa->spa_deadman_cycid = CYCLIC_NONE; 642 643 refcount_destroy(&spa->spa_refcount); 644 645 spa_config_lock_destroy(spa); 646 647 kstat_delete(spa->spa_iokstat); 648 spa->spa_iokstat = NULL; 649 650 for (int t = 0; t < TXG_SIZE; t++) 651 bplist_destroy(&spa->spa_free_bplist[t]); 652 653 cv_destroy(&spa->spa_async_cv); 654 cv_destroy(&spa->spa_proc_cv); 655 cv_destroy(&spa->spa_scrub_io_cv); 656 cv_destroy(&spa->spa_suspend_cv); 657 658 mutex_destroy(&spa->spa_async_lock); 659 mutex_destroy(&spa->spa_errlist_lock); 660 mutex_destroy(&spa->spa_errlog_lock); 661 mutex_destroy(&spa->spa_history_lock); 662 mutex_destroy(&spa->spa_proc_lock); 663 mutex_destroy(&spa->spa_props_lock); 664 mutex_destroy(&spa->spa_scrub_lock); 665 mutex_destroy(&spa->spa_suspend_lock); 666 mutex_destroy(&spa->spa_vdev_top_lock); 667 mutex_destroy(&spa->spa_iokstat_lock); 668 669 kmem_free(spa, sizeof (spa_t)); 670 } 671 672 /* 673 * Given a pool, return the next pool in the namespace, or NULL if there is 674 * none. If 'prev' is NULL, return the first pool. 675 */ 676 spa_t * 677 spa_next(spa_t *prev) 678 { 679 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 680 681 if (prev) 682 return (AVL_NEXT(&spa_namespace_avl, prev)); 683 else 684 return (avl_first(&spa_namespace_avl)); 685 } 686 687 /* 688 * ========================================================================== 689 * SPA refcount functions 690 * ========================================================================== 691 */ 692 693 /* 694 * Add a reference to the given spa_t. Must have at least one reference, or 695 * have the namespace lock held. 696 */ 697 void 698 spa_open_ref(spa_t *spa, void *tag) 699 { 700 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 701 MUTEX_HELD(&spa_namespace_lock)); 702 (void) refcount_add(&spa->spa_refcount, tag); 703 } 704 705 /* 706 * Remove a reference to the given spa_t. Must have at least one reference, or 707 * have the namespace lock held. 708 */ 709 void 710 spa_close(spa_t *spa, void *tag) 711 { 712 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 713 MUTEX_HELD(&spa_namespace_lock)); 714 (void) refcount_remove(&spa->spa_refcount, tag); 715 } 716 717 /* 718 * Check to see if the spa refcount is zero. Must be called with 719 * spa_namespace_lock held. We really compare against spa_minref, which is the 720 * number of references acquired when opening a pool 721 */ 722 boolean_t 723 spa_refcount_zero(spa_t *spa) 724 { 725 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 726 727 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 728 } 729 730 /* 731 * ========================================================================== 732 * SPA spare and l2cache tracking 733 * ========================================================================== 734 */ 735 736 /* 737 * Hot spares and cache devices are tracked using the same code below, 738 * for 'auxiliary' devices. 739 */ 740 741 typedef struct spa_aux { 742 uint64_t aux_guid; 743 uint64_t aux_pool; 744 avl_node_t aux_avl; 745 int aux_count; 746 } spa_aux_t; 747 748 static int 749 spa_aux_compare(const void *a, const void *b) 750 { 751 const spa_aux_t *sa = a; 752 const spa_aux_t *sb = b; 753 754 if (sa->aux_guid < sb->aux_guid) 755 return (-1); 756 else if (sa->aux_guid > sb->aux_guid) 757 return (1); 758 else 759 return (0); 760 } 761 762 void 763 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 764 { 765 avl_index_t where; 766 spa_aux_t search; 767 spa_aux_t *aux; 768 769 search.aux_guid = vd->vdev_guid; 770 if ((aux = avl_find(avl, &search, &where)) != NULL) { 771 aux->aux_count++; 772 } else { 773 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 774 aux->aux_guid = vd->vdev_guid; 775 aux->aux_count = 1; 776 avl_insert(avl, aux, where); 777 } 778 } 779 780 void 781 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 782 { 783 spa_aux_t search; 784 spa_aux_t *aux; 785 avl_index_t where; 786 