xref: /titanic_41/usr/src/uts/common/fs/zfs/spa_misc.c (revision 6a42cb7b9d730ae02bbdb8898dc074179f96e178)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 
48 /*
49  * SPA locking
50  *
51  * There are four basic locks for managing spa_t structures:
52  *
53  * spa_namespace_lock (global mutex)
54  *
55  *	This lock must be acquired to do any of the following:
56  *
57  *		- Lookup a spa_t by name
58  *		- Add or remove a spa_t from the namespace
59  *		- Increase spa_refcount from non-zero
60  *		- Check if spa_refcount is zero
61  *		- Rename a spa_t
62  *		- add/remove/attach/detach devices
63  *		- Held for the duration of create/destroy/import/export
64  *
65  *	It does not need to handle recursion.  A create or destroy may
66  *	reference objects (files or zvols) in other pools, but by
67  *	definition they must have an existing reference, and will never need
68  *	to lookup a spa_t by name.
69  *
70  * spa_refcount (per-spa refcount_t protected by mutex)
71  *
72  *	This reference count keep track of any active users of the spa_t.  The
73  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
74  *	the refcount is never really 'zero' - opening a pool implicitly keeps
75  *	some references in the DMU.  Internally we check against SPA_MINREF, but
76  *	present the image of a zero/non-zero value to consumers.
77  *
78  * spa_config_lock (per-spa crazy rwlock)
79  *
80  *	This SPA special is a recursive rwlock, capable of being acquired from
81  *	asynchronous threads.  It has protects the spa_t from config changes,
82  *	and must be held in the following circumstances:
83  *
84  *		- RW_READER to perform I/O to the spa
85  *		- RW_WRITER to change the vdev config
86  *
87  * spa_config_cache_lock (per-spa mutex)
88  *
89  *	This mutex prevents the spa_config nvlist from being updated.  No
90  *      other locks are required to obtain this lock, although implicitly you
91  *      must have the namespace lock or non-zero refcount to have any kind
92  *      of spa_t pointer at all.
93  *
94  * The locking order is fairly straightforward:
95  *
96  *		spa_namespace_lock	->	spa_refcount
97  *
98  *	The namespace lock must be acquired to increase the refcount from 0
99  *	or to check if it is zero.
100  *
101  *		spa_refcount		->	spa_config_lock
102  *
103  *	There must be at least one valid reference on the spa_t to acquire
104  *	the config lock.
105  *
106  *		spa_namespace_lock	->	spa_config_lock
107  *
108  *	The namespace lock must always be taken before the config lock.
109  *
110  *
111  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
112  * are globally visible.
113  *
114  * The namespace is manipulated using the following functions, all which require
115  * the spa_namespace_lock to be held.
116  *
117  *	spa_lookup()		Lookup a spa_t by name.
118  *
119  *	spa_add()		Create a new spa_t in the namespace.
120  *
121  *	spa_remove()		Remove a spa_t from the namespace.  This also
122  *				frees up any memory associated with the spa_t.
123  *
124  *	spa_next()		Returns the next spa_t in the system, or the
125  *				first if NULL is passed.
126  *
127  *	spa_evict_all()		Shutdown and remove all spa_t structures in
128  *				the system.
129  *
130  *	spa_guid_exists()	Determine whether a pool/device guid exists.
131  *
132  * The spa_refcount is manipulated using the following functions:
133  *
134  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135  *				called with spa_namespace_lock held if the
136  *				refcount is currently zero.
137  *
138  *	spa_close()		Remove a reference from the spa_t.  This will
139  *				not free the spa_t or remove it from the
140  *				namespace.  No locking is required.
141  *
142  *	spa_refcount_zero()	Returns true if the refcount is currently
143  *				zero.  Must be called with spa_namespace_lock
144  *				held.
145  *
146  * The spa_config_lock is manipulated using the following functions:
147  *
148  *	spa_config_enter()	Acquire the config lock as RW_READER or
149  *				RW_WRITER.  At least one reference on the spa_t
150  *				must exist.