787 search.aux_guid = vd->vdev_guid; 788 aux = avl_find(avl, &search, &where); 789 790 ASSERT(aux != NULL); 791 792 if (--aux->aux_count == 0) { 793 avl_remove(avl, aux); 794 kmem_free(aux, sizeof (spa_aux_t)); 795 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 796 aux->aux_pool = 0ULL; 797 } 798 } 799 800 boolean_t 801 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 802 { 803 spa_aux_t search, *found; 804 805 search.aux_guid = guid; 806 found = avl_find(avl, &search, NULL); 807 808 if (pool) { 809 if (found) 810 *pool = found->aux_pool; 811 else 812 *pool = 0ULL; 813 } 814 815 if (refcnt) { 816 if (found) 817 *refcnt = found->aux_count; 818 else 819 *refcnt = 0; 820 } 821 822 return (found != NULL); 823 } 824 825 void 826 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 827 { 828 spa_aux_t search, *found; 829 avl_index_t where; 830 831 search.aux_guid = vd->vdev_guid; 832 found = avl_find(avl, &search, &where); 833 ASSERT(found != NULL); 834 ASSERT(found->aux_pool == 0ULL); 835 836 found->aux_pool = spa_guid(vd->vdev_spa); 837 } 838 839 /* 840 * Spares are tracked globally due to the following constraints: 841 * 842 * - A spare may be part of multiple pools. 843 * - A spare may be added to a pool even if it's actively in use within 844 * another pool. 845 * - A spare in use in any pool can only be the source of a replacement if 846 * the target is a spare in the same pool. 847 * 848 * We keep track of all spares on the system through the use of a reference 849 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 850 * spare, then we bump the reference count in the AVL tree. In addition, we set 851 * the 'vdev_isspare' member to indicate that the device is a spare (active or 852 * inactive). When a spare is made active (used to replace a device in the 853 * pool), we also keep track of which pool its been made a part of. 854 * 855 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 856 * called under the spa_namespace lock as part of vdev reconfiguration. The 857 * separate spare lock exists for the status query path, which does not need to 858 * be completely consistent with respect to other vdev configuration changes. 859 */ 860 861 static int 862 spa_spare_compare(const void *a, const void *b) 863 { 864 return (spa_aux_compare(a, b)); 865 } 866 867 void 868 spa_spare_add(vdev_t *vd) 869 { 870 mutex_enter(&spa_spare_lock); 871 ASSERT(!vd->vdev_isspare); 872 spa_aux_add(vd, &spa_spare_avl); 873 vd->vdev_isspare = B_TRUE; 874 mutex_exit(&spa_spare_lock); 875 } 876 877 void 878 spa_spare_remove(vdev_t *vd) 879 { 880 mutex_enter(&spa_spare_lock); 881 ASSERT(vd->vdev_isspare); 882 spa_aux_remove(vd, &spa_spare_avl); 883 vd->vdev_isspare = B_FALSE; 884 mutex_exit(&spa_spare_lock); 885 } 886 887 boolean_t 888 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 889 { 890 boolean_t found; 891 892 mutex_enter(&spa_spare_lock); 893 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 894 mutex_exit(&spa_spare_lock); 895 896 return (found); 897 } 898 899 void 900 spa_spare_activate(vdev_t *vd) 901 { 902 mutex_enter(&spa_spare_lock); 903 ASSERT(vd->vdev_isspare); 904 spa_aux_activate(vd, &spa_spare_avl); 905 mutex_exit(&spa_spare_lock); 906 } 907 908 /* 909 * Level 2 ARC devices are tracked globally for the same reasons as spares. 910 * Cache devices currently only support one pool per cache device, and so 911 * for these devices the aux reference count is currently unused beyond 1. 912 */ 913 914 static int 915 spa_l2cache_compare(const void *a, const void *b) 916 { 917 return (spa_aux_compare(a, b)); 918 } 919 920 void 921 spa_l2cache_add(vdev_t *vd) 922 { 923 mutex_enter(&spa_l2cache_lock); 924 ASSERT(!vd->vdev_isl2cache); 925 spa_aux_add(vd, &spa_l2cache_avl); 926 vd->vdev_isl2cache = B_TRUE; 927 mutex_exit(&spa_l2cache_lock); 928 } 929 930 void 931 spa_l2cache_remove(vdev_t *vd) 932 { 933 mutex_enter(&spa_l2cache_lock); 934 ASSERT(vd->vdev_isl2cache); 935 spa_aux_remove(vd, &spa_l2cache_avl); 936 vd->vdev_isl2cache = B_FALSE; 937 mutex_exit(&spa_l2cache_lock); 938 } 939 940 boolean_t 941 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 942 { 943 boolean_t found; 944 945 mutex_enter(&spa_l2cache_lock); 946 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 947 mutex_exit(&spa_l2cache_lock); 948 949 return (found); 950 } 951 952 void 953 spa_l2cache_activate(vdev_t *vd) 954 { 955 mutex_enter(&spa_l2cache_lock); 956 ASSERT(vd->vdev_isl2cache); 957 spa_aux_activate(vd, &spa_l2cache_avl); 958 mutex_exit(&spa_l2cache_lock); 959 } 960 961 /* 962 * ========================================================================== 963 * SPA vdev locking 964 * ========================================================================== 965 */ 966 967 /* 968 * Lock the given spa_t for the purpose of adding or removing a vdev. 969 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 970 * It returns the next transaction group for the spa_t. 971 */ 972 uint64_t 973 spa_vdev_enter(spa_t *spa) 974 { 975 mutex_enter(&spa->spa_vdev_top_lock); 976 mutex_enter(&spa_namespace_lock); 977 return (spa_vdev_config_enter(spa)); 978 } 979 980 /* 981 * Internal implementation for spa_vdev_enter(). Used when a vdev 982 * operation requires multiple syncs (i.e. removing a device) while 983 * keeping the spa_namespace_lock held. 984 */ 985 uint64_t 986 spa_vdev_config_enter(spa_t *spa) 987 { 988 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 989 990 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 991 992 return (spa_last_synced_txg(spa) + 1); 993 } 994 995 /* 996 * Used in combination with spa_vdev_config_enter() to allow the syncing 997 * of multiple transactions without releasing the spa_namespace_lock. 998 */ 999 void 1000 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 1001 { 1002 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1003 1004 int config_changed = B_FALSE; 1005 1006 ASSERT(txg > spa_last_synced_txg(spa)); 1007 1008 spa->spa_pending_vdev = NULL; 1009 1010 /* 1011 * Reassess the DTLs. 1012 */ 1013 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 1014 1015 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 1016 config_changed = B_TRUE; 1017 spa->spa_config_generation++; 1018 } 1019 1020 /* 1021 * Verify the metaslab classes. 1022 */ 1023 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 1024 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 1025 1026 spa_config_exit(spa, SCL_ALL, spa); 1027 1028 /* 1029 * Panic the system if the specified tag requires it. This 1030 * is useful for ensuring that configurations are updated 1031 * transactionally. 1032 */ 1033 if (zio_injection_enabled) 1034 zio_handle_panic_injection(spa, tag, 0); 1035 1036 /* 1037 * Note: this txg_wait_synced() is important because it ensures 1038 * that there won't be more than one config change per txg. 1039 * This allows us to use the txg as the generation number. 1040 */ 1041 if (error == 0) 1042 txg_wait_synced(spa->spa_dsl_pool, txg); 1043 1044 if (vd != NULL) { 1045 ASSERT(!vd->vdev_detached || vd->vdev_dtl_sm == NULL); 1046 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1047 vdev_free(vd); 1048 spa_config_exit(spa, SCL_ALL, spa); 1049 } 1050 1051 /* 1052 * If the config changed, update the config cache. 1053 */ 1054 if (config_changed) 1055 spa_config_sync(spa, B_FALSE, B_TRUE); 1056 } 1057 1058 /* 1059 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1060 * locking of spa_vdev_enter(), we also want make sure the transactions have 1061 * synced to disk, and then update the global configuration cache with the new 1062 * information. 1063 */ 1064 int 1065 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1066 { 1067 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1068 mutex_exit(&spa_namespace_lock); 1069 mutex_exit(&spa->spa_vdev_top_lock); 1070 1071 return (error); 1072 } 1073 1074 /* 1075 * Lock the given spa_t for the purpose of changing vdev state. 