151  *
152  *	spa_config_exit()	Release the config lock.
153  *
154  *	spa_config_held()	Returns true if the config lock is currently
155  *				held in the given state.
156  *
157  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
158  *
159  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
160  *				for writing.
161  *
162  *	spa_vdev_exit()		Release the config lock, wait for all I/O
163  *				to complete, sync the updated configs to the
164  *				cache, and release the namespace lock.
165  *
166  * The spa_name() function also requires either the spa_namespace_lock
167  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
168  * also implemented within this file since is requires manipulation of the
169  * namespace.
170  */
171 
172 static avl_tree_t spa_namespace_avl;
173 kmutex_t spa_namespace_lock;
174 static kcondvar_t spa_namespace_cv;
175 static int spa_active_count;
176 int spa_max_replication_override = SPA_DVAS_PER_BP;
177 
178 static kmutex_t spa_spare_lock;
179 static avl_tree_t spa_spare_avl;
180 
181 kmem_cache_t *spa_buffer_pool;
182 int spa_mode;
183 
184 #ifdef ZFS_DEBUG
185 int zfs_flags = ~0;
186 #else
187 int zfs_flags = 0;
188 #endif
189 
190 /*
191  * zfs_recover can be set to nonzero to attempt to recover from
192  * otherwise-fatal errors, typically caused by on-disk corruption.  When
193  * set, calls to zfs_panic_recover() will turn into warning messages.
194  */
195 int zfs_recover = 0;
196 
197 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
198 
199 /*
200  * ==========================================================================
201  * SPA namespace functions
202  * ==========================================================================
203  */
204 
205 /*
206  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
207  * Returns NULL if no matching spa_t is found.
208  */
209 spa_t *
210 spa_lookup(const char *name)
211 {
212 	spa_t search, *spa;
213 	avl_index_t where;
214 
215 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
216 
217 	search.spa_name = (char *)name;
218 	spa = avl_find(&spa_namespace_avl, &search, &where);
219 
220 	return (spa);
221 }
222 
223 /*
224  * Create an uninitialized spa_t with the given name.  Requires
225  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
226  * exist by calling spa_lookup() first.
227  */
228 spa_t *
229 spa_add(const char *name, const char *altroot)
230 {
231 	spa_t *spa;
232 
233 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
234 
235 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
236 
237 	spa->spa_name = spa_strdup(name);
238 	spa->spa_state = POOL_STATE_UNINITIALIZED;
239 	spa->spa_freeze_txg = UINT64_MAX;
240 	spa->spa_final_txg = UINT64_MAX;
241 
242 	refcount_create(&spa->spa_refcount);
243 	refcount_create(&spa->spa_config_lock.scl_count);
244 
245 	avl_add(&spa_namespace_avl, spa);
246 
247 	/*
248 	 * Set the alternate root, if there is one.
249 	 */
250 	if (altroot) {
251 		spa->spa_root = spa_strdup(altroot);
252 		spa_active_count++;
253 	}
254 
255 	return (spa);
256 }
257 
258 /*
259  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
260  * spa_namespace_lock.  This is called only after the spa_t has been closed and
261  * deactivated.
262  */
263 void
264 spa_remove(spa_t *spa)
265 {
266 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
267 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
268 	ASSERT(spa->spa_scrub_thread == NULL);
269 
270 	avl_remove(&spa_namespace_avl, spa);
271 	cv_broadcast(&spa_namespace_cv);
272 
273 	if (spa->spa_root) {
274 		spa_strfree(spa->spa_root);
275 		spa_active_count--;
276 	}
277 
278 	if (spa->spa_name)
279 		spa_strfree(spa->spa_name);
280 
281 	spa_config_set(spa, NULL);
282 
283 	refcount_destroy(&spa->spa_refcount);
284 	refcount_destroy(&spa->spa_config_lock.scl_count);
285 
286 	mutex_destroy(&spa->spa_sync_bplist.bpl_lock);
287 	mutex_destroy(&spa->spa_config_lock.scl_lock);
288 	mutex_destroy(&spa->spa_errlist_lock);
289 	mutex_destroy(&spa->spa_errlog_lock);
290 	mutex_destroy(&spa->spa_scrub_lock);
291 	mutex_destroy(&spa->spa_config_cache_lock);
292 	mutex_destroy(&spa->spa_async_lock);
293 	mutex_destroy(&spa->spa_history_lock);
294 	mutex_destroy(&spa->spa_props_lock);
295 
296 	kmem_free(spa, sizeof (spa_t));
297 }
298 
299 /*
300  * Given a pool, return the next pool in the namespace, or NULL if there is
301  * none.  If 'prev' is NULL, return the first pool.
302  */
303 spa_t *
304 spa_next(spa_t *prev)
305 {
306 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
307 
308 	if (prev)
309 		return (AVL_NEXT(&spa_namespace_avl, prev));
310 	else
311 		return (avl_first(&spa_namespace_avl));
312 }
313 
314 /*
315  * ==========================================================================
316  * SPA refcount functions
317  * ==========================================================================
318  */
319 
320 /*
321  * Add a reference to the given spa_t.  Must have at least one reference, or
322  * have the namespace lock held.
323  */
324 void
325 spa_open_ref(spa_t *spa, void *tag)
326 {
327 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
328 	    MUTEX_HELD(&spa_namespace_lock));
329 
330 	(void) refcount_add(&spa->spa_refcount, tag);
331 }
332 
333 /*
334  * Remove a reference to the given spa_t.  Must have at least one reference, or
335  * have the namespace lock held.
336  */
337 void
338 spa_close(spa_t *spa, void *tag)
339 {
340 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
341 	    MUTEX_HELD(&spa_namespace_lock));
342 
343 	(void) refcount_remove(&spa->spa_refcount, tag);
344 }
345 
346 /*
347  * Check to see if the spa refcount is zero.  Must be called with
348  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
349  * number of references acquired when opening a pool
350  */
351 boolean_t
352 spa_refcount_zero(spa_t *spa)
353 {
354 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
355 
356 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
357 }
358 
359 /*
360  * ==========================================================================
361  * SPA spare tracking
362  * ==========================================================================
363  */
364 
365 /*
366  * Spares are tracked globally due to the following constraints:
367  *
368  * 	- A spare may be part of multiple pools.
369  * 	- A spare may be added to a pool even if it's actively in use within
370  *	  another pool.
371  * 	- A spare in use in any pool can only be the source of a replacement if
372  *	  the target is a spare in the same pool.
373  *
374  * We keep track of all spares on the system through the use of a reference
375  * counted AVL tree.  When a vdev is added as a spare, or used as a replacement
376  * spare, then we bump the reference count in the AVL tree.  In addition, we set
377  * the 'vdev_isspare' member to indicate that the device is a spare (active or
378  * inactive).  When a spare is made active (used to replace a device in the
379  * pool), we also keep track of which pool its been made a part of.
380  *
381  * The 'spa_spare_lock' protects the AVL tree.  These functions are normally
382  * called under the spa_namespace lock as part of vdev reconfiguration.  The
383  * separate spare lock exists for the status query path, which does not need to
384  * be completely consistent with respect to other vdev configuration changes.