1076 */ 1077 void 1078 spa_vdev_state_enter(spa_t *spa, int oplocks) 1079 { 1080 int locks = SCL_STATE_ALL | oplocks; 1081 1082 /* 1083 * Root pools may need to read of the underlying devfs filesystem 1084 * when opening up a vdev. Unfortunately if we're holding the 1085 * SCL_ZIO lock it will result in a deadlock when we try to issue 1086 * the read from the root filesystem. Instead we "prefetch" 1087 * the associated vnodes that we need prior to opening the 1088 * underlying devices and cache them so that we can prevent 1089 * any I/O when we are doing the actual open. 1090 */ 1091 if (spa_is_root(spa)) { 1092 int low = locks & ~(SCL_ZIO - 1); 1093 int high = locks & ~low; 1094 1095 spa_config_enter(spa, high, spa, RW_WRITER); 1096 vdev_hold(spa->spa_root_vdev); 1097 spa_config_enter(spa, low, spa, RW_WRITER); 1098 } else { 1099 spa_config_enter(spa, locks, spa, RW_WRITER); 1100 } 1101 spa->spa_vdev_locks = locks; 1102 } 1103 1104 int 1105 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1106 { 1107 boolean_t config_changed = B_FALSE; 1108 1109 if (vd != NULL || error == 0) 1110 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1111 0, 0, B_FALSE); 1112 1113 if (vd != NULL) { 1114 vdev_state_dirty(vd->vdev_top); 1115 config_changed = B_TRUE; 1116 spa->spa_config_generation++; 1117 } 1118 1119 if (spa_is_root(spa)) 1120 vdev_rele(spa->spa_root_vdev); 1121 1122 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1123 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1124 1125 /* 1126 * If anything changed, wait for it to sync. This ensures that, 1127 * from the system administrator's perspective, zpool(1M) commands 1128 * are synchronous. This is important for things like zpool offline: 1129 * when the command completes, you expect no further I/O from ZFS. 1130 */ 1131 if (vd != NULL) 1132 txg_wait_synced(spa->spa_dsl_pool, 0); 1133 1134 /* 1135 * If the config changed, update the config cache. 1136 */ 1137 if (config_changed) { 1138 mutex_enter(&spa_namespace_lock); 1139 spa_config_sync(spa, B_FALSE, B_TRUE); 1140 mutex_exit(&spa_namespace_lock); 1141 } 1142 1143 return (error); 1144 } 1145 1146 /* 1147 * ========================================================================== 1148 * Miscellaneous functions 1149 * ========================================================================== 1150 */ 1151 1152 void 1153 spa_activate_mos_feature(spa_t *spa, const char *feature, dmu_tx_t *tx) 1154 { 1155 if (!nvlist_exists(spa->spa_label_features, feature)) { 1156 fnvlist_add_boolean(spa->spa_label_features, feature); 1157 /* 1158 * When we are creating the pool (tx_txg==TXG_INITIAL), we can't 1159 * dirty the vdev config because lock SCL_CONFIG is not held. 1160 * Thankfully, in this case we don't need to dirty the config 1161 * because it will be written out anyway when we finish 1162 * creating the pool. 1163 */ 1164 if (tx->tx_txg != TXG_INITIAL) 1165 vdev_config_dirty(spa->spa_root_vdev); 1166 } 1167 } 1168 1169 void 1170 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1171 { 1172 if (nvlist_remove_all(spa->spa_label_features, feature) == 0) 1173 vdev_config_dirty(spa->spa_root_vdev); 1174 } 1175 1176 /* 1177 * Rename a spa_t. 1178 */ 1179 int 1180 spa_rename(const char *name, const char *newname) 1181 { 1182 spa_t *spa; 1183 int err; 1184 1185 /* 1186 * Lookup the spa_t and grab the config lock for writing. We need to 1187 * actually open the pool so that we can sync out the necessary labels. 1188 * It's OK to call spa_open() with the namespace lock held because we 1189 * allow recursive calls for other reasons. 