385  */
386 
387 typedef struct spa_spare {
388 	uint64_t	spare_guid;
389 	uint64_t	spare_pool;
390 	avl_node_t	spare_avl;
391 	int		spare_count;
392 } spa_spare_t;
393 
394 static int
395 spa_spare_compare(const void *a, const void *b)
396 {
397 	const spa_spare_t *sa = a;
398 	const spa_spare_t *sb = b;
399 
400 	if (sa->spare_guid < sb->spare_guid)
401 		return (-1);
402 	else if (sa->spare_guid > sb->spare_guid)
403 		return (1);
404 	else
405 		return (0);
406 }
407 
408 void
409 spa_spare_add(vdev_t *vd)
410 {
411 	avl_index_t where;
412 	spa_spare_t search;
413 	spa_spare_t *spare;
414 
415 	mutex_enter(&spa_spare_lock);
416 	ASSERT(!vd->vdev_isspare);
417 
418 	search.spare_guid = vd->vdev_guid;
419 	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
420 		spare->spare_count++;
421 	} else {
422 		spare = kmem_zalloc(sizeof (spa_spare_t), KM_SLEEP);
423 		spare->spare_guid = vd->vdev_guid;
424 		spare->spare_count = 1;
425 		avl_insert(&spa_spare_avl, spare, where);
426 	}
427 	vd->vdev_isspare = B_TRUE;
428 
429 	mutex_exit(&spa_spare_lock);
430 }
431 
432 void
433 spa_spare_remove(vdev_t *vd)
434 {
435 	spa_spare_t search;
436 	spa_spare_t *spare;
437 	avl_index_t where;
438 
439 	mutex_enter(&spa_spare_lock);
440 
441 	search.spare_guid = vd->vdev_guid;
442 	spare = avl_find(&spa_spare_avl, &search, &where);
443 
444 	ASSERT(vd->vdev_isspare);
445 	ASSERT(spare != NULL);
446 
447 	if (--spare->spare_count == 0) {
448 		avl_remove(&spa_spare_avl, spare);
449 		kmem_free(spare, sizeof (spa_spare_t));
450 	} else if (spare->spare_pool == spa_guid(vd->vdev_spa)) {
451 		spare->spare_pool = 0ULL;
452 	}
453 
454 	vd->vdev_isspare = B_FALSE;
455 	mutex_exit(&spa_spare_lock);
456 }
457 
458 boolean_t
459 spa_spare_exists(uint64_t guid, uint64_t *pool)
460 {
461 	spa_spare_t search, *found;
462 	avl_index_t where;
463 
464 	mutex_enter(&spa_spare_lock);
465 
466 	search.spare_guid = guid;
467 	found = avl_find(&spa_spare_avl, &search, &where);
468 
469 	if (pool) {
470 		if (found)
471 			*pool = found->spare_pool;
472 		else
473 			*pool = 0ULL;
474 	}
475 
476 	mutex_exit(&spa_spare_lock);
477 
478 	return (found != NULL);
479 }
480 
481 void
482 spa_spare_activate(vdev_t *vd)
483 {
484 	spa_spare_t search, *found;
485 	avl_index_t where;
486 
487 	mutex_enter(&spa_spare_lock);
488 	ASSERT(vd->vdev_isspare);
489 
490 	search.spare_guid = vd->vdev_guid;
491 	found = avl_find(&spa_spare_avl, &search, &where);
492 	ASSERT(found != NULL);
493 	ASSERT(found->spare_pool == 0ULL);
494 
495 	found->spare_pool = spa_guid(vd->vdev_spa);
496 	mutex_exit(&spa_spare_lock);
497 }
498 
499 /*
500  * ==========================================================================
501  * SPA config locking
502  * ==========================================================================
503  */
504 
505 /*
506  * Acquire the config lock.  The config lock is a special rwlock that allows for
507  * recursive enters.  Because these enters come from the same thread as well as
508  * asynchronous threads working on behalf of the owner, we must unilaterally
509  * allow all reads access as long at least one reader is held (even if a write
510  * is requested).  This has the side effect of write starvation, but write locks
511  * are extremely rare, and a solution to this problem would be significantly
512  * more complex (if even possible).
513  *
514  * We would like to assert that the namespace lock isn't held, but this is a
515  * valid use during create.
516  */
517 void
518 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
519 {
520 	spa_config_lock_t *scl = &spa->spa_config_lock;
521 
522 	mutex_enter(&scl->scl_lock);
523 
524 	if (scl->scl_writer != curthread) {
525 		if (rw == RW_READER) {
526 			while (scl->scl_writer != NULL)
527 				cv_wait(&scl->scl_cv, &scl->scl_lock);
528 		} else {
529 			while (scl->scl_writer != NULL ||
530 			    !refcount_is_zero(&scl->scl_count))
531 				cv_wait(&scl->scl_cv, &scl->scl_lock);
532 			scl->scl_writer = curthread;
533 		}
534 	}
535 
536 	(void) refcount_add(&scl->scl_count, tag);
537 
538 	mutex_exit(&scl->scl_lock);
539 }
540 
541 /*
542  * Release the spa config lock, notifying any waiters in the process.
543  */
544 void
545 spa_config_exit(spa_t *spa, void *tag)
546 {
547 	spa_config_lock_t *scl = &spa->spa_config_lock;
548 
549 	mutex_enter(&scl->scl_lock);
550 
551 	ASSERT(!refcount_is_zero(&scl->scl_count));
552 	if (refcount_remove(&scl->scl_count, tag) == 0) {
553 		cv_broadcast(&scl->scl_cv);
554 		scl->scl_writer = NULL;  /* OK in either case */
555 	}
556 
557 	mutex_exit(&scl->scl_lock);
558 }
559 
560 /*
561  * Returns true if the config lock is held in the given manner.
562  */
563 boolean_t
564 spa_config_held(spa_t *spa, krw_t rw)
565 {
566 	spa_config_lock_t *scl = &spa->spa_config_lock;
567 	boolean_t held;
568 
569 	mutex_enter(&scl->scl_lock);
570 	if (rw == RW_WRITER)
571 		held = (scl->scl_writer == curthread);
572 	else
573 		held = !refcount_is_zero(&scl->scl_count);
574 	mutex_exit(&scl->scl_lock);
575 
576 	return (held);
577 }
578 
579 /*
580  * ==========================================================================
581  * SPA vdev locking
582  * ==========================================================================
583  */
584 
585 /*
586  * Lock the given spa_t for the purpose of adding or removing a vdev.
587  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
588  * It returns the next transaction group for the spa_t.
589  */
590 uint64_t
591 spa_vdev_enter(spa_t *spa)
592 {
593 	mutex_enter(&spa_namespace_lock);
594 
595 	/*
596 	 * Suspend scrub activity while we mess with the config.  We must do
597 	 * this after acquiring the namespace lock to avoid a 3-way deadlock
598 	 * with spa_scrub_stop() and the scrub thread.
599 	 */
600 	spa_scrub_suspend(spa);
601 
602 	spa_config_enter(spa, RW_WRITER, spa);
603 
604 	return (spa_last_synced_txg(spa) + 1);
605 }
606 
607 /*
608  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
609  * locking of spa_vdev_enter(), we also want make sure the transactions have
610  * synced to disk, and then update the global configuration cache with the new
611  * information.
612  */
613 int
614 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
615 {
616 	int config_changed = B_FALSE;
617 
618 	ASSERT(txg > spa_last_synced_txg(spa));
619 
620 	/*
621 	 * Reassess the DTLs.
622 	 */
623 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
624 
625 	/*
626 	 * If the config changed, notify the scrub thread that it must restart.
627 	 */
628 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
629 		config_changed = B_TRUE;
630 		spa_scrub_restart(spa, txg);
631 	}
632 
633 	spa_config_exit(spa, spa);
634 
635 	/*
636 	 * Allow scrubbing to resume.
637 	 */
638 	spa_scrub_resume(spa);
639 
640 	/*
641 	 * Note: this txg_wait_synced() is important because it ensures
642 	 * that there won't be more than one config change per txg.
643 	 * This allows us to use the txg as the generation number.
644 	 */
645 	if (error == 0)
646 		txg_wait_synced(spa->spa_dsl_pool, txg);
647 
648 	if (vd != NULL) {
649 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
650 		vdev_free(vd);
651 	}
652 
653 	/*
654 	 * If the config changed, update the config cache.
655 	 */
656 	if (config_changed)
657 		spa_config_sync();
658 
659 	mutex_exit(&spa_namespace_lock);
660 
661 	return (error);
662 }
663 
664 /*
665  * ==========================================================================
666  * Miscellaneous functions
667  * ==========================================================================
668  */
669 
670 /*
671  * Rename a spa_t.