1190 */ 1191 mutex_enter(&spa_namespace_lock); 1192 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1193 mutex_exit(&spa_namespace_lock); 1194 return (err); 1195 } 1196 1197 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1198 1199 avl_remove(&spa_namespace_avl, spa); 1200 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1201 avl_add(&spa_namespace_avl, spa); 1202 1203 /* 1204 * Sync all labels to disk with the new names by marking the root vdev 1205 * dirty and waiting for it to sync. It will pick up the new pool name 1206 * during the sync. 1207 */ 1208 vdev_config_dirty(spa->spa_root_vdev); 1209 1210 spa_config_exit(spa, SCL_ALL, FTAG); 1211 1212 txg_wait_synced(spa->spa_dsl_pool, 0); 1213 1214 /* 1215 * Sync the updated config cache. 1216 */ 1217 spa_config_sync(spa, B_FALSE, B_TRUE); 1218 1219 spa_close(spa, FTAG); 1220 1221 mutex_exit(&spa_namespace_lock); 1222 1223 return (0); 1224 } 1225 1226 /* 1227 * Return the spa_t associated with given pool_guid, if it exists. If 1228 * device_guid is non-zero, determine whether the pool exists *and* contains 1229 * a device with the specified device_guid. 1230 */ 1231 spa_t * 1232 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1233 { 1234 spa_t *spa; 1235 avl_tree_t *t = &spa_namespace_avl; 1236 1237 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1238 1239 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1240 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1241 continue; 1242 if (spa->spa_root_vdev == NULL) 1243 continue; 1244 if (spa_guid(spa) == pool_guid) { 1245 if (device_guid == 0) 1246 break; 1247 1248 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1249 device_guid) != NULL) 1250 break; 1251 1252 /* 1253 * Check any devices we may be in the process of adding. 1254 */ 1255 if (spa->spa_pending_vdev) { 1256 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1257 device_guid) != NULL) 1258 break; 1259 } 1260 } 1261 } 1262 1263 return (spa); 1264 } 1265 1266 /* 1267 * Determine whether a pool with the given pool_guid exists. 1268 */ 1269 boolean_t 1270 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1271 { 1272 return (spa_by_guid(pool_guid, device_guid) != NULL); 1273 } 1274 1275 char * 1276 spa_strdup(const char *s) 1277 { 1278 size_t len; 1279 char *new; 1280 1281 len = strlen(s); 1282 new = kmem_alloc(len + 1, KM_SLEEP); 1283 bcopy(s, new, len); 1284 new[len] = '\0'; 1285 1286 return (new); 1287 } 1288 1289 void 1290 spa_strfree(char *s) 1291 { 1292 kmem_free(s, strlen(s) + 1); 1293 } 1294 1295 uint64_t 1296 spa_get_random(uint64_t range) 1297 { 1298 uint64_t r; 1299 1300 ASSERT(range != 0); 1301 1302 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1303 1304 return (r % range); 1305 } 1306 1307 uint64_t 1308 spa_generate_guid(spa_t *spa) 1309 { 1310 uint64_t guid = spa_get_random(-1ULL); 1311 1312 if (spa != NULL) { 1313 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1314 guid = spa_get_random(-1ULL); 1315 } else { 1316 while (guid == 0 || spa_guid_exists(guid, 0)) 1317 guid = spa_get_random(-1ULL); 1318 } 1319 1320 return (guid); 1321 } 1322 1323 void 1324 snprintf_blkptr(char *buf, size_t buflen, const blkptr_t *bp) 1325 { 1326 char type[256]; 1327 char *checksum = NULL; 1328 char *compress = NULL; 1329 1330 if (bp != NULL) { 1331 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1332 dmu_object_byteswap_t bswap = 1333 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1334 (void) snprintf(type, sizeof (type), "bswap %s %s", 1335 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1336 "metadata" : "data", 1337 dmu_ot_byteswap[bswap].ob_name); 1338 } else { 1339 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1340 sizeof (type)); 1341 } 1342 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1343 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1344 } 1345 1346 SNPRINTF_BLKPTR(snprintf, ' ', buf, buflen, bp, type, checksum, 1347 compress); 1348 } 1349 1350 void 1351 spa_freeze(spa_t *spa) 1352 { 1353 uint64_t freeze_txg = 0; 1354 1355 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1356 if (spa->spa_freeze_txg == UINT64_MAX) { 1357 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1358 spa->spa_freeze_txg = freeze_txg; 1359 } 1360 spa_config_exit(spa, SCL_ALL, FTAG); 1361 if (freeze_txg != 0) 1362 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1363 } 1364 1365 void 1366 zfs_panic_recover(const char *fmt, ...) 