672  */
673 int
674 spa_rename(const char *name, const char *newname)
675 {
676 	spa_t *spa;
677 	int err;
678 
679 	/*
680 	 * Lookup the spa_t and grab the config lock for writing.  We need to
681 	 * actually open the pool so that we can sync out the necessary labels.
682 	 * It's OK to call spa_open() with the namespace lock held because we
683 	 * allow recursive calls for other reasons.
684 	 */
685 	mutex_enter(&spa_namespace_lock);
686 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
687 		mutex_exit(&spa_namespace_lock);
688 		return (err);
689 	}
690 
691 	spa_config_enter(spa, RW_WRITER, FTAG);
692 
693 	avl_remove(&spa_namespace_avl, spa);
694 	spa_strfree(spa->spa_name);
695 	spa->spa_name = spa_strdup(newname);
696 	avl_add(&spa_namespace_avl, spa);
697 
698 	/*
699 	 * Sync all labels to disk with the new names by marking the root vdev
700 	 * dirty and waiting for it to sync.  It will pick up the new pool name
701 	 * during the sync.
702 	 */
703 	vdev_config_dirty(spa->spa_root_vdev);
704 
705 	spa_config_exit(spa, FTAG);
706 
707 	txg_wait_synced(spa->spa_dsl_pool, 0);
708 
709 	/*
710 	 * Sync the updated config cache.
711 	 */
712 	spa_config_sync();
713 
714 	spa_close(spa, FTAG);
715 
716 	mutex_exit(&spa_namespace_lock);
717 
718 	return (0);
719 }
720 
721 
722 /*
723  * Determine whether a pool with given pool_guid exists.  If device_guid is
724  * non-zero, determine whether the pool exists *and* contains a device with the
725  * specified device_guid.
726  */
727 boolean_t
728 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
729 {
730 	spa_t *spa;
731 	avl_tree_t *t = &spa_namespace_avl;
732 
733 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
734 
735 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
736 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
737 			continue;
738 		if (spa->spa_root_vdev == NULL)
739 			continue;
740 		if (spa_guid(spa) == pool_guid) {
741 			if (device_guid == 0)
742 				break;
743 
744 			if (vdev_lookup_by_guid(spa->spa_root_vdev,
745 			    device_guid) != NULL)
746 				break;
747 
748 			/*
749 			 * Check any devices we may in the process of adding.
750 			 */
751 			if (spa->spa_pending_vdev) {
752 				if (vdev_lookup_by_guid(spa->spa_pending_vdev,
753 				    device_guid) != NULL)
754 					break;
755 			}
756 		}
757 	}
758 
759 	return (spa != NULL);
760 }
761 
762 char *
763 spa_strdup(const char *s)
764 {
765 	size_t len;
766 	char *new;
767 
768 	len = strlen(s);
769 	new = kmem_alloc(len + 1, KM_SLEEP);
770 	bcopy(s, new, len);
771 	new[len] = '\0';
772 
773 	return (new);
774 }
775 
776 void
777 spa_strfree(char *s)
778 {
779 	kmem_free(s, strlen(s) + 1);
780 }
781 
782 uint64_t
783 spa_get_random(uint64_t range)
784 {
785 	uint64_t r;
786 
787 	ASSERT(range != 0);
788 
789 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
790 
791 	return (r % range);
792 }
793 
794 void
795 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
796 {
797 	int d;
798 
799 	if (bp == NULL) {
800 		(void) snprintf(buf, len, "<NULL>");
801 		return;
802 	}
803 
804 	if (BP_IS_HOLE(bp)) {
805 		(void) snprintf(buf, len, "<hole>");
806 		return;
807 	}
808 
809 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
810 	    (u_longlong_t)BP_GET_LEVEL(bp),
811 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
812 	    (u_longlong_t)BP_GET_LSIZE(bp),
813 	    (u_longlong_t)BP_GET_PSIZE(bp));
814 
815 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
816 		const dva_t *dva = &bp->blk_dva[d];
817 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
818 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
819 		    (u_longlong_t)DVA_GET_VDEV(dva),
820 		    (u_longlong_t)DVA_GET_OFFSET(dva),
821 		    (u_longlong_t)DVA_GET_ASIZE(dva));
822 	}
823 
824 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
825 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
826 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
827 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
828 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
829 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
830 	    (u_longlong_t)bp->blk_birth,
831 	    (u_longlong_t)bp->blk_fill,
832 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
833 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
834 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
835 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
836 }
837 
838 void
839 spa_freeze(spa_t *spa)
840 {
841 	uint64_t freeze_txg = 0;
842 
843 	spa_config_enter(spa, RW_WRITER, FTAG);
844 	if (spa->spa_freeze_txg == UINT64_MAX) {
845 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
846 		spa->spa_freeze_txg = freeze_txg;
847 	}
848 	spa_config_exit(spa, FTAG);
849 	if (freeze_txg != 0)
850 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
851 }
852 
853 void
854 zfs_panic_recover(const char *fmt, ...)
855 {
856 	va_list adx;
857 
858 	va_start(adx, fmt);
859 	vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx);
860 	va_end(adx);
861 }
862 
863 /*
864  * ==========================================================================
865  * Accessor functions
866  * ==========================================================================
867  */
868 
869 krwlock_t *
870 spa_traverse_rwlock(spa_t *spa)
871 {
872 	return (&spa->spa_traverse_lock);
873 }
874 
875 int
876 spa_traverse_wanted(spa_t *spa)
877 {
878 	return (spa->spa_traverse_wanted);
879 }
880 
881 dsl_pool_t *
882 spa_get_dsl(spa_t *spa)
883 {
884 	return (spa->spa_dsl_pool);
885 }
886 
887 blkptr_t *
888 spa_get_rootblkptr(spa_t *spa)
889 {
890 	return (&spa->spa_ubsync.ub_rootbp);
891 }
892 
893 void
894 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
895 {
896 	spa->spa_uberblock.ub_rootbp = *bp;
897 }
898 
899 void
900 spa_altroot(spa_t *spa, char *buf, size_t buflen)
901 {
902 	if (spa->spa_root == NULL)
903 		buf[0] = '\0';
904 	else
905 		(void) strncpy(buf, spa->spa_root, buflen);
906 }
907 
908 int
909 spa_sync_pass(spa_t *spa)
910 {
911 	return (spa->spa_sync_pass);
912 }
913 
914 char *
915 spa_name(spa_t *spa)
916 {
917 	/*
918 	 * Accessing the name requires holding either the namespace lock or the
919 	 * config lock, both of which are required to do a rename.
920 	 */
921 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
922 	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
923 
924 	return (spa->spa_name);
925 }
926 
927 uint64_t
928 spa_guid(spa_t *spa)
929 {
930 	/*
931 	 * If we fail to parse the config during spa_load(), we can go through
932 	 * the error path (which posts an ereport) and end up here with no root
933 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
934 	 * this case.
935 	 */
936 	if (spa->spa_root_vdev != NULL)
937 		return (spa->spa_root_vdev->vdev_guid);
938 	else
939 		return (spa->spa_load_guid);
940 }
941 
942 uint64_t
943 spa_last_synced_txg(spa_t *spa)
944 {
945 	return (spa->spa_ubsync.ub_txg);
946 }
947 
948 uint64_t
949 spa_first_txg(spa_t *spa)
950 {
951 	return (spa->spa_first_txg);
952 }
953 
954 int
955 spa_state(spa_t *spa)
956 {
957 	return (spa->spa_state);
958 }
959 
960 uint64_t
961 spa_freeze_txg(spa_t *spa)
962 {
963 	return (spa->spa_freeze_txg);
964 }
965 
966 /*
967  * In the future, this may select among different metaslab classes
968  * depending on the zdp.  For now, there's no such distinction.