1367 { 1368 va_list adx; 1369 1370 va_start(adx, fmt); 1371 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1372 va_end(adx); 1373 } 1374 1375 /* 1376 * This is a stripped-down version of strtoull, suitable only for converting 1377 * lowercase hexadecimal numbers that don't overflow. 1378 */ 1379 uint64_t 1380 strtonum(const char *str, char **nptr) 1381 { 1382 uint64_t val = 0; 1383 char c; 1384 int digit; 1385 1386 while ((c = *str) != '\0') { 1387 if (c >= '0' && c <= '9') 1388 digit = c - '0'; 1389 else if (c >= 'a' && c <= 'f') 1390 digit = 10 + c - 'a'; 1391 else 1392 break; 1393 1394 val *= 16; 1395 val += digit; 1396 1397 str++; 1398 } 1399 1400 if (nptr) 1401 *nptr = (char *)str; 1402 1403 return (val); 1404 } 1405 1406 /* 1407 * ========================================================================== 1408 * Accessor functions 1409 * ========================================================================== 1410 */ 1411 1412 boolean_t 1413 spa_shutting_down(spa_t *spa) 1414 { 1415 return (spa->spa_async_suspended); 1416 } 1417 1418 dsl_pool_t * 1419 spa_get_dsl(spa_t *spa) 1420 { 1421 return (spa->spa_dsl_pool); 1422 } 1423 1424 boolean_t 1425 spa_is_initializing(spa_t *spa) 1426 { 1427 return (spa->spa_is_initializing); 1428 } 1429 1430 blkptr_t * 1431 spa_get_rootblkptr(spa_t *spa) 1432 { 1433 return (&spa->spa_ubsync.ub_rootbp); 1434 } 1435 1436 void 1437 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1438 { 1439 spa->spa_uberblock.ub_rootbp = *bp; 1440 } 1441 1442 void 1443 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1444 { 1445 if (spa->spa_root == NULL) 1446 buf[0] = '\0'; 1447 else 1448 (void) strncpy(buf, spa->spa_root, buflen); 1449 } 1450 1451 int 1452 spa_sync_pass(spa_t *spa) 1453 { 1454 return (spa->spa_sync_pass); 1455 } 1456 1457 char * 1458 spa_name(spa_t *spa) 1459 { 1460 return (spa->spa_name); 1461 } 1462 1463 uint64_t 1464 spa_guid(spa_t *spa) 1465 { 1466 dsl_pool_t *dp = spa_get_dsl(spa); 1467 uint64_t guid; 1468 1469 /* 1470 * If we fail to parse the config during spa_load(), we can go through 1471 * the error path (which posts an ereport) and end up here with no root 1472 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1473 * this case. 1474 */ 1475 if (spa->spa_root_vdev == NULL) 1476 return (spa->spa_config_guid); 1477 1478 guid = spa->spa_last_synced_guid != 0 ? 1479 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1480 1481 /* 1482 * Return the most recently synced out guid unless we're 1483 * in syncing context. 1484 */ 1485 if (dp && dsl_pool_sync_context(dp)) 1486 return (spa->spa_root_vdev->vdev_guid); 1487 else 1488 return (guid); 1489 } 1490 1491 uint64_t 1492 spa_load_guid(spa_t *spa) 1493 { 1494 /* 1495 * This is a GUID that exists solely as a reference for the 1496 * purposes of the arc. It is generated at load time, and 1497 * is never written to persistent storage. 1498 */ 1499 return (spa->spa_load_guid); 1500 } 1501 1502 uint64_t 1503 spa_last_synced_txg(spa_t *spa) 1504 { 1505 return (spa->spa_ubsync.ub_txg); 1506 } 1507 1508 uint64_t 1509 spa_first_txg(spa_t *spa) 1510 { 1511 return (spa->spa_first_txg); 1512 } 1513 1514 uint64_t 1515 spa_syncing_txg(spa_t *spa) 1516 { 1517 return (spa->spa_syncing_txg); 1518 } 1519 1520 pool_state_t 1521 spa_state(spa_t *spa) 1522 { 1523 return (spa->spa_state); 1524 } 1525 1526 spa_load_state_t 1527 spa_load_state(spa_t *spa) 1528 { 1529 return (spa->spa_load_state); 1530 } 1531 1532 uint64_t 1533 spa_freeze_txg(spa_t *spa) 1534 { 1535 return (spa->spa_freeze_txg); 1536 } 1537 1538 /* ARGSUSED */ 1539 uint64_t 1540 spa_get_asize(spa_t *spa, uint64_t lsize) 1541 { 1542 return (lsize * spa_asize_inflation); 1543 } 1544 1545 uint64_t 1546 spa_get_dspace(spa_t *spa) 1547 { 1548 return (spa->spa_dspace); 1549 } 1550 1551 void 1552 spa_update_dspace(spa_t *spa) 1553 { 1554 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1555 ddt_get_dedup_dspace(spa); 1556 } 1557 1558 /* 1559 * Return the failure mode that has been set to this pool. The default 1560 * behavior will be to block all I/Os when a complete failure occurs. 