969  */
970 metaslab_class_t *
971 spa_metaslab_class_select(spa_t *spa)
972 {
973 	return (spa->spa_normal_class);
974 }
975 
976 /*
977  * Return how much space is allocated in the pool (ie. sum of all asize)
978  */
979 uint64_t
980 spa_get_alloc(spa_t *spa)
981 {
982 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
983 }
984 
985 /*
986  * Return how much (raid-z inflated) space there is in the pool.
987  */
988 uint64_t
989 spa_get_space(spa_t *spa)
990 {
991 	return (spa->spa_root_vdev->vdev_stat.vs_space);
992 }
993 
994 /*
995  * Return the amount of raid-z-deflated space in the pool.
996  */
997 uint64_t
998 spa_get_dspace(spa_t *spa)
999 {
1000 	if (spa->spa_deflate)
1001 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
1002 	else
1003 		return (spa->spa_root_vdev->vdev_stat.vs_space);
1004 }
1005 
1006 /* ARGSUSED */
1007 uint64_t
1008 spa_get_asize(spa_t *spa, uint64_t lsize)
1009 {
1010 	/*
1011 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
1012 	 * case the space requirement is exactly 2x; so just assume that.
1013 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
1014 	 * we have to multiply by a total of 6x.
1015 	 */
1016 	return (lsize * 6);
1017 }
1018 
1019 uint64_t
1020 spa_version(spa_t *spa)
1021 {
1022 	return (spa->spa_ubsync.ub_version);
1023 }
1024 
1025 int
1026 spa_max_replication(spa_t *spa)
1027 {
1028 	/*
1029 	 * As of ZFS_VERSION == ZFS_VERSION_DITTO_BLOCKS, we are able to
1030 	 * handle BPs with more than one DVA allocated.  Set our max
1031 	 * replication level accordingly.
1032 	 */
1033 	if (spa_version(spa) < ZFS_VERSION_DITTO_BLOCKS)
1034 		return (1);
1035 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
1036 }
1037 
1038 uint64_t
1039 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
1040 {
1041 	int sz = 0, i;
1042 
1043 	if (!spa->spa_deflate)
1044 		return (BP_GET_ASIZE(bp));
1045 
1046 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
1047 		vdev_t *vd =
1048 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
1049 		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
1050 		    vd->vdev_deflate_ratio;
1051 	}
1052 	return (sz);
1053 }
1054 
1055 /*
1056  * ==========================================================================
1057  * Initialization and Termination
1058  * ==========================================================================
1059  */
1060 
1061 static int
1062 spa_name_compare(const void *a1, const void *a2)
1063 {
1064 	const spa_t *s1 = a1;
1065 	const spa_t *s2 = a2;
1066 	int s;
1067 
1068 	s = strcmp(s1->spa_name, s2->spa_name);
1069 	if (s > 0)
1070 		return (1);
1071 	if (s < 0)
1072 		return (-1);
1073 	return (0);
1074 }
1075 
1076 int
1077 spa_busy(void)
1078 {
1079 	return (spa_active_count);
1080 }
1081 
1082 void
1083 spa_init(int mode)
1084 {
1085 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
1086 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
1087 
1088 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
1089 	    offsetof(spa_t, spa_avl));
1090 
1091 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
1092 	    offsetof(spa_spare_t, spare_avl));
1093 
1094 	spa_mode = mode;
1095 
1096 	refcount_init();
1097 	unique_init();
1098 	zio_init();
1099 	dmu_init();
1100 	zil_init();
1101 	spa_config_load();
1102 }
1103 
1104 void
1105 spa_fini(void)
1106 {
1107 	spa_evict_all();
1108 
1109 	zil_fini();
1110 	dmu_fini();
1111 	zio_fini();
1112 	refcount_fini();
1113 
1114 	avl_destroy(&spa_namespace_avl);
1115 	avl_destroy(&spa_spare_avl);
1116 
1117 	cv_destroy(&spa_namespace_cv);
1118 	mutex_destroy(&spa_namespace_lock);
1119 }
1120