1561 */ 1562 uint8_t 1563 spa_get_failmode(spa_t *spa) 1564 { 1565 return (spa->spa_failmode); 1566 } 1567 1568 boolean_t 1569 spa_suspended(spa_t *spa) 1570 { 1571 return (spa->spa_suspended); 1572 } 1573 1574 uint64_t 1575 spa_version(spa_t *spa) 1576 { 1577 return (spa->spa_ubsync.ub_version); 1578 } 1579 1580 boolean_t 1581 spa_deflate(spa_t *spa) 1582 { 1583 return (spa->spa_deflate); 1584 } 1585 1586 metaslab_class_t * 1587 spa_normal_class(spa_t *spa) 1588 { 1589 return (spa->spa_normal_class); 1590 } 1591 1592 metaslab_class_t * 1593 spa_log_class(spa_t *spa) 1594 { 1595 return (spa->spa_log_class); 1596 } 1597 1598 int 1599 spa_max_replication(spa_t *spa) 1600 { 1601 /* 1602 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1603 * handle BPs with more than one DVA allocated. Set our max 1604 * replication level accordingly. 1605 */ 1606 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1607 return (1); 1608 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1609 } 1610 1611 int 1612 spa_prev_software_version(spa_t *spa) 1613 { 1614 return (spa->spa_prev_software_version); 1615 } 1616 1617 uint64_t 1618 spa_deadman_synctime(spa_t *spa) 1619 { 1620 return (spa->spa_deadman_synctime); 1621 } 1622 1623 uint64_t 1624 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1625 { 1626 uint64_t asize = DVA_GET_ASIZE(dva); 1627 uint64_t dsize = asize; 1628 1629 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1630 1631 if (asize != 0 && spa->spa_deflate) { 1632 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1633 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1634 } 1635 1636 return (dsize); 1637 } 1638 1639 uint64_t 1640 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1641 { 1642 uint64_t dsize = 0; 1643 1644 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1645 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1646 1647 return (dsize); 1648 } 1649 1650 uint64_t 1651 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1652 { 1653 uint64_t dsize = 0; 1654 1655 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1656 1657 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1658 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1659 1660 spa_config_exit(spa, SCL_VDEV, FTAG); 1661 1662 return (dsize); 1663 } 1664 1665 /* 1666 * ========================================================================== 1667 * Initialization and Termination 1668 * ========================================================================== 1669 */ 1670 1671 static int 1672 spa_name_compare(const void *a1, const void *a2) 1673 { 1674 const spa_t *s1 = a1; 1675 const spa_t *s2 = a2; 1676 int s; 1677 1678 s = strcmp(s1->spa_name, s2->spa_name); 1679 if (s > 0) 1680 return (1); 1681 if (s < 0) 1682 return (-1); 1683 return (0); 1684 } 1685 1686 int 1687 spa_busy(void) 1688 { 1689 return (spa_active_count); 1690 } 1691 1692 void 1693 spa_boot_init() 1694 { 1695 spa_config_load(); 1696 } 1697 1698 void 1699 spa_init(int mode) 1700 { 1701 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1702 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1703 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1704 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1705 1706 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1707 offsetof(spa_t, spa_avl)); 1708 1709 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1710 offsetof(spa_aux_t, aux_avl)); 1711 1712 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1713 offsetof(spa_aux_t, aux_avl)); 1714 1715 spa_mode_global = mode; 1716 1717 #ifdef _KERNEL 1718 spa_arch_init(); 1719 #else 1720 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1721 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1722 if (arc_procfd == -1) { 1723 perror("could not enable watchpoints: " 1724 "opening /proc/self/ctl failed: "); 1725 } else { 1726 arc_watch = B_TRUE; 1727 } 1728 } 1729 #endif 1730 1731 refcount_init(); 1732 unique_init(); 1733 range_tree_init(); 1734 zio_init(); 1735 dmu_init(); 1736 zil_init(); 1737 vdev_cache_stat_init(); 1738 zfs_prop_init(); 1739 zpool_prop_init(); 1740 zpool_feature_init(); 1741 spa_config_load(); 1742 l2arc_start(); 1743 } 1744 1745 void 1746 spa_fini(void) 1747 { 1748 l2arc_stop(); 1749 1750 spa_evict_all(); 1751 1752 vdev_cache_stat_fini(); 1753 zil_fini(); 1754 dmu_fini(); 1755 zio_fini(); 1756 range_tree_fini(); 1757 unique_fini(); 1758 refcount_fini(); 1759 1760 avl_destroy(&spa_namespace_avl); 1761 avl_destroy(&spa_spare_avl); 1762 avl_destroy(&spa_l2cache_avl); 1763 1764 cv_destroy(&spa_namespace_cv); 1765 mutex_destroy(&spa_namespace_lock); 1766 mutex_destroy(&spa_spare_lock); 1767 mutex_destroy(&spa_l2cache_lock); 1768 } 1769 1770 /* 1771 * Return whether this pool has slogs. No locking needed. 1772 * It's not a problem if the wrong answer is returned as it's only for 1773 * performance and not correctness 1774 */ 1775 boolean_t 1776 spa_has_slogs(spa_t *spa) 1777 { 1778 return (spa->spa_log_class->mc_rotor != NULL); 1779 } 1780 1781 spa_log_state_t 1782 spa_get_log_state(spa_t *spa) 1783 { 1784 return (spa->spa_log_state); 1785 } 1786 1787 void 1788 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1789 { 1790 spa->spa_log_state = state; 1791 } 1792 1793 boolean_t 1794 spa_is_root(spa_t *spa) 1795 { 1796 return (spa->spa_is_root); 1797 } 1798 1799 boolean_t 1800 spa_writeable(spa_t *spa) 1801 { 1802 return (!!(spa->spa_mode & FWRITE)); 1803 } 1804 1805 int 1806 spa_mode(spa_t *spa) 1807 { 1808 return (spa->spa_mode); 1809 } 1810 1811 uint64_t 1812 spa_bootfs(spa_t *spa) 1813 { 1814 return (spa->spa_bootfs); 1815 } 1816 1817 uint64_t 1818 spa_delegation(spa_t *spa) 1819 { 1820 return (spa->spa_delegation); 1821 } 1822 1823 objset_t * 1824 spa_meta_objset(spa_t *spa) 1825 { 1826 return (spa->spa_meta_objset); 1827 } 1828 1829 enum zio_checksum 1830 spa_dedup_checksum(spa_t *spa) 1831 { 1832 return (spa->spa_dedup_checksum); 1833 } 1834 1835 /* 1836 * Reset pool scan stat per scan pass (or reboot). 1837 */ 1838 void 1839 spa_scan_stat_init(spa_t *spa) 1840 { 1841 /* data not stored on disk */ 1842 spa->spa_scan_pass_start = gethrestime_sec(); 1843 spa->spa_scan_pass_exam = 0; 1844 vdev_scan_stat_init(spa->spa_root_vdev); 1845 } 1846 1847 /* 1848 * Get scan stats for zpool status reports 1849 */ 1850 int 1851 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1852 { 1853 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1854 1855 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1856 return (SET_ERROR(ENOENT)); 1857 bzero(ps, sizeof (pool_scan_stat_t)); 1858 1859 /* data stored on disk */ 1860 ps->pss_func = scn->scn_phys.scn_func; 1861 ps->pss_start_time = scn->scn_phys.scn_start_time; 1862 ps->pss_end_time = scn->scn_phys.scn_end_time; 1863 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1864 ps->pss_examined = scn->scn_phys.scn_examined; 1865 ps->pss_to_process = scn->scn_phys.scn_to_process; 1866 ps->pss_processed = scn->scn_phys.scn_processed; 1867 ps->pss_errors = scn->scn_phys.scn_errors; 1868 ps->pss_state = scn->scn_phys.scn_state; 1869 1870 /* data not stored on disk */ 1871 ps->pss_pass_start = spa->spa_scan_pass_start; 1872 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1873 1874 return (0); 1875 } 1876 1877 boolean_t 1878 spa_debug_enabled(spa_t *spa) 1879 { 1880 return (spa->spa_debug); 1881